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Abstract

Many studies have established gene expression-based prognostic signatures for lung cancer. All of these signatures were
built from training data sets by learning the correlation of gene expression with the patients’ survival time. They require all
new sample data to be normalized to the training data, ultimately resulting in common problems of low reproducibility and
impracticality. To overcome these problems, we propose a new signature model which does not involve data training. We
hypothesize that the imbalance of two opposing effects in lung cancer cells, represented by Yin and Yang genes,
determines a patient’s prognosis. We selected the Yin and Yang genes by comparing expression data from normal lung and
lung cancer tissue samples using both unsupervised clustering and pathways analyses. We calculated the Yin and Yang
gene expression mean ratio (YMR) as patient risk scores. Thirty-one Yin and thirty-two Yang genes were identified and
selected for the signature development. In normal lung tissues, the YMR is less than 1.0; in lung cancer cases, the YMR is
greater than 1.0. The YMR was tested for lung cancer prognosis prediction in four independent data sets and it significantly
stratified patients into high- and low-risk survival groups (p = 0.02, HR = 2.72; p = 0.01, HR = 2.70; p = 0.007, HR = 2.73;
p = 0.005, HR = 2.63). It also showed prediction of the chemotherapy outcomes for stage II & III. In multivariate analysis, the
YMR risk factor was more successful at predicting clinical outcomes than other commonly used clinical factors, with the
exception of tumor stage. The YMR can be measured in an individual patient in the clinic independent of gene expression
platform. This study provided a novel insight into the biology of lung cancer and shed light on the clinical applicability.
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Introduction

Lung cancer is the leading cause of cancer-related deaths in

North America. While there has been a decrease in lung cancer

deaths among men due to a reduction in tobacco use over the past

50 years, it still accounts for 29% of all male cancer deaths in 2010

[1]. The 5-year overall survival rate for lung cancer is as low as

16% and has not significantly improved over the past 30 years [1].

Non-small cell lung cancer (NSCLC) is the most commonly

diagnosed lung cancer accounting for 85% of annual cases. About

25% to 30% of NSCLC patients present with early stage I disease

and receive surgical intervention. However, more than 20% of

these patients relapse within five years [2]. Adjuvant therapy has

improved survival of a subset of patients with stage II and III

disease. However, it is not known which patients are more likely to

relapse and would benefit more from additional therapies.

To improve clinical outcomes, researchers have invested much

effort into identifying lung cancer biomarkers which allow

clinicians to make an early diagnosis, predict disease course, and

effect of treatment. Genome-wide expression profiling using

microarray techniques has identified potential gene signatures to

classify patients into different survival outcome cohorts [3–17].

Previously reported models were built by learning the correlation

coefficients between gene expression and patients’ survival time

from training data sets and they require that new test data sets be

normalized to the training data. Consequently, these signatures

have low reproducibility and are impractical in a clinic setting.

There is little evidence that any of the reported gene expression

signatures are ready for clinical application [18].

To address these problems, we developed an empirical model

which is not based on the knowledge of patients’ survival time for

determining the lung cancer biomarker signature. Gene regulation

is a complex multidimensional process which includes a spectrum

of genes that are either activated or suppressed, and whose

expression is either continuous or temporary. We hypothesize that

the prognosis is determined by two opposing groups of genes

which we term Yin and Yang. In lung cancer cells, the normal

gene expression is dysregulated resulting in cellular proliferation

and diminished differentiation. The power of Yin Yang theory is

that it simplifies complex multi-dimensional aspects of gene

expression into two opposing dimensions - Yin and Yang, and

where the balance between Yin and Yang ensures a healthy status
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for cells. Previously published studies have referred to the opposing

functions of known tumor suppressors and oncoproteins as yin and

yang in tumorigenesis [19–21]. We hypothesize that instead of an

individual gene, two functionally imbalanced groups of genes (Yin

and Yang) in lung cancer cells determine the fate of the tumor

cells, which ultimately determines patient’s survival time. Accurate

identification of the Yin and Yang genes in tumor development

can be used to develop a prognostic signature.

Materials and Methods

Lung Cancer Patient Sample Data
We focused our study on adenocarcinoma as it is a more

common lung cancer and the gene expression data with associated

clinical information is more readily available. The sample data

from Bhattacharjee et al. has been described previously [22]. It

consists of 203 lung cancer patient samples including 139

adenocarcinomas, 20 pulmonary carcinoids, 21 squamous cell

carcinomas, 6 small-cell lung cancers, and 17 normal lung tissue

samples from adjacent sections. Among the 139 adenocarcinomas,

125 patient samples were associated with clinical follow up

information of survival time and recurrence. The sample data

from Bild et al. contains 58 primary adenocarcinomas collected

through the Duke Lung Cancer Prognostic Laboratory [23].

These samples were associated with 1–6 years of patients’ follow

up. The National Cancer Institute Director’s Challenge Consor-

tium (DCC) for the Molecular Classification of Lung Adenocar-

cinoma samples consists of 442 adenocarcinomas with patients’

clinical information [13]. These samples were collected and

processed in 4 independent Institutions: Canada/Dana-Farber

Cancer Institute (CAN/DF), University of Michigan Cancer

Center (UM), H.L. Moffitt Cancer Center (HLM), and Memorial

Sloan-Kettering Cancer Center (MSK). Stages I, II and III

adenocarcinomas were collected, with approximately 60% of

samples from stage I tumors. None of the patients received

preoperative chemotherapy or radiation and at least 2 years of

follow-up information was available. 288 lung adenocarcinoma

(LUAD) samples from The Cancer Genome Atlas (TCGA) Project

have comprehensive clinical information. Excluded from the

dataset were 20 patients whose survival time is not available and 9

living patients with follow up time less than 2 days.

Gene Expression Data
The gene expression of the Bhattacharjee samples was detected

by Affymetrix HU_U95Av2 GeneChip. The raw hybridization

intensity data files (CEL) were downloaded from http://www.

broadinstitute.org/mpr/lung/. The gene expression indices were

processed with the MAS5.0 algorithm by using the Expressionist

Refiner module (GeneData, Inc, San Francisco, CA, USA). No

further normalization was done within each data set in order to

keep the individual sample independent in gene biomarker

detection. Except in clustering analysis for differentially expressed

gene identifications, the Robust Multi-array Average (RMA)

derived and normalized expression measurements were calculated

from the raw CEL files. The gene expression of the Bild samples

was detected by Affymetrix HU_U133plus2 GeneChip and the

signal intensity was calculated by MAS5.0 algorithm. The data set

was downloaded from NCBI GEO database (GSE3141). The

DCC raw HG_U133A CEL files were downloaded from NCI

caArray database (https://array.nci.nih.gov/caarray/project/

details.action?project.id = 182) [13]. MAS5.0 algorithm was used

for gene expression summarization. No normalization or prefilter-

ing was applied to samples or genes. The 259 RNA-seq data were

downloaded from TCGA Data Portal (http://tcga-data.nci.nih.

gov/tcga/tcgaDownload.jsp). The gene expression RKPM (reads

per kilobase per million mapped reads) value was extracted from

sample files.

Signature Genes Identification and Selection
The expression indices were summarized by RMA algorithm

and further normalized by itemwise Z-normalization using

Genedata Analyst module (GeneData, Inc, San Francisco, CA,

USA). 2-D hierarchical Euclidean L2 distance clustering with

complete linkage setting for both genes and samples was

performed to explore the differentially expressed biomarker genes

in lung tumors. Unregulated and downregulated genes in cancer

tissues were selected from 2D clustering. Genes that were

expressed higher in normal lung tissues than in lung cancer cells

were called ‘‘Yang’’ gene candidates, conversely genes expressed

higher in lung cancer cells than normal lung tissues were called

‘‘Yin’’ gene candidates. These two gene lists were inputted into

IPA9.0 (IngenuityH Systems, www.ingenuity.com) for interaction

network and pathway analysis. The networks are built by direct

interactions. The networks with significant scores were selected for

further analysis.

Gene Signature Classifier Development
The expression values of the selected Yin genes and Yang genes

were extracted from published microarray expression data.

Initially, the Yin (Y) and Yang (y) expression arithmetic mean

ratio (YMR) was calculated as a signature classifier for each sample

(YMR = Y
�
y). Since 31 Yin genes and 32 Yang genes were

identified as probe sets from HG-U95A GeneChip, we used these

probe sets to extract the Yin and Yang gene expression values of

Bhattacharjeès samples. To extract Yin and Yang genes from

different platforms, we used these 63 probe sets and/or their gene

symbols to match the probe sets of other platforms. We first looked

at the best match probe sets which share high sequence identity

and represent the same genes. The best match probe set files can

be downloaded from Affymetrix (http://www.affymetrix.com ). If

the best match probe sets cannot be found in a particular platform,

we used the Yin and Yang gene symbols. One Yin or Yang gene

symbol may contain a single probe set (single match) or several

probe sets. For multiple IDs within the same gene symbol, an

average value was used. In HG-133plus2 of Bild data set, 62 genes

have been computed for average expression values from multiple

probe sets since only one best matched probe set to HG-U95A

39651_at (RECQL4 gene). In HG-133A platform of DCC data

set, 22 Yin genes’ expression was derived from 22 best matched

probe sets, 3 genes match single probe sets and 6 genes’ expression

was averaging expression of multiple probe sets; 29 Yang genes’

expression was from best matched probe sets, and 2 genes from

multiple probe sets. The patient risk score was derived from the

YMR values. Using a YMR cutoff values, we divided patients into

high- and low-risk prognostic groups. Since a 2-fold difference is

often chosen as an arbitrary value in a two-group comparison, we

defined a 2-fold Yin over Yang as a cutoff and then adjusted it

based on normal sample mean YMR or cancer sample mean

YMR. If the normal lung sample YMR is significantly less than 1.0

(for example, the TCGA RNAseq data), the YMR cutoff will be

adjusted to be lower than 2.0. If normal sample mean YMR is not

available for a particular data set (for example, DCC and Bild data

sets), we adjusted a cutoff value that is close to the mean YMR of

the lung cancer data set since many studies use the mean risk score

to stratify patients. The expression value of a gene may be

measured from a single probe set in one platform but multiple

probe sets in other platform. This difference in expression

Signature for Lung Cancer Prognosis
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measurement could result in different YMR cutoff values in

different platforms. We expect the same YMR cutoff value for the

same platform. It is worth to note that these large scale expression

platforms were originally designed for research purpose, not for

clinical use. The arbitrary YMR cutoff values determined from

these different platforms are only used for the YMR signature

validation. In future, we will optimize a single YMR cutoff value

for results from a clinically relevant platform such as qPCR.

We also compared the arithmetic YMR with geometric Mean of

Yin and Yang Ratio (gYMR). To test optimal gene size, we

observed the effect of dropping genes from the 31 Yin and 32

Yang gene list on the association with clinical outcome. We also

assessed the significance of the YMR signature by comparing

YMR to ratio of randomly picked groups of identical group size.

Statistical Analysis
To evaluate the performance of the YMR signature, we used

each YMR as dichotomous or continuous covariate in a Cox

proportional hazards model, with 5–6 years overall survival or

recurrence-free as the outcome variable [13,24–26]. The estimat-

ed hazard ratio, 95% confidence interval and p-value allowed us to

directly compare the performances of YMR covariate with other

clinical variables. Kaplan-Meier product-limit methods and log-

rank tests were used to estimate and test differences in probability

of survival between low- and high-risk patient groups. The

survivor function was plotted for each subgroup. All statistical

analyses were performed using PartekH software, version 6.3

(Partek Inc., St. Louis, MO, USA) or R statistic package Survcomp

[27].

Validation
In order to validate that the YMR is less than 1.0 in normal lung

tissues and greater than 1.0 in lung cancer tissue samples, we

measured the YMR in new independent data sets. These data sets

were processed by different platforms including Affymetrix

GeneChip HG-U95, HG-133A, HG-133plus2, Illumina bead-

Chip, and two-channel array. The YMRs were calculated from

these data sets either with or without data normalization based on

the original data sources.

To validate the YMR signature for lung cancer prognosis, four

independent data sets were used: 125 Bhattacharjee adenocarci-

nomas sample data set of HG_U95Av2 platform of which the

survival time was not used in the model building, 58 Bild

adenocarcinomas sample data of HG-133Plus2 platform, 442

DCC sample files of HG-133A platform, and 259 TCGA samples

of RNA-seq platform. These are well-defined patient samples with

clinical information. For analyses in this study, survival or

recurrence-free outcomes were compared according to high-risk

YMR (i.e. YMR is greater than 2.0 or an adjusted cutoff) and low-

risk YMR (YMR is less than or equal to 2.0 or an adjusted cutoff)

patients. The YMR score stratification in the same stages and in

response to treatment was tested in the following groups of the

DCC patients, respectively: stage I; stage II & III; received

chemotherapy; no chemotherapy; chemotherapy on stage I;

chemotherapy on stage II & III; no chemotherapy on stage I; no

chemotherapy on stage II & III.

Results

Identification of Candidate Lung Cancer Biomarker Genes
We compared normal lung samples with the lung cancer

samples collected from patients of mixed tumour stages with

different survival times to identify and select genes groups for

signature development. Using unsupervised clustering analysis of

microarray data from Bhattacharjee et al. [22], we examined the

differential gene expression in 17 normal lung tissue samples and

83 samples from a variety of lung cancer types. In the 2D

clustering, we selected a region where the genes downregulated in

normal samples but upregulated in almost all types of lung cancers

(Figure S1A). The region where genes were upregulated in one or

a few cancer types was not selected. We identified 74 probe sets in

this region (Figure S1B, Table S1). We also identified a region

where genes were upregulated in normal samples but downreg-

ulated in almost all types of lung cancers (Figure S2A). The region

where genes were downregulated in one or few cancer types was

not selected. We identified 108 probe sets in this region (Figure

S2B, Table S2, Figure 1A).

By comparing gene expression between various cell types of

lung cancer to the normal lung cells, common Yin and Yang genes

among the different cancers could be identified. Gene clustering,

rather than group statistic test, not only detects the expression

patterns, but also indicates some extent of the gene interactions

within the same pattern. Unlike differential gene expression

resulting from two-group statistic tests, gene expression patterns

resulting from clustering has greater tolerance to variations due to

sample collection and data processing. Individual genes may not

present in the differential gene list due to large variations found in

a few samples, but the same genes may show a similar overall

expression pattern in cluster analysis.

Yin Yang genes showed little overlap with the previously

reported lung cancer prognostic signature genes. However, many

Yin genes reported here were found in previous studies that relate

lung cancer or other tissue type cancer development such as

GRIN2D [28], GAST [29], AMH [30], TCF3 [31], EXOSC2

[32], GRM1 [33], CDT1 [34], RecQL4 [35], CSTF2 [36],

FCGR2B [37], RNASEH2A [38], CDC6 [39], CACYBP [40],

BIRC5 [41], CDC25 [42], NRAS [43], EN2 [44], and MIF [45].

Although the n-ras proto-oncogene is in the Yin gene list, we did

not find other oncogenes that are involved in lung tumorigenesis.

This may be due to alteration of different oncogenes in different

subsets of lung cancers. However, we speculate that progression

genes may play more important role than genes involved in the

initiation or promotion stage of lung tumorigenesis in determining

the lung cancer prognosis.

Pathway and interaction network analyses of these 74 genes

allowed selecting two main networks that are related to tumor

morphology (Table S3, network significant score of 42) and DNA

replication (Table S4, network significant score of 30). These

networks participate in the canonical Molecular Mechanisms of

Cancer pathway (Figure 1B, Figure S3). These networks contain

31 genes whose gene symbol names matched the Affymetrix U95

AV2 probe set identifiers. We selected these 31 genes as Yin gene

candidates (Table 1). The 108 downregulated genes constituted

two main networks related to maintenance (network significant

score of 63) and cellular development (network significant score of

23) processes. The RAR Activation pathway and the Hepatic

Stellate Cell Activation pathway (Figure S4) invoked by Yang

genes exert a wide variety of effects on tissue homeostasis, cell

proliferation, differentiation, and apoptosis. There is evidence that

lung tissue harbors Hepatic Stellate-like cells which are vitamin-A-

storing lung cells [46–47]. We retrieved the focus genes from the

networks that involved cell maintenance and cellular development

process resulting in two gene groups. These two groups (Table S5,

S6) were combined, resulting in 32 unique genes in total. We

defined these 32 genes as Yang gene candidates for signature

development (Table 2).

Signature for Lung Cancer Prognosis
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Gene Signature for Lung Cancer
To build the signature model, we computed the YMR to the

patient risk scores. The YMR represents a simple combination or

interaction effect of the Yin genes and Yang genes. The ratio

indicates the Yin and Yang balance status in lung cells or which

group of genes is more active than others and the extent of this

difference. In normal lung cells, the Yang is greater than Yin.

Cancer phenotypes have higher YMR scores then are associated

with higher risk disease. We first validated our hypothesis that

YMR is less than 1.0 in normal lung tissues and greater than 1.0 in

lung cancer tissues. We used several independent sample data sets

with different platforms and different preprocesses (Table S7).

YMRs were less than 1.0 in all normal lung data sets [48–52]

(Figure 2). We also measured the YMRs of 12 different normal

human tissue types in one data set [52] (Table S8). The YMRs

were less than 1.0 in normal lung, as well as in other normal tissues

such as the heart, spleen, skeletal muscle, and prostate, but greater

than 1.0 in other tissues such as the liver. This result suggests that

the Yin and Yang gene expression profiles are tissue type specific.

In the 83 samples of various lung cancer types from which Yin and

Yang genes were identified via differential gene expression

analysis, all samples had an YMR greater than 1.0. The YMRs

greater than 1.0 in other independent lung cancer sample data sets

are also shown in Figure 2.

YMR Signature Predicts Survival Outcomes
We evaluated the YMR for prognosis of four data sets in which

the patient clinical information was available. We first validated

the YMR model for the risk outcome of the Bhattacharjee data set

[22] from which the model was built. Since the patients’ survival

time or recurrence-free time information was not used in the

modeling, this data set therefore serves as an independent data set.

We first tested the YMR as a continuous variable using

proportional hazard model and proved that the increased YMR

is associated with poorer outcomes within 6-year recurrence free

rate (p = 0.044, HR = 1.96) (Table S9). We then examined the

YMR as a dichotomous variable to stratify patients as high and

low risk groups. Since the normal lung samples from the same data

set shows a mean YMR of 0.91 and the 125 adenocarcinomas

have a mean YMR of 2.23, we defined a YMR cutoff of 2.0. We

grouped 125 adenocarcinomas patients into high risk (YMR.2.0,

n = 65) and low risk (YMR, = 2.0, n = 60) groups. As seen in

Figure 3A, the YMR significantly stratified the high recurrence

and low recurrence risk groups (p = 0.013, HR = 2.7). Previous

studies have reported a significant p-value for their gene-

signatures. This is to be expected as those signatures were

developed by the patients’ survival time and then used again to

predict survival time. As subsequently demonstrated, the problem

with these approaches is their low reproducibility for new

independent data sets. By contrast, the YMR approach is not

trained to a specific dataset and would be assumed to work for any

Figure 1. Identification and selection of Yin and Yang genes. A. Clustering of gene identification. The probe sets are in rows and the samples
are in columns. The expression indexes of all the 12,625 probe sets of the 100 samples were summarized by RMA algorithm and further normalized by
itemwise Z-normalization. 74 upregulated genes (bottom half rows) and 108 (top half rows) down regulated genes in cancer tissues were selected
from the 2D clustering regions. The preselected 74 and 108 probsets were displayed by clustering again. B. Yin (bottom) and Yang (top) genes
selection by functional analysis. The two circles represent the two cores of functional effects of the Yin and the Yang. The genes highlighted by the
same color are in the same interaction network.
doi:10.1371/journal.pone.0068742.g001
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data set. We randomly picked 500 pairs of groups of identical

group sizes of Yin and Yang genes from 12,625 genes of the HU-

95av2 platform and used the same ratio cutoff as the YMR .2.0.

The 500 p-values have a mean p-value of 0.75 (sd = 0.32) (Figure

S5). We did find that four p-values from these random tests are

very low (0, 0, 0, 1E-18, respectively), however their HRs are 1.0

or close to 1.0 thus these groups cannot stratify risk groups.

We then evaluated the YMR for a large independent DCC data

set. These data sets were collected and processed from four

different institutions. They contained pathological data and

clinical information describing the severity of the disease at

surgery and the clinical course of the disease after sampling [13].

We grouped these 442 patients by YMR into high risk

(YMR.1.8, n = 194) and low risk (YMR, = 1.8, n = 248) subjects

since the mean YMR is 1.85. As seen in Figure 3C and in Table

S9, the survival outcomes of these two groups were significantly

different (p = 0.005, HR = 2.63). Similarly, we used YMR cutoff of

1.4 for Bild data set since the mean YMR of the 58

adenocarcinomas is 1.6. The YMR significantly stratified

(p = 0.019, HR = 2.72) this independent data set into high (YMR

.1.4, n = 31) and low (YMR , = 1.4, n = 27) risk groups

(Figure 3B). We calculated the YMR ratio using RNA-seq data

of 259 TCGA samples. The continuous YMR scores associate

with the survival rate significantly (p-value 0.007, HR 1.87) (Table

S9). The dichotomous YMR signature significantly stratified the

high- (n = 137) and low-risk (n = 121) groups (p = 0.007,

HR = 2.73) (Figure 3D and Table S9).

We calculated the geometric mean of Yin and Yang gene

expression ratio (gYMR) and tested its association with the poor

outcome both as a continuous variable and a dichotomous

variable. As seen in Table S10, the continuous gYMR does not

work for Bhattacharjee data and Bild data, and the dichotomous

gYMR does not work for Bhattacharjee data either. The

arithmetic YMR is robust in four data sets. The continuous

YMR did not show its association with clinical outcome in the Bild

data set of HG-133plus2 platform (p = 0.49). This is due to the

small data size being sensitive to patient outliers or exceptions.

After we removed patient GSM70223 whose YMR is 6.35, the p-

value of continuous YMR dropped to 0.08. After we further

removed patient GSM70159 whose YMR is 2.87 but survived for

Table 1. Yin genes.

HG_U95A probe set Gene Symbol Gene Title

31711_at GRIN2D glutamate receptor, ionotropic, N-methyl D-aspartate 2D

34552_at GAST gastrin

35084_at AMH anti-Mullerian hormone

32874_at TCF3 transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)

32975_g_at EXOSC2 exosome component 2

33510_s_at GRM1 glutamate receptor, metabotropic 1

34027_f_at HIST1H4J///HIST1H4K histone cluster 1, H4j///histone cluster 1, H4k

34510_at CDT1 chromatin licensing and DNA replication factor 1

37432_g_at PIAS2 protein inhibitor of activated STAT, 2

39651_at RECQL4 RecQ protein-like 4

40334_at CSTF2 cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64 kDa

41623_s_at FZR1 fizzy/cell division cycle 20 related 1 (Drosophila)

34664_at FCGR2B Fc fragment of IgG, low affinity IIb, receptor (CD32)

35141_at RNASEH2A ribonuclease H2, subunit A

36839_at CDC6 cell division cycle 6 homolog (S. cerevisiae)

37267_at THOP1 thimet oligopeptidase 1

41149_at LOC81691 exonuclease NEF-sp

33935_at CACYBP calcyclin binding protein

34341_at PPAT phosphoribosyl pyrophosphate amidotransferase

35800_at PAFAH1B3 platelet-activating factor acetylhydrolase 1b, catalytic subunit 3 (29 kDa)

39909_g_at TAF6L TAF6-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65 kDa

40264_g_at ZFPL1 zinc finger protein-like 1

40532_at BIRC5 baculoviral IAP repeat-containing 5

1738_at CDC25A cell division cycle 25 homolog A (S. pombe)

1601_s_at IGFBP5 insulin-like growth factor binding protein 5

1539_at NRAS neuroblastoma RAS viral (v-ras) oncogene homolog

1133_at EN2 engrailed homeobox 2

966_at RAD54L RAD54-like (S. cerevisiae)

895_at MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor)

652_g_at RPA3 replication protein A3, 14 kDa

374_f_at DDT///DDTL D-dopachrome tautomerase///D-dopachrome tautomerase-like

doi:10.1371/journal.pone.0068742.t001
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73 months, the p-value dropped to a significant level of 0.0199.

We do not have sufficient data to help explain why this exception

has a high YMR but a long survival time. However these outliers

or exceptions did not affect the dichotomous YMR (cutoff .1.4)

that significantly stratifies patients’ risk in this data set (p = 0.02,

HR = 2.72) (Table S9).

Using the DCC data set, we tested the effect of dropping genes

from the Yin and Yang gene list (Figure S6). Dropping one Yin

gene (217871_s_at, gene MIF) improved significantly the p-value

of YMR, but its HR decreases at the same time (top panel of

Figure S6). Dropping one Yin gene affects the p-value of gYMR

but did not affect the HR (middle panel of Figure S6). Dropping

one Yang gene a time did not affect the p-value of both YMR and

gYMR (data not shown), nor the HR of YMR and gYMR (bottom

panel of Figure S6). Compared to YMR, gYMR is more resistant

to drop-off effect or increased risk association after some genes

were dropped. Dropping three Yin genes (HIST1H4J, CDC25A,

and IGFBP5) yields best performance of gYMR for DCC data

(Middle panel of Figure S6). With the exception of the

Bhattacharjee data using dichotomous YMR, the same gene

dropping did not improve the performance of either the YMR

(Table S11) or the gYMR in other three data sets (Table S12).

These results indicate that Yin and Yang gene list could be further

optimized to smaller size by removing one to three genes.

However, this optimization is constrained by the survival time of

the data set tested, similar to the limitations of the data training

approach. We expect that around 30 Yin and 30 Yang genes

would ensure a representation of the whole Yin and Yang effects of

cancer cells and a consistent performance for different data sets.

Smaller gene lists may keep the same or improve performance for

one data set, but may not work well for other data set.

Comparison of YMR with Previously Reported Signatures
We compared several aspects of YMR to those of previously

reported signatures. As summarized in Table 3, YMR is advanced

in reproducibility and practicality. We also compared the

prognostic performance of YMR model to a recently reported

Table 2. Yang genes.

HG_U95A Probe set Gene Symbol Gene Title

34174_s_at LPHN2 latrophilin 2

36377_at IL18R1 interleukin 18 receptor 1

32904_at PRF1 perforin 1 (pore forming protein)

34950_at ZNF423 zinc finger protein 423

37841_at BCHE butyrylcholinesterase

39209_r_at PPBP pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)

39577_at SOSTDC1 sclerostin domain containing 1

39634_at SLIT2 slit homolog 2 (Drosophila)

40322_at IL1RL1 interleukin 1 receptor-like 1

40398_s_at MEOX2 mesenchyme homeobox 2

41030_at FOXJ1 forkhead box J1

34267_r_at LEPR leptin receptor

37194_at GATA2 GATA binding protein 2

37536_at CD83 CD83 molecule

38315_at ALDH1A2 aldehyde dehydrogenase 1 family, member A2

39048_at NOTCH4 Notch homolog 4 (Drosophila)

39085_at TNNC1 troponin C type 1 (slow)

40763_at MEIS1 Meis homeobox 1

35828_at CRIP2 cysteine-rich protein 2

37710_at MEF2C myocyte enhancer factor 2C

38734_at PLN phospholamban

39544_at SYNM synemin, intermediate filament protein

40231_at SMAD6 SMAD family member 6

40900_at MYH10 myosin, heavy chain 10, non-muscle

2039_s_at FYN FYN oncogene related to SRC, FGR, YES

1733_at BMP6 bone morphogenetic protein 6

1595_at TEK TEK tyrosine kinase, endothelial

873_at HOXA5 homeobox A5

774_g_at MYH11 myosin, heavy chain 11, smooth muscle

610_at ADRB2 adrenergic, beta-2-, receptor, surface

560_s_at TAL1 T-cell acute lymphocytic leukemia 1

481_at SNRK SNF related kinase

doi:10.1371/journal.pone.0068742.t002
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15-gene signature [17]. This signature was claimed superior to

many other previously reported lung cancer prognostic signatures

by testing a same data set with all other signatures. We used the

same DCC data set and the Bild adenocarcinoma data [23] from a

different platform (U133plus2) for this comparison. As seen in

Figure S7A, the 15-gene signature significantly stratified the DCC

samples (p = 0.011, HR = 2.68), but not for the Bild samples

(Figure S7B, p = 0.6). However, the YMR not only stratified the

DCC samples into high risk and low risk groups more significantly

(Figure S7C, p = p = 0.005, HR = 2.63) than the 15-gene signa-

ture, but also (Figure S7D, p = 0.019, HR = 2.72) separated the

Bild samples into the high- and low-risk groups that the 15-gene

signature could not. We did not compare the other two data sets

(NLCI, Agilent 44k; JBR 10, RT-qPCR) that were used in Zhu

et al study [17] because these two platforms do not contain enough

YMR signature genes. We found the 15-gene signature works best

for squamous cell lung carcinomas among all five data sets, but

YMR did not work for this data (data not shown), probably due to

the difference of tumor biology between squamous cell lung

carcinoma and adenocarcinoma.

Analysis of YMR and Clinical Covariates
We evaluated the YMR with clinic covariates in lung cancer

prognosis. The 442 DCC samples showed greater than 50%

survival rate within 5-year (Figure 3C), which is biased because of

the fact that the 5-year overall survival rate for lung cancer is as

low as 16% [1]. We used the direct method [53] and only looked

at the stage II/III patients within 72 months of follow up time. Not

surprisingly, disease stage was the most important risk factor.

Excluding disease stage, however, the YMR was the second most

important covariate (HR = 1.32, p = 0.006, Table S13). The

gYMR signature using actuarial method [53] showed a similar

result (HR = 1.67, p = 0.004, Table S14).

The YMR stratified 299 stage I DCC patients into high- and

low-risk groups (p = 0.048) and 141 stage II/III patients into high-

and low-risk groups (p = 0.042). The gYMR risk score showed

more significant stratification for stage I patients (Figure 4A,

p = 0.012). Unexpectedly, in the whole data set, chemotherapy

patients showed even poorer outcome for stage I patients than for

those patients who did not receive chemotherapy (Figure S8A).

This could be a result from the bias of patient selection for

treatment [18]. Conversely, stage II/III patients with high YMR

who received chemotherapy showed better outcomes (Figure

S8C). For those early stage patients who did not receive

chemotherapy, the gYMR risk score was even more significant

in predicting prognosis (Figure 4C, p = 0.004). The gYMR score

also predicted prognosis among stage II & III patients (p = 0.016)

(Figure 4D). These results show that patients with a low-YMR

score have a good prognosis regardless of disease stage and

chemotherapy can improve outcomes for high-YMR stage II & III

patients.

Discussion

In this study, we developed a new survival prediction signature

called YMR for lung cancer. This YMR signature was built from a

cancer biology hypothesis in contrast to previously reported

models that are based on survival time training (Table 3). The

YMR value of individual patients can provide valuable biomarker

information relevant to lung cancer prognosis and therapeutic

decision-making. In a clinical setting, the ideal prediction model

should be applicable to any single patient by providing an

informative risk score for that patient. The major shortcoming of

Figure 2. Boxplot of the YMR distributions in normal lung samples and lung cancer samples. Microarray gene expression data sets from
different reports with different platforms were used. The data sets were described as in Table S7.
doi:10.1371/journal.pone.0068742.g002
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all previous prediction models is that the signature gene-expression

values of new samples have to be comparable to those of the

training sample data in terms of data preprocessing, analysis

platform, and data normalization. For example, Shedden K et al

[13] normalized the entire training and testing data sets together.

This is not practical for clinical use. Additionally, global

normalization may remove some inter-site differences. Even

though using a small number of genes by qRT-PCR [17,24,54–

56] would be more practical, qRT-PCR data also needs to be

normalized before the same models can be applied. We propose

that YMR not only simplifies the modeling but also avoids data

normalization preprocess since the ratio of each patient is

comparable. The YMR is computed from the same individuals;

therefore, it works for a single patient sample. YMR works for

different data analysis platforms and different data preprocess

methods. Further, lung cancer prognosis with the YMR could be

improved by optimizing the Yin and Yang gene lists and the

number of genes in the YMR calculation.

With the advent of microarray technology, groups of differen-

tially expressed genes (DEGs) were chosen between normal tissue

samples and cancer samples. To our knowledge, there is no report

that selected the DEGs between normal and cancer samples for

cancer prognostic signature development. Rather, previous

publications selected genes between patients of long and short

Figure 3. Validation of YMR in four data sets by Kaplan-Meier estimates of the survivor function. A. Free-recurrence time function curve
(low risk n = 60; high risk n = 65) of the adenocarcinomas patients from Bhattacharjee et al. B. Overall survival time function curve of the
adenocarcinomas patients (low risk n = 27; high risk n = 31) from Bild et al. C. Patient samples (low risk n = 248; high risk n = 194) of the DCC project.
D. RNA-seq samples (low risk n = 121; high risk n = 137) from TCGA. Low YMR scores (in green) correspond to the highest predicted survival
probability and high YMR scores (in red) correspond to the greatest predicted risk.
doi:10.1371/journal.pone.0068742.g003
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Table 3. Comparison of YMR to different signature models previously reported.

Report

Gene selection reproducibility
affected by other cause of
survival or false correlation

Signature modeling reproducibility
affected by training set intrinsic
features

Simplicity of signature
delivery

applicable to
individual without
normalization

Gordon, 2002 [57] Yes. Selection between high and
low risk patients

Yes, in training two-gene ratio Simple. Two-gene ratio Yes

Raponi, 2006 [11] Yes. Clusters of genes Cox
regression

Yes, in building Cox coefficients Simple equation with trained Cox
coefficient

No

Chen, 2007 [24] Yes. Cox regression Yes, in building Cox coefficients Simple equation with trained Cox
coefficient

No

Shedden, 2008
Method A [13]

Yes. Cox regression of
cluster genes

Yes, in building penalty likelihood Complex equation with trained
likelihood score

No

Zhu, 2010 [17] Yes. Minimum genes
for separation

Yes, in building 4 coefficients
for PCA genes

Moderate complex equation with
trained coefficients

No

Wan, 2010 [56] Yes. T,SAM,Relief test between
long and short survival

Yes, in building the priors for Bayesian
model

Complex Bayesian equation with
trained prior value

No

Lu, 2012 [9] Yes. Cox regression Yes, in building Cox coefficients Moderate complex equation with
trained coefficients

No

YMR No. Expression and function
differences between normal and
cancer cells

No, imbalance of Yin and Yang.
No training needed

Very simple. Ratio of gene
expression

Yes

doi:10.1371/journal.pone.0068742.t003

Figure 4. Kaplan-Meier estimates of the survivor function of the gYMR signature in different group of patients of the DCC data set.
A. Stage I only (low risk n = 122; high risk n = 177). B. Stage I who received chemotherapy (low risk n = 13; high risk n = 28). C. Stage I who did not
receive chemotherapy (low risk n = 79; high risk n = 95). D. Stage II & III only (low risk n = 63; high risk n = 78). E. Stage II & III who received
chemotherapy (low risk n = 24; high risk n = 23). F. Stage II & III who did not receive chemotherapy (low risk n = 27; high risk n = 31). Low gYMR scores
(in green) correspond to the highest predicted survival probability and high gYMR scores (in red) correspond to the greatest predicted risk.
doi:10.1371/journal.pone.0068742.g004
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survival time or genes that correlate to survival time (Table 3). In

those publications, Cox regression analysis of all genes against the

survival time of all patients resulted in a proportional hazard rate

for each gene. The top gene in the list, pre-clustered genes, or

metagenes were used as signature genes [9,11,13,17,24]. Other

studies selected genes that were differentially expressed between

high-risk and low-risk patients who were simply grouped by

survival time [13,56]. If the same idea (gene association with

survival time) was used in gene selection, then the selected

signature gene lists would be similar for different studies. Often,

however, the published signatures showed little overlap in the

genes identified as significant predictors of outcome. Thus, there is

a strong possibility that gene selections were influenced by

variations in sample collection, sample size, data processing, and

microarray platform. Our method does not use survival time as a

parameter for gene selection; rather, it used a gene clustering

approach instead of group statistics. It is not unexpected that our

gene list does not overlap previously reported lung cancer

signature genes as our signature development approach is quite

different.

The ratio of two-gene expression within an individual patient

has been reported as a biomarker signature development in lung

cancer diagnosis and prognosis [57–58] as well as for breast cancer

prognosis [59–60]. The single two-gene ratio or geometric mean of

several two-gene ratios was selected between the treatment failures

and the treatment responders from the training data samples. The

single two-gene ratio works well for cancer cell type classification

or diagnosis; for example, between malignant pleural mesotheli-

oma (MPM) and adenocarcinoma (ADCA), but it may not be able

to reflect the complex tumor progression process for prognosis. In

some cases, there could be substantial variation of the two genes

among different samples. Therefore many new studies in recent

years still rely on the Cox regression modeling to build the

prognostic signatures. Most of these models applied the gene

expression value to the Cox proportional coefficient of each

signature gene and combined them as the patient risk scores

[9,11,13,17,24]. Some models computed the probability of a

patient falling into the low-risk or high-risk class as the patient risk

scores [56]. However, there are difficulties in using overall survival

as an endpoint in prognostic modeling in cancer. The expression

variations of the same gene among individual subjects are

substantial. Some genes associated with other aggressive diseases

may be present in a subject’s tumor. Similarly, a subject might

develop and succumb to some other clinical condition shortly after

diagnosis. In these instances, no correlation exists between gene

expression and subject survival [18]. The complex models could

learn the expression variable as well as other variations precisely,

which would result in low reproducibility if used for a different

data set. Instead, we return to the two-group gene expression ratio

approach but select these two groups of genes using differences

between normal lung cells and lung cancer cells that represent the

whole Yin and Yang effects of the cell. Among the Yin genes we

selected included pathways and networks connected to the

canonical Molecular Mechanisms of Cancer pathway. The Yang

genes are connected to the Retinoic acid receptor (RAR)

activation pathway and the Hepatic Stellate Cell Activation

pathway. RAR activation induces cell differentiation and may

antagonize cancer progression because retinoic acid or vitamin A

is required for the differentiated state of normal cells [46]. Hepatic

Stellate Cells play a key role in the storage and transport of

retinoids and the lung tissue harbors the Hepatic Stellate-like cells

[46–47]. These two pathways alter the balance between Yin and

Yang, consequently altering patient survival.

A useful prognostic signature should not only predict the

patient’s prognosis, but should also help clinical therapeutic

decision making. Although surgery is a standard treatment for

early stage lung cancer, more than 20% of stage I patients will

relapse. This cohort of patients may benefit from chemotherapy.

For the late stage lung cancer patients, after the complete resection

of tumors, a good prognostic signal could spare the patient from

chemotherapy or recommend less intensive therapy. Our YMR

signature shows potential in helping clinical therapeutic decision

making for different stages of lung cancer. For those high-YMR

stage I patients, a careful therapy recipe is recommended.

Chemotherapy can improve outcomes for high-YMR stage II &

III patients.

Conclusions
In this study, we developed a novel biomarker signature (YMR)

for lung cancer. YMR signature was based on a Yin Yang

hypothesis that the imbalance of two opposing effects in lung cells

determines the patient’s prognosis. This contrasts with all previous

signature models that were based on significant data training. This

study provided a novel insight into the biology of lung cancer

development. Experimental validation of this approach and a

qRT-PCR kit designed for the Yin and Yang gene expression level

detection are the next steps. The calculated YMR risk score can

help the clinical therapy decision making regarding the disease

stages. This study can also have potential in drug development by

modulating the Yin and Yang (Figure 1B) or altering other target

gene expression so that a lower YMR can be achieved. In addition

to lung cancer, the YMR approach to biomarker discovery could

be applied to other cancers or diseases as well.

Supporting Information

Figure S1 2-D clustering for identification of Yin gene
candidates. A. 2-D Euclidean clustering with complete linkage

setting for both gene (12,625 genes on HG-U95av2) and 100

samples of Bhattacharjee data set. The region was selected where

the genes downregulated in normal samples but upregulated in

almost all different types of lung cancers. The region where genes

were upregulated in one or few cancer types was not selected. B.

The selected region was zoomed in from the whole array view.

(TIF)

Figure S2 2-D clustering for identification of Yang gene
candidates. A. 2-D Euclidean clustering with complete linkage

setting for both gene (12,625 genes on HG-U95av2) and 100

samples of Bhattacharjee data set. The region was selected where

the genes upregulated in normal samples but downregulated in

almost all different types of lung cancers. The region where genes

were downregulated in one or few cancer types was not selected.

B. The selected region was zoomed in from the whole array view.

(TIF)

Figure S3 74 Yin gene probe sets were analyzed by
using IPA. The Molecular Mechanisms of cancer canonical

pathway was highlighted by green lines.

(TIF)

Figure S4 Top protein interaction network and pathway
of Yang genes. 108 Yang gene probe sets were analyzed by

using IPA. The RAR Activation pathway and the Hepatic Stellate

Cell Activation pathway were highlighted by green lines.

(TIF)

Figure S5 Random group gene expression ratios. 500

groups of 31 genes and 500 groups of 32 genes randomly picked
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up from 12,625 genes among 125 Adenocarcinomas of Bhatta-

charjee data set. A. Histogram of 500 p-values of random group

ratios as continuous variable. B. Histogram of 500 hazard Ratios

(HR) of random group ratios as continuous variable. C.
Histogram of 500 p-values of random group ratios as dichotomous

(ratio .2.0) variable. D. Histogram of 500 hazard Ratios (HR) of

random group ratios as dichotomous (ratio .2.0) variable. The

stratification of these 500 random ratios (.2.0) was tested by Cox

proportional hazard ratio model.

(TIF)

Figure S6 Effect of dropping genes from YMR signature
gene list. The continuous YMR and gYMR were tested on 442

samples of DCC data set after one or more genes were removed

from the 63 Yin and Yang gene list. Upper panel: The effect on

YMR of dropping Yin genes. A. ‘‘orig’’ is the original 31 yin gene,

dropping one gene a time, dropping two genes (‘‘24_100, i.e.

HIST1H4J, 214463_x; CDC25A, 204696_s), as well as dropping

three genes (24-10-7, i.e. HIST1H4J; CDC25A; and IGFBP5,

203425_s). These three genes were chosen because they showed

best performance in gYMR after they were dropped. B. The effect

on HR using the same genes as in A. Middle panel: The effect

on gYMR of dropping Yin genes. ‘‘orig’’ is the original 31 yin

gene, dropping one gene a time, dropping two genes (24-10, i.e.

HIST1H4J, CDC25A), as well as dropping three genes (24-10-7,

i.e. HIST1H4J, CDC25A, and IGFBP5). Lower panel: The

effect on HR of dropping Yang genes. A. The effect on YMR.

‘‘orig’’ is the original 32 yang gene, and dropping one gene a time.

B. The effect on gYMR. ‘‘orig’’, the original 32 yang gene, or

dropping one gene a time.

(TIF)

Figure S7 Comparing YMR to the 15-gene signature. A.

15-gene signature (Zhu et al 2010) for the DCC sample data

(low = 231; high = 211). B. 15-gene signature for Bild data

(low = 35; high = 23). C. YMR for the same DCC sample data

(low = 248; high = 195). D. YMR for the same Bild data (low = 27;

high = 31).

(TIF)

Figure S8 Kaplan-Meier estimates of the survivor
function of patients with or without chemotherapy after
diagnosis. A. All stage I patient samples from the DCC project.

B. Low YMR stage II&III patients. C. High YMR stage II&III

patients.

(TIF)

Table S1 74 Yin genes.
(DOC)

Table S2 108 Yang genes.
(DOC)

Table S3 Yin gene network 1. Network that is related to

tumor morphology (network significant score of 42) was selected

from pathway and interaction network analyses of these 74.

(XLS)

Table S4 Yin gene network 2. Network that is related to

DNA replication (network significant score of 30) was selected

from pathway and interaction network analyses of these 74 Yin

genes.

(XLS)

Table S5 Yang genes involved cellular development.
The focus genes related to cellular maintenance process were

extracted from IPA.

(XLS)

Table S6 Yang genes involved maintenance process.
The focus genes related to cellular development process were

extracted from IPA.

(XLS)

Table S7 Data sets and preprocesses used in this study.

(DOC)

Table S8 YMR values of the different normal tissue
types.

(DOC)

Table S9 Continuous and dichotomous arithmetic YMR
scores are associated with clinical outcomes.

(DOC)

Table S10 Continuous and dichotomous geometric
gYMR scores are associated with clinical outcomes.

(DOC)

Table S11 Dropping three genes (HIST1H4J, CDC25A,
and IGFBP5) on continuous and dichotomous YMR.

(DOC)

Table S12 Dropping three genes (HIST1H4J, CDC25A,
and IGFBP5) on continuous and dichotomous gYMR.

(DOC)

Table S13 YMR covariate and multivariate analysis
using direct method [53].

(DOC)

Table S14 gYMR covariate and multivariate analysis
using actuarial method [53].

(DOC)
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