
 International Journal of 

Molecular Sciences

Article

Comprehensive Analysis Reveals Novel Interactions
between Circulating MicroRNAs and Gut Microbiota
Composition in Human Obesity

Taís Silveira Assmann 1 , Amanda Cuevas-Sierra 1 , José Ignacio Riezu-Boj 1,2,3 ,
Fermín I. Milagro 1,2,3,* and J. Alfredo Martínez 1,2,3

1 Center for Nutrition Research, Department of Nutrition, Food Science and Physiology,
University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; taisassmann@hotmail.com (T.S.A.);
acuevas.1@alumni.unav.es (A.C.-S.); jiriezu@unav.es (J.I.R.-B.); jalfmtz@unav.es (J.A.M.)

2 Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn),
Carlos III Health Institute, 28029 Madrid, Spain

3 IdiSNA—Navarra Institute for Health Research, 31008 Pamplona, Spain
* Correspondence: fmilagro@unav.es

Received: 4 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 ����������
�������

Abstract: Background: The determinants that mediate the interactions between microRNAs and the
gut microbiome impacting on obesity are scarcely understood. Thus, the aim of this study was to
investigate possible interactions between circulating microRNAs and gut microbiota composition
in obesity. Method: The sample comprised 78 subjects with obesity (cases, body mass index (BMI):
30–40 kg/m2) and 25 eutrophic individuals (controls, BMI≤ 25 kg/m2). The expression of 96 microRNAs
was investigated in plasma of all individuals using miRCURY LNA miRNA Custom PCR Panels.
Bacterial DNA sequencing was performed following the Illumina 16S protocol. The FDR correction
was used for multiple comparison analyses. Results: A total of 26 circulating microRNAs and
12 bacterial species were found differentially expressed between cases and controls. Interestingly,
an interaction among three miRNAs (miR-130b-3p, miR-185-5p and miR-21-5p) with Bacteroides eggerthi
and BMI levels was evidenced (r2 = 0.148, p = 0.004). Moreover, these microRNAs regulate genes
that participate in metabolism-related pathways, including fatty acid degradation, insulin signaling
and glycerolipid metabolism. Conclusions: This study characterized an interaction between the
abundance of 4 bacterial species and 14 circulating microRNAs in relation to obesity. Moreover,
the current study also suggests that miRNAs may serve as a communication mechanism between the
gut microbiome and human hosts.
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1. Background

Obesity is a worldwide epidemic that arises as a chronic long-term imbalance between calorie
intake and energy expenditure [1]. Despite nutritional interventions and physical education programs,
the prevalence of obesity is still increasing and ∼600 million people worldwide are expected to have
obesity by 2025 [2]. Obesity is the result of complex and not completely understood pathological
processes deriving from a crosstalk among environmental factors, genetic susceptibility and epigenetic
mechanisms [3,4].

Among the epigenetic mechanisms, microRNAs (miRNAs) are a class of small non-coding RNAs
that regulate gene expression [5–7]. These molecules have recognized roles in the regulation of several
biological processes, including cell cycle, cellular differentiation, proliferation, metabolism, ageing and
apoptosis [7]. Moreover, it is estimated that miRNAs regulate the expression of more than 60% of
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protein-coding genes [5]; and, consequently, changes in their expressions and functions have been
linked to many diseases, including metabolic disorders and obesity [8,9].

Recent findings indicate that host miRNAs contribute to the regulation of gut microbiome,
specially involving at least two main processes: (i) host-secreted miRNAs regulate the gut microbiota;
and (ii) the gut microbiota affects the host through inducing special miRNA expression [10]. Indeed,
evidences suggest that miRNAs produced by host’s intestinal epithelial cells (IECs) participate in
shaping the gut microbiota and affect bacterial growth [11]. These miRNAs target bacterial mRNA and
then the host controls the gut microbiota via bacterial mRNA degradation or translational inhibition [11].
On the other hand, it was demonstrated, using Dicer1 knock-out mice, that miRNAs were essential for
epithelial cell proliferation, differentiation, nutrient absorption and that defective miRNA biogenesis
was also responsible for impaired intestinal barrier function [12].

Additionally, gut microbiota regulates miRNA expression in IECs subtypes and this regulation
may alter intestinal homeostasis [13]. In this sense, it was demonstrated that the expression of some
miRNAs is different among IEC subtypes and the difference depends on microbial patterns [14].
Similarly, the expression of 16 miRNAs was found altered in the caecum of conventionally raised
vs. germ-free mice [15]. Recently, it has been reported that gut microbiota specifically controlled
the miR-181 family expression in white adipocytes during homeostasis to modulate key pathways
related to adiposity, insulin sensitivity and white adipose tissue (WAT) inflammation in mice [16].
Furthermore, high-fat diet (HFD) feeding altered the composition of gut microbiota, leading to aberrant
overexpression of miR-181 in WAT adipocytes [16]. Altogether, these studies provide clues that gut
microbiota regulates host gene expression through modulation of host miRNA signature and that host
metabolism could be influenced by this interaction.

According to these findings, miRNAs appear to play an important role in host-to-microbe
interaction and may be considered as molecular targets for novel anti-microbial therapies to be
developed. However, very little is known about the interactions between miRNAs and the host
microbiome in the context of obesity. Therefore, the aim of this study was to investigate interactions
between circulating miRNA patterns and gut microbiota composition in obesity.

2. Results

2.1. Clinical and Laboratory Characteristics of Individuals Included in the Study

Clinical, laboratorial and nutritional characteristics of cases with obesity and normal weight
controls are shown in Table 1. There were no differences between cases and controls regarding
age, gender, smoking habits, alcohol consumption, and energy intake. Moreover, both groups had
a comparable dietary macronutrient composition. As expected, subjects with obesity presented higher
waist circumference, glucose, total cholesterol, and triglyceride levels compared to normal weight
individuals. Additionally, cases also presented elevated levels of metabolic markers such as insulin,
leptin, Triglycerides-Glucose (TyG) and HOMA-IR indexes and, lower levels of metabolic equivalents
(METs) compared to controls.

Table 1. Clinical, dietary and laboratory characteristics of the sample included in the study.

Characteristics Subjects with Obesity
(Cases, n = 78)

Eutrophic Individuals
(Controls, n = 25) p-Value *

Age (years) 46.6 ± 9.4 44.7 ± 9.1 0.106
Gender (% male) 36.1 40.0 0.443

Smoking habits (%)
Ex-smokers 41.7 33.4 0.251

Smokers 25.0 20.8
Non-smokers 44.0 45.8
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Table 1. Cont.

Characteristics Subjects with Obesity
(Cases, n = 78)

Eutrophic Individuals
(Controls, n = 25) p-Value *

Alcohol consumption
Yes 51.4 64.0 0.063
No 48.6 36.0

Anthropometric and clinical data

BMI (kg/m2) 32.9 ± 2.4 18.6 ± 2.1
WC (cm) 104.9 ± 10.2 75.2 ± 7.6 0.0001

SBP (mmHg) 131 ± 16 111 ± 10 0.0001
DBP (mmHg) 86 ± 9 70 ± 8 0.0001

Metabolic profile

FPG (mg/dL) 97.4 ± 11.9 85.3 ± 6.8 0.0001
TC (mg/dL) 222.5 ± 40.1 192.6 ± 37.1 0.001

HDL-c (mg/dL) 54.2 ± 14.0 61.6 ± 12.7 0.022
TG (mg/dL) 101.6 ± 54.1 65.6 ± 25.0 0.002
TyG index 4.6 ± 0.3 4.2 ± 0.2 0.0001

HOMA-IR index 1.6 (1.1–2.8) 0.6 (0.4–1.0) 0.0001
Adiponectin (ng/mL) 10.9 (7.9–13.5) 12.2 (9.3–15.7) 0.067

Insulin (mU/L) 6.8 (4.7–11.5) 3.2 (2.8–4.8) 0.0001
Leptin (ng/mL) 33.1 (17.2–46.8) 4.9 (2.1–11.7) 0.0001

Body composition

Fat mass (%) 34.7 ± 6.5 13.6 ± 5.7 0.0001
Lean mass (%) 57.0 ± 11.7 47.6 ± 12.2 0.001

Dietary intake and energy expenditure

Energy (Kcal) 2961 ± 1051 2588 ± 701 0.101
Carbohydrates (%) 41.4 ± 7.1 44.8 ± 6.4 0.034

Protein (%) 16.7 ± 2.9 15.9 ± 3.4 0.245
Fat (%) 40.1 ± 6.4 37.7 ± 4.9 0.100

Fiber (g/day) 27.9 ± 11.4 32.7 ± 11.5 0.070
METs (kcal/kg/h) 17.0 (7.5–27.0) 33.2 (20.0–44.4) 0.001

Variables are shown as mean ± SD, median (25th–75th percentiles) or %, as appropriate. * p-values were computed
usingχ2 or Student’s t-test, as appropriated. BMI: body mass index; DBP: diastolic blood pressure; FPG: fasting plasma
glucose; HDL-c: high-density lipoprotein cholesterol; HOMA-IR index: homeostatic model assessment-insulin
resistance index; METs: metabolic equivalents; SBP: systolic blood pressure; TC: total cholesterol; TG: triglycerides;
TyG index: triglyceride glucose index; WC: waist circumference.

2.2. Quality Control of MicroRNA Expression

The RNA spike-in expressions presented low variation in Cq among samples in RNA isolation
and cDNA synthesis, demonstrating that extraction, reverse transcription, and qPCR were effective
and none of the samples contained inhibitors. As expected, the expression of UniSp2, UniSp4,
UniSp5 and UniSp6 did not differ between groups (cases vs. controls). UniSp5 was expressed
in all analyzed samples, demonstrating that miRNAs expressed at low levels was not lost during
isolation. Thus, the mean cycle of each spike-in was calculated for the whole sample as follows: UniSp2:
20.4 ± 1.2, UniSp3: 22.5 ± 0.4, UniSp4: 27.1 ± 1.1, UniSp5: 34.2 ± 1.3 and UniSp6 19.4 ± 1.1. The ratio
between miR-451a and miR-23a-3p ranged between 5 and −1, indicating that the samples were not
affected by hemolysis. Generally, these results showed a good and similar level of sample quality and
reproducibility of the miRNA profiling processes.

2.3. MicroRNAs Differentially Expressed in Plasma of Patients with Obesity

The expression of 86 target miRNAs was evaluated in plasma of subjects with obesity and in
normal weight individuals. Of these 86 miRNAs, 61 were expressed in at least 20% of the sample with
Cq values ≥ 35. Of these 61 miRNAs, 26 were differentially expressed between cases and controls
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after FDR correction (Table 2). The results remained significant after adjustment for age and gender
(Table 2 and Table S2). In addition, after adjustment for gender, triglycerides levels, and HOMA-IR
index, 24 miRNAs remained associated with obesity (Table 2 and Table S2).

Table 2. Relation of 26 microRNAs whose expression profile in plasma is significantly different between
cases with obesity and eutrophic controls.

microRNA Subjects with Obesity
(Cases, n = 78)

Eutrophic Individuals
(Controls, n = 25) p-Value * q-Value ** Model 1

(q-Value)
Model 2
(q-Value)

miR-103a-3p 0.169 (0.057–0.443) 0.567 (0.263–1.426) 0.006 0.020 0.011 0.029
miR-107 0.201 (0.067–0.520) 0.614 (0.309–1.386) 0.014 0.038 0.022 0.044

miR-130a-3p 19.321 (6.029–32.947) 47.904 (31.421–79.317) 0.005 0.004 0.003 0.009
miR-130b-3p 0.208 (0.096–0.433) 0.442 (0.221–1.426) 0.003 0.015 0.011 0.049
miR-140-3p 0.237 (0.076–0.578) 0.872 (0.548–1.561) 0.0001 0.0012 0.001 0.006
miR-142-5p 0.118 (0.036–0.214) 0.279 (0.162–0.941) 0.002 0.007 0.004 0.020
miR-144-3p 1.308 (0.276–2.872) 6.903 (2.036–11.542) 0.0001 0.0012 0.001 0.009
miR-148a-3p 0.259 (0.096–0.479) 0.647 (0.212–1.135) 0.006 0.019 0.010 0.010
miR-181a-5p 0.549 (0.229–1.107) 1.633 (0.369–3.021) 0.006 0.008 0.007 0.006
miR-183-5p 0.374 (0.244–0.649) 0.775 (0.476–1.928) 0.001 0.009 0.002 0.026
miR-185-5p 0.198 (0.083–0.480) 0.665 (0.288–1.272) 0.034 0.040 0.029 0.036
miR-200c-3p 0.540 (0.257–1.118) 1.001 (0.454–2.161) 0.037 0.044 0.041 0.039
miR-205-5p 0.163 (0.122–0.559) 0.711 (0.319–1.322) 0.005 0.020 0.008 0.031
miR-21-5p 0.257 (0.137–0.615) 0.559 (0.261–1.238) 0.036 0.041 0.031 0.032

miR-210-3p 0.110 (0.071–0.245) 0.503 (0.117–0.672) 0.030 0.048 0.032 0.010
miR-221-3p 0.212 (0.065–0.454) 0.555 (0.268–1.549) 0.004 0.013 0.009 0.010
miR-222-3p 0.311 (0.158–0.712) 0.859 (0.470–1.396) 0.005 0.019 0.011 0.009
miR-15a-5p 0.118 (0.060–0.322) 0.356 (0.155–0.877) 0.022 0.054 0.019 0.020
miR-22-3p 0.126 (0.056–0.286) 0.320 (0.127–1.027) 0.012 0.034 0.019 0.099
miR-29c-3p 0.137 (0.068–0.350) 0.453 (0.202–1.269) 0.007 0.020 0.009 0.040
miR-30a-5p 0.629 (0.294–1.347) 1.426 (0.515–2.062) 0.043 0.048 0.044 0.034
miR-30c-5p 0.274 (0.093–0.625) 0.694 (0.235–1.462) 0.042 0.050 0.041 0.054
miR-33a-5p 1.268 (0.573–2.425) 4.54 (1.009–23.596) 0.012 0.016 0.029 0.048

miR-375 0.228 (0.124–0.609) 0.765 (0.484–1.563) 0.0001 0.002 0.001 0.009
miR-424-3p 0.892 (0.698–1.135) 2.000 (0.834–3.127) 0.016 0.030 0.034 0.076
miR-486-3p 0.301 (0.190–0.570) 0.645 (0.238–1.326) 0.004 0.009 0.011 0.040

Data are shown as median (25th–75th percentiles) of n-fold values. * p-values were obtained using Student t-test
with the log-transformed variable. ** Raw p-values were corrected by false discovery rate (FDR; q-value). Regression
analysis were done to compute a) model 1 (adjustment for age and gender) and b) model 2 (adjustment for age,
gender, triglycerides and HOMA-IR). Statistical significance is shown as q-value < 0.05.

As expected, all these 26 miRNAs were negatively correlated with body mass index (BMI,
p ≤ 0.05, Figure 1A). Moreover, as shown in Figure 1B, miR-107, miR-130a-3p, miR-140-3p, miR-142-5p,
miR-144-3p, miR-181a-5p, miR-21-5p, miR-221-3p, miR-375 and miR-424-3p expressions were negatively
associated with glucose levels (p < 0.05). Otherwise, miR-200c-3p and miR-375 positively correlated
with HDL-c levels (r = 0.232, p = 0.047; and r = 0.295, p = 0.015, respectively). Regarding hormone
levels, miR-140-3p and miR-144-3p were negatively associated with leptin levels (r = −0.222, p = 0.034;
and r = −0.245, p = 0.025, respectively), miR-144-3p and miR-183-5p were inversely correlated with
insulin (r = −0.245, p = 0.032; and r = −0.264, p = 0.033, respectively) and adiponectin levels were
positively associated with miR-375 (r = 0.272, p = 0.025) and miR-424-3p (r = 0.405, p = 0.012).
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Figure 1. Significant correlations between 26 microRNAs associated with obesity and laboratorial
characteristics. (A) Heatmap showing the correlations between microRNAs expression (in rows) and
characteristics (in columns). Positive correlations were highlighted in red, negative correlations in blue
and lack of correlation in white; brighter shades indicate higher correlations. (B) Network demonstrating
correlation between microRNAs and laboratorial characteristics. Of note, all microRNAs also correlated
with body mass index (BMI). Correlations analysis were performed using Pearson.

2.4. Gut Microbiota Profile in Subjects with Obesity Compared to Eutrophic Individuals

The effect of obesity on gut microbiota composition was investigated at the genus and species
levels. The levels of eighteen bacterial genera were significantly different when comparing obese and
normal weight individuals, being nine bacterial genera significantly increased in obese subjects when
compared to controls (Figure 2A). Twelve bacterial species were statistically different between obese
and normal weight individuals, being ten of them more abundant in subjects with obesity compared
to eutrophic individuals (Figure 2B and Table 3). After adjustment for model 1 (age and gender),
nine bacterial species remained associated with obesity (Table 3 and Table S3). In addition, after further
adjustments for model 2 (gender, triglycerides levels and HOMA-IR index), seven bacterial species
remained associated with obesity (Table 3 and Table S3). Of note, because of the very low abundance
of Abiotrophia defectiva and Mitsuokella jaladudinii, the regression models analyses were not performed.

Shannon index, which reflects the alpha diversity, was not different between obese and normal
weight groups (Figure S1). However, the beta diversity values of gut microbiota, based on Jaccard
index (PERMANOVA, p = 0.025; Figure S2A) and Bray-Curtis dissimilarity (PERMANOVA, p = 0.015;
Figure S2B), was significantly different between groups.
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Figure 2. Gut microbiota composition in subjects with and without obesity. Relative abundance of
(A) Bacterial genera. (B) Bacterial species. Differences in bacterial relative abundance at the genus and
species levels in cases with obesity and controls with normal weight. Only genera or species whose
abundances were significantly different (FDR, q-value < 0.05) are shown. p-values were obtained using
Student t-test with the log-transformed variable and raw p-values were corrected by false discovery
rate (FDR; q-value). The percentage of occurrence of each taxon is reported as cumulative bar chart.
This figure was performed using ploty.com.

Table 3. Bacterial species whose abundance is statistically different between cases with obesity and
eutrophic controls.

Bacteria
Subjects with

Obesity
(Cases, n = 78)

Eutrophic
Individuals

(Controls, n = 25)
p-Value * q-Value ** Model 1

(q-Value)
Model 2
(q-Value)

Abiotrophia
defectiva

0.0001
(0.0001–0.2825)

0.0001
(0.0001–0.001) 0.0001 0.001

Actinomyces
odontolyticus

0.0001
(0.0001–1.643)

0.0001
(0.0001–0.652) 0.010 0.020 0.037 0.047

Allisonella
histaminiformans

0.0001
(0.0001–5.260)

0.0001
(0.0001–0.001) 0.0001 0.001 0.026 0.042

Bacteroides
eggerthii 3.573 (1.903–10.086) 9.769 (3.32–11.892) 0.039 0.042 0.049 0.049

Barnesiella
intestinihominis 2.885 (0.730–5.809) 1.889 (0.001–3.361) 0.019 0.036 0.047 0.047

Dorea longicatena 9.959 (9.295–10.557) 9.547 (8.887–10.268) 0.039 0.045 0.049 0.049
Haemophilus

parainfluenzae 5.834 (2.990–7.775) 8.254 (6.181–10.708) 0.001 0.002 0.003 0.032

Howardella
ureilytica 2.439 (0.0001–6.303) 0.0001

(0.0001–2.476) 0.010 0.023 0.038 0.037

Lactobacillus
curvatus

0.0001
(0.0001–1.626)

0.0001
(0.0001–0.001) 0.0001 0.001 0.046 0.050

Megamonas
funiformis

0.0001
(0.0001–0.974)

0.0001
(0.0001–0.001) 0.0001 0.001 0.050 0.143

Mitsuokella
jaladudinii

0.0001
(0.0001–2.521)

0.0001
(0.0001–0.001) 0.002 0.030

Odoribacter
laneus

0.0001
(0.0001–2.707)

0.0001
(0.0001–1.015) 0.027 0.040 0.291 0.605

Data are shown as median (25th–75th percentiles). * p-values were obtained using Student t-test with the
log-transformed variable. ** Raw p-values were corrected by false discovery rate (FDR; q-value). Regression analysis
were done to compute (i) model 1 (adjustment for age and gender) and (ii) model 2 (adjustment for age, gender,
triglycerides and HOMA-IR). Statistical significance is shown as q-value < 0.05.

2.5. Crosstalk between Host MiRNAs and Gut Microbiota

To further investigate the relationships between circulating miRNAs and the gut microbiota
composition, associations between bacteria and miRNAs differentially expressed in obesity were
analyzed. At the genus level, of the 18 genera differently expressed in obesity, 9 were significantly
correlated with the expression of 10 miRNAs out of 26 miRNAs differently expressed in subjects
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with obesity (Figure 3A). Fourteen of these miRNAs were significantly associated with four bacterial
species (Dorea longicatena, Banesiela intestinihominis, Bacteroides eggerthii and Haemophillus parainfluenzae),
as illustrated in Figure 3B,C.
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Figure 3. Correlation between miRNA and gut microbiota (genera and species) significantly associated
with obesity. (A) Heatmap showing the correlations between bacterial genera (in columns) and
differently expressed miRNAs (in rows). (B) Heatmap showing the correlation between bacterial
species (in columns) and differently expressed miRNAs (in rows). MiRNAs were clustered using the
one minus Pearson correlation with average linkage. Positive correlations were shown in red and
negative correlations in blue, with brighter shades indicating higher correlations. Lack of correlations is
represented in white. Statistically significant correlations were marked with asterisks (*). (C) Chord
diagram demonstrating interaction between microRNAs and bacterial species. This figure was
performed using MORPHEUS and ploty.com.

A diagram was built to visualize the relationships between the miRNAs and their significantly
correlated bacteria (Figure 3C). The correlation network shows a highly interconnected relationship
between these miRNAs and bacterial species. Interestingly, B. eggerthii negatively correlated with
miR-103a-3p, miR-21-5p, miR-130a-3p, miR-185-5p, miR-144-3p, miR-210-3p, miR-33a-5p, miR-15a-5p,
miR-130b-3p, miR-183-5p, miR-221-3p, miR-222-3p and miR-142-5p. Moreover, an interaction among
miRNAs, B. eggerthi and BMI levels was found. Individually, the expression of miR-103a-3p (r2 = 0.1229,
p = 0.051), miR-130b-3p (r2 = 0.0933, p = 0.021), miR-185-5p (r2 = 0.0894, p = 0.035), miR-21-5p (r2 = 0.1124,
p = 0.008) and miR-210 (r2 = 0.0866, p = 0.052) interacted with these bacterial species and BMI levels.
Furthermore, an interaction among three miRNAs levels (miR-130b-3p, miR-185-5p and miR-21-5p),
B. eggerthi and BMI levels was also evidenced (r2 = 0.148, p = 0.004). Interestingly, there was also an
interaction among B. eggerthi, adiponectin levels and miR-183-5p (r2 = 0.1294, p = 0.009).

In the same way, B. intestinihominis abundance was negatively associated with miR-107,
miR-103a-3p, miR-222-3p and miR-142-5p expressions. The expression of miR-15a-5p was inversely
associated with the abundance of H. parainfluenzae and an interaction with insulin levels (r2 = 0.0592,
p = 0.027) was found. In contrast, D. longicatena was positively associated with miR-21-5p, miR-130a-3p,
miR-185-5p and miR-144-3p. However, interactions among the bacterial abundance, miRNA expression
and BMI levels were not found for these three bacterial species. No association among the bacterial
species, miRNAs and leptin was found.

2.6. Predicted Functions of MiRNAs Correlated with Obesity-Associated Bacteria

Target gene prediction of the 14 miRNAs that correlated with the 4 bacterial species associated
with obesity was accomplished using distinct databases of miRNA-gene interaction in miRWalk
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environment (Table S4). Of the 9584 genes identified as potential targets of these miRNAs, 5381 were
found to be regulated by two or more miRNAs (Table S4); however only 719 genes were previously
experimentally validated, according to miRTarBase (Figure S1). After that, functional enrichment
analysis of miRNA targets was carried out to explore biological pathways possibly regulated by this
set of miRNAs using KEGG Pathways via PathDIP website. A total of 248 KEGG pathways were
significantly enriched (q-value < 0.05) for these miRNAs (Table S5). However, considering only the
experimentally validated target genes, 98 pathways were significantly enriched (Table S5).

As shown in Figure 4, H. parainfluenzae, D. longicatena, B. intestinihominis and B. eggerthii correlated
with miRNAs associated with pathways related to obesity and metabolic processes, including
carbohydrate and lipid turnover, endocrine and inflammatory signaling pathways. More specifically,
the target genes of miRNAs associated with the four bacterial species related to obesity participate in the
fatty acid degradation, mineral absorption, carbohydrate digestion and absorption, insulin signaling
pathway and glycerolipid metabolism.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 17 

 

 
Figure 4. Significant KEGG pathways regulated by the 14 miRNAs correlated with bacteria 
differentially expressed in subjects with obesity. The size and the color of the dots represent the gene 
number and the range of the pathway’s q-value, respectively. The y-axis represents the KEGG 
pathways and the x-axis shows the 4 bacterial species associated with each selected pathway. q-values: 
p-values corrected for multiple tests using the Benjamini–Hochberg method. This figure was 
performed using ploty.com. 

3. Discussion 

Over the past decade, there has been an increasing attention about the crucial roles played by 
miRNAs in a wide variety of cellular processes [9]. In the present study, 26 miRNAs were found as 
differentially expressed in plasma of subjects with obesity compared to normal weight individuals. 
Furthermore, the expression of 14 miRNAs (miR-107, miR-103a-3p, miR-142-5p, miR-222-3p, miR-
221-3p, miR-183-5p, miR-183-5p, miR-130b-3p, miR-15a-5p, miR-33a-5p, miR-210-3p, miR-144-3p, 
miR-185-5p, miR-130a-3p and miR-21-5p) was linked with the relative abundance of 4 bacterial 
species that also significantly differed between cases and controls (D. longicatena, B. intestinihominis, 
B. eggerthii and H. parainfluenzae). 

These miRNAs that interacted with obesity-associated bacteria regulate the expression of genes 
that participate in several metabolism and obesity-related pathways, such as carbohydrate and lipid 
metabolism, endocrine and inflammatory signaling pathways. Indeed, evidence suggests that the 
majority of miRNAs do not regulate a specific or individual target gene but rather they modulate the 
expression of large number of genes in networks, demonstrating their importance in the regulation 
of several metabolic processes [7,16]. 

Moreover, compelling evidence suggests that circulating miRNAs are associated with obesity 
[17–20]. Some miRNAs have been implicated in the control of body weight gain, glucose homeostasis, 
insulin resistance and lipid metabolism [21,22]. In this context, some of miRNAs associated with 
obesity in our study were also described in a recently systematic review study about obesity [23]. In 
agreement with our results, miR-21-5p and miR-103a, miR-221-3p were also found as downregulated 
in blood sample of subjects with obesity in a meta-analysis study [24]. Additionally, the miRNAs that 
were dysregulated in obesity in the present study are associated with various metabolic processes, 
such as impaired glucose intolerance [18], maintenance of the pancreatic beta cell mass [25], adipocyte 
development and adipose tissue physiology [8,26], inflammation pathways [27] and cardiomyocyte 
survival [28]. 

Additionally, an interaction between BMI levels, B. eggerthii abundance and the expression of 
three miRNAs (miR-130b-3p, miR-185-5p and miR-21-5p) was also evidenced. Interestingly, B. 
eggerthii is one of the intestinal bacteria that metabolize phenolic acids, which are regarded as 
beneficial for human health [29]. In a recent study, B. eggerthii abundance was significantly higher in 
children with obesity and positively correlated with body fat percentage but negatively with 

Figure 4. Significant KEGG pathways regulated by the 14 miRNAs correlated with bacteria differentially
expressed in subjects with obesity. The size and the color of the dots represent the gene number and
the range of the pathway’s q-value, respectively. The y-axis represents the KEGG pathways and the
x-axis shows the 4 bacterial species associated with each selected pathway. q-values: p-values corrected
for multiple tests using the Benjamini–Hochberg method. This figure was performed using ploty.com.

3. Discussion

Over the past decade, there has been an increasing attention about the crucial roles played by
miRNAs in a wide variety of cellular processes [9]. In the present study, 26 miRNAs were found as
differentially expressed in plasma of subjects with obesity compared to normal weight individuals.
Furthermore, the expression of 14 miRNAs (miR-107, miR-103a-3p, miR-142-5p, miR-222-3p, miR-221-3p,
miR-183-5p, miR-183-5p, miR-130b-3p, miR-15a-5p, miR-33a-5p, miR-210-3p, miR-144-3p, miR-185-5p,
miR-130a-3p and miR-21-5p) was linked with the relative abundance of 4 bacterial species that also
significantly differed between cases and controls (D. longicatena, B. intestinihominis, B. eggerthii and
H. parainfluenzae).

These miRNAs that interacted with obesity-associated bacteria regulate the expression of genes
that participate in several metabolism and obesity-related pathways, such as carbohydrate and lipid
metabolism, endocrine and inflammatory signaling pathways. Indeed, evidence suggests that the
majority of miRNAs do not regulate a specific or individual target gene but rather they modulate the
expression of large number of genes in networks, demonstrating their importance in the regulation of
several metabolic processes [7,16].

Moreover, compelling evidence suggests that circulating miRNAs are associated with obesity [17–20].
Some miRNAs have been implicated in the control of body weight gain, glucose homeostasis,
insulin resistance and lipid metabolism [21,22]. In this context, some of miRNAs associated with
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obesity in our study were also described in a recently systematic review study about obesity [23].
In agreement with our results, miR-21-5p and miR-103a, miR-221-3p were also found as downregulated
in blood sample of subjects with obesity in a meta-analysis study [24]. Additionally, the miRNAs
that were dysregulated in obesity in the present study are associated with various metabolic
processes, such as impaired glucose intolerance [18], maintenance of the pancreatic beta cell mass [25],
adipocyte development and adipose tissue physiology [8,26], inflammation pathways [27] and
cardiomyocyte survival [28].

Additionally, an interaction between BMI levels, B. eggerthii abundance and the expression of
three miRNAs (miR-130b-3p, miR-185-5p and miR-21-5p) was also evidenced. Interestingly, B. eggerthii
is one of the intestinal bacteria that metabolize phenolic acids, which are regarded as beneficial for
human health [29]. In a recent study, B. eggerthii abundance was significantly higher in children with
obesity and positively correlated with body fat percentage but negatively with insoluble fiber intake
in Mexican children [30]. On the other hand, this bacterium was found to be underrepresented after
sleeve gastrectomy surgery [31].

Of the three miRNAs associated with the abundance of B. eggerthii and BMI levels, miR-185-5p
and miR-21-5p were also correlated with D. longicatena abundance. Furthermore, miR-185-5p was
described as involved in oxidative stress, obesity and DM in many studies (reviewed at [32]). Moreover,
miR-185-5p was identified as a regulator of de novo cholesterol biosynthesis and low density lipoprotein
uptake [21]. However, we could not find in the literature evidences of association between this miRNA
and gut microbiota.

Regarding miR-21-5p, the 16S rRNA sequencing revealed significant differences in the composition
of WT and miR-21−/− intestinal microbiota in a dextran sodium sulphate (DSS)-induced colitis mouse
model [33]. Moreover, commensal bacteria induced the expression of miR-21 in IECs, with implications
in the regulation of intestinal epithelial permeability [13]. Otherwise, miR-130b-3p was only correlated
with B. eggerthi abundance and there is evidence that the expression of this miRNA was influenced
by microbial status in intestinal epithelial stem cell of conventionalized mice compared to germ-free
mice [14], showing that the miRNAs expression could be modulated by gut microbiota.

Moreover, an association among B. eggerthi abundance, miR-183-5p expression and adiponectin
levels was also found. Previous findings demonstrated that miR-183 may contribute to adipocyte
differentiation, adipogenesis and development of fat cells [22,34]. Additionally, miR-183 was identified
as a novel positive regulator during 3T3-L1 adipogenesis. Both gain-of-function and loss-of-function
assays showed that miR-183 promoted 3T3-L1 adipocyte differentiation, lipid accumulation
and adipogenesis by enhancing the expressions of peroxisome proliferator activated receptor
gamma (PPARγ), CCAAT enhancer binding protein alpha (C/EBPα), adiponectin and fatty acid
synthase (FAS) [35].

The expression of miR-15a-5p was found associated with H. parainfluenzae abundance and
insulin levels in our study. miR-15a positively regulates insulin biosynthesis by inhibiting
endogenous uncoupling protein 2 (UCP2) gene expression, leading to higher ATP levels in islets
and improving glucose-stimulated insulin secretion. Moreover, circulating levels of miR-15a were
found downregulated before the onset of type 2 DM (T2DM) [36] and also in incident-T2DM subjects
compared to controls, with intermediate values in the pre-DM and incident pre-DM patients [37].

Regarding gut microbiota composition, our results evidenced that obesity had no significant
impact in alpha diversity, indicating that microbial species diversity is relatively stable in response
to obesity. However, obesity influenced the beta diversity of human gut microbiota compared to the
control group, suggesting that this disease is accompanied by species replacement (changes in species
taxa) and species sorting (changes in abundance).

According to a meta-analysis of metagenomic datasets obtained from fecal samples of healthy
human adults living in different world regions, Bacteroides and Barnesiella genera are markers of
Western populations [38]. Barnesiella spp. (represented mainly by the specie Barnesiella intestinihominis)
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were identified only in populations living in developed countries, suggesting that their presence was
promoted by the urbanization/industrialization process and a Western-type diet [38].

In agreement with our results, the levels of Dorea genera were previously reported to be higher in
overweight children compared to their normal weight counterparts [39]. Moreover, this association was
stronger for non-white children than for white children and also stronger for boys than for girls [39].
Interestingly, a recent study in an early-life HFD mouse model found that the this diet increased the
relative abundances of Dorea genus [40].

Our investigation has strengths and limitations. The strengths include study and data analyses
of a very-well characterized cohort of subjects with obesity and eutrophic subjects was analyzed.
Moreover, several quality controls for miRNA extraction, cDNA synthesis and PCR process were
implemented. Additionally, robust bioinformatic analyses were performed to explore the pathways
where these miRNAs target genes are participating, explaining the association with obesity. Likewise,
we highlighted candidates for potentially linking host miRNAs and gut microbiota, which can be
directly validated and explored in model systems.

Even though these methods are powerful, this evaluation has some limitations. First, the reduced
sample size which could lead to lack of power to detect small differences in miRNA expression between
groups and the absence of a validation cohort. First, it is important to note that our study uses 16S
rRNA gene sequencing to characterize microbiome taxonomic composition. Second, the results from
bioinformatics are predictions and may not represent the real biological system. Third, our approach
identifies correlations and not causal relationships. Even though a hypothesis-driven approach was
performed, selection of only miRNAs previously associated with obesity or metabolism makes possible
type I or type II errors due to multiple comparisons. These limitations should be considered when
interpreting the results. Although limitations exist in the current data, the patterns uncovered here are
important for understanding the contribution of miRNAs and gut microbiota in obesity.

4. Materials and Methods

4.1. Study Population

This study was designed in accordance with STROBE guidelines for reporting association
studies [41,42]. The sample comprised 78 subjects with obesity (cases, body mass index (BMI):
30–40 kg/m2) and 25 eutrophic individuals (controls, BMI ≤ 25 kg/m2). Obesity was classified
following the World Health Organization (WHO) guidelines [2]. All volunteers were enrolled between
October 2015 and February 2016 in the Metabolic Unit of the Centre for Nutrition Research of the
University of Navarra, Spain. Major exclusion criteria included history of diabetes mellitus (DM),
cardiovascular disease or hypertension, pregnant or lactating women, current use of lipid-lowering
drugs or medications that affect body weight and weight change ≥3 kg within three months before
the recruitment. All subjects were self-defined as Caucasians and all samples were collected in the
morning, after 12 h fasting.

This study followed the ethical principles for medical research in humans from the Helsinki
Declaration [43]. Moreover, the research protocol was properly approved by the Research Ethics
Committee of the University of Navarra, Spain (ref. 132/2015) and it is registered at ClinicalTrials.gov
(reg. no. NCT02737267). A written informed consent of each participant was obtained prior to enrollment
in the study.

All patients underwent anthropometric and laboratory evaluations, as previously described [30,44].
The measurements of height (cm), body weight (kg) and waist circumference (WC, cm) were collected
in the fasting state by trained nutritionists following validated procedures [30]. BMI was calculated as
the ratio between weight and squared height (kg/m2). Body composition was quantified by dual-energy
X-ray absorptiometry according to instructions provided by the supplier (Lunar Prodigy, software
version 6.0, Madison, WI, USA). Biochemical measurements including fasting plasma glucose (FPG,
mg/dL), total cholesterol (TC, mg/dL), high-density lipoprotein cholesterol (HDL-c, mg/dL) and
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triglycerides (TG, mg/dL) were determined in an automatic analyzer (Pentra C200, HORIBA Medical,
Kyoto, Japan), following standardized procedures. Endocrine markers such as insulin, adiponectin and
leptin were quantified with commercial ELISA kits (Mercodia Insulin ELISA, Biovendor Human
adiponectin ELISA and Mercodia Leptin; Mercodia, Uppsala, Sweden).

Insulin resistance was estimated by the homeostatic model assessment-insulin resistance
(HOMA-IR) index according to the following formula: (fasting insulin (mU/L) × plasma glucose
(mmol/L)/22.5), while the triglyceride-glucose (TyG) index was calculated as: ln (fasting triglycerides
(mg/dL) × fasting plasma glucose (mg/dL)/2), as described elsewhere [45].

A validated semiquantitative food frequency questionnaire was used to evaluate habitual
consumption (daily, weekly, monthly or never) of 137 foods during the previous year [46]. Energy and
nutrient intakes were further calculated with an ad hoc computer program based on the standard
Spanish food composition tables [47]. The physical activity level was estimated using a validated
questionnaire [48]. The volume of activity was expressed in metabolic equivalents (METs, kcal/kg/h),
as described elsewhere [49].

4.2. MicroRNA Expression Analysis

4.2.1. microRNA Isolation and Reverse Transcription-Quantitative PCR

Total RNA was extracted from 200 µL EDTA-plasma using the miRNeasy Serum/Plasma Advanced
kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. RNA spike-in was
added to each sample (RNA Spike-In Kit, Qiagen, Hilden, Germany). The purity of RNA samples was
assessed by analyzing RNA Spike-In expression.

Relative expression of the 86 miRNAs was analyzed in plasma from all subjects using the Custom
Pick-&-Mix microRNA PCR Panel v5 (Qiagen, Hilden, Germany). Moreover, 9 controls (reference genes
+ Spike-in controls) and a blank were also included in each plate, as shown in Table S1. The selection
of these miRNAs was based on the available literature [9,26] and by searching the miRWalk 2.0
database [50] for those miRNAs potentially associated with obesity in humans.

Total RNA (4 µL) was reverse-transcribed in 10 µL reaction using the miRCURY LNA Universal
RT microRNA PCR, Polyadenylation and cDNA synthesis kit II (Qiagen, Hilden, Germany). RT-qPCR
experiments were performed using a CFX384 Real-time system (Bio-Rad, Hercules, CA, USA).
The cycling conditions were: 95 ◦C for 2 min, followed by 40 cycles at 95 ◦C for 10 s and 56 ◦C for 1 min.
Relative expressions were calculated using the 2∆∆Cq method [51].

4.2.2. Quality Control and Normalization

Quality control was carried out using synthetic spike-in RNAs to analyze the robustness of RNA
isolation process and quality of extracted miRNA. The RNA isolation controls (UniSp2, UniSp4 and
UniSp5; Qiagen, Hilden, Germany) were added to the thawed plasma before the isolation process,
aiming to detect differences in extraction efficiency. The cDNA synthesis control (UniSp6, Qiagen,
Hilden, Germany) and cel-miR-39-3p were added to the reverse transcription reaction to determine the
effectiveness of this process. Furthermore, UniSp3 was included in all plates and used as an inter-plate
calibrator and PCR amplification control.

Hemolysis was assessed by the ratio between hsa-miR-451a (which is expressed in erythrocytes)
and hsa-miR-23a-3p (which is relatively stable in plasma and not affected by hemolysis) as described
elsewhere [52]. The difference in expression values between these 2 miRNAs provides a good measure
of the extent of hemolysis, with values > 5 suggesting erythrocyte miRNA contamination. Only samples
without hemolysis (values < 5) were included in the study [52]. The assay cut-off was 35 cycles and
miRNAs expressed in at least 20% of the total sample [53]. All individual samples were run on
a predefined assay panel of 96 specific human miRNAs (Table S1). The miRNAs with complete data
were used for the global mean method for normalization of the data, since this approach was found to
be the most stable normalizer [54].
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4.2.3. miRNA Target Prediction and Pathway Enrichment Analysis

Potential targets of selected miRNAs were searched using miRWalk 3.0 (http://zmf.umm.uni-
heidelberg.de/apps/zmf/mirwalk2/, accessed on 4 August 2020). To better understand the biological
relevance of the miRNAs target genes, a functional enrichment analysis was executed using PathDIP
(accessed on 4 August 2020, [55]). A hypergeometric test was used to calculate the statistical
significance of the enriched pathways and p-values were corrected for multiple tests using the
Benjamini-Hochberg procedure, which provides a False Discovery Rate (FDR) adjusted-p-value
(q-value). Pathways associated with a q-value <0.05 were considered significantly enriched.

4.3. Gut Microbiota Analysis

4.3.1. Fecal Sample Collection and DNA Extraction

Volunteers self-collected fecal samples using OMNIgene•GUT kits from DNA Genotek (Ottawa,
ON, Canada), according to the standardized instructions provided by the fabricant. The isolation of
DNA from fecal samples was performed with the QIAamp® DNA kit (Qiagen, Hilden, Germany)
following the manufacturer’s protocol.

4.3.2. 16S rRNA Sequencing and Sequence Analysis

Bacterial DNA sequencing was performed by the Servei de Genòmica i Bioinformàtica from the
Autonomous University of Barcelona (Barcelona, Spain). The Illumina 16S protocol, based on the
amplification of the V3-V4 variable regions of the 16S rRNA gene, was followed. Paired-end sequencing
was performed on the MiSeq System (Illumina, San Diego, CA, USA). For this methodology, two PCR
reactions were carried out. In the first one, 12.5 ng of genomic DNA and 16S-F and 16S-R primers
were used. After the cleaning process, 5 µL of the first PCR was used in the second PCR. The primers
used in this PCR were part of the Nextera XT DNA Index Kit (96 indexes, 384 samples) FC-131-1002
(Illumina, San Diego, CA, USA). After each PCR, the quality of the process was checked in a Labchip
Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA). Once all the samples were obtained,
up to 40 samples were multiplexed in each run of 2 × 300 cycles for obtaining around 500,000 reads
per sample. For this purpose, equimolar concentrations of each of the samples were mixed and the
pool was diluted up to 20 pM. A total of 3 runs were performed on the MiSeq sequencer with the
MiSeq Reagent Kit v3 (600 cycle) MS-102-3003. The maximum of reads obtained was 1,867,496 and the
minimum 5019; the mean was 164,387.

The 16S rRNA sequences were filtered following the quality criteria of the OTU processing
pipeline LotuS (release 1.58) [56]. This pipeline includes UPARSE de novo sequence clustering [57]
and the removal of chimeric sequences and phix contaminants for the identification of Operational
Taxonomic Units (OTUs) and their abundance matrix generation [58,59]. OTU refers to organisms
clustered by similarities in DNA sequence [60]. Finally, taxonomy was assigned using BLAST [61] and
HITdb [62], achieving up to species-level sensitivity. The abundance matrices were first filtered and
then normalized in R/Bioconductor [63,64] at each classification level: OTUs, phylum, genus, family,
order, class and species. Briefly, taxa less than 10% of frequency in our population were removed for
the analysis and a global normalization was performed using the library size as a correcting factor and
log2 data transformation.

To evaluate alpha diversity, the Shannon index was calculated [65]. To assess beta diversity,
permutational multivariate analysis of variance (PERMANOVA) was used to analyze whether the
structures of gut microbiota were significantly different among groups based on the Jaccard and
Bray–Curtis distance matrices [66].

4.4. Statistical Analysis

Normalized data (RQ expression levels) were initially analyzed, with an estimation and
comparison of expression levels between groups. Normal distribution of data was assessed using

http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
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the Kolmogorov-Smirnov and Shapiro-Wilk tests. Variables with normal distribution are presented
as mean ± standard deviation (SD). Variables with skewed distribution were log-transformed prior
to analysis and are presented as median (25th–75th percentiles). Categorical data are shown as
percentages. Clinical and laboratory characteristics, miRNA expressions and gut microbiota abundance
were compared among groups using Student’s t-test or χ2 tests, as appropriate. Correlations between
quantitative variables were assessed using Pearson’s correlation tests. The two-way ANOVA full
factorial test was used in our study to identify relations between miRNA expression, microbiota and
laboratorial characteristics. Linear regression was used to identify factors that might influence miRNA
expression or microbiome abundance, including age, gender, triglycerides and HOMA-IR. Multivariate
regression models were applied to find potential covariates (Model 1: age and gender; Model 2: gender,
triglycerides and HOMA-IR).

All classical statistical analyses were performed using the SPSS statistical package (v.20.0) for
Windows (SPSS Inc., Chicago, IL, USA) and PAST v3.24 (University of Oslo, Norway) were used
for statistical analyses of biodiversity. Raw p-values were adjusted by the Benjamini-Hochberg’s
FDR controlling procedure (q-value < 0.05). The network visualization of miRNA-variables was
generated using Cytoscape v.3.7.1 [67]. One heatmap plot of the correlation values were produced
using MORPHEUS web tool (Morpheus, Cambridge, MA, USA. https://software.broadinstitute.
org/morpheus, accessed on 4 August 2020). Graphics were performed using Ploty chart studio
(https://chart-studio.plotly.com, accessed on 4 August 2020).

5. Conclusions

This current research characterized a global relationship between microbial community
composition and miRNA expression in plasma of subjects with obesity compared to normal weight
individuals. Indeed, our study featured an interaction between B. eggerthi abundance and circulating
miRNA expression in the control of body adiposity. The current study also adds to the growing body
of literature that suggests that miRNAs may serve as a communication mechanism between the gut
microbiota and human hosts.
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