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Introduction: Misophonia and sensory over-responsiveness (SOR) share

physiological and psychological symptoms. While individuals with SOR

demonstrate pain perception alterations, these were not explored

in misophonia.

Methods: This exploratory study comprised thirty healthy adults with

(n = 15; based on the Misophonia Questionnaire) and without misophonia.

The Sensory Responsiveness Questionnaire (SRQ) was used for evaluating

sensory responsiveness. In addition, psychophysical tests were applied

for quantification of: (i) stimulus-response function of painful stimuli, (ii)

the individual perceived pain intensity, (iii) pain modulation efficiency, (iv)

auditory intensity discrimination capability, and (v) painful and unpleasantness

responses to six ecological daily sounds using the Battery of Aversiveness

to Sounds (BAS).

Results: Individuals with misophonia reported higher scores in the SRQ-

Aversive (p= 0.022) and SRQ-Hedonic (p= 0.029) scales as well as in auditory

(p = 0.042) and smell (p = 0.006) sub-scales, indicating higher sensory

responsiveness. Yet they were not identified with the SOR type of sensory

modulation dysfunction. Groups did not differ in the pain psychophysical

tests, and in auditory discrimination test scores (p > 0.05). However, in the

misophonia group the BAS evoked higher pain intensity (p = 0.046) and

unpleasantness (p <0.001) ratings in the apple biting sound, and higher

unpleasantness rating in the scraping a dish sound (p = 0.007), compared to

the comparison group.

Conclusion: Findings indicate increased sensory responsiveness in individuals

with misophonia, yet not defined as SOR. Thus, this suggests that misophonia

and SOR are two distinct conditions, differing in their behavioral responses to

painful and non-painful stimuli.

KEYWORDS

sensory over-responsiveness, pain sensitivity, misophonia, sensory processing,
ecological sounds, auditory hyperalgesia, auditory analgesia
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Background

The recently published consensus definition of misophonia
(Swedo et al., 2021) defines misophonia as “a disorder of
decreased tolerance to specific sounds or stimuli associated with
such sounds” (p. 22). These aversive sensory stimuli, commonly
named misophonia triggers, are expressed physiologically
(Edelstein et al., 2013; Johnson et al., 2013; Brout et al.,
2018), severely impact daily function and social participation
(Edelstein et al., 2013; Wu et al., 2014; Zhou et al., 2017; Kumar
et al., 2021; Swedo et al., 2021), and are suggested to contribute
to mental health difficulties (Schröder et al., 2013; Erfanian et al.,
2019; Swedo et al., 2021). Indeed, misophonia has been reported
to co-occur with psychiatric or neurological conditions (e.g.,
mental health disorders, attention deficit hyperactive disorder)
(Cusack et al., 2018; McKay et al., 2018; Rouw and Erfanian,
2018; Erfanian et al., 2019; Swedo et al., 2021; Siepsiak et al.,
2022), indicating that whether or not misophonia is a disorder
in its own right is yet to be determined empirically (Swedo
et al., 2021). Thus, research examining the nature and features
of misophonia is needed to better characterize and differentiate
this disorder (Swedo et al., 2021).

Neuroticism is a trait associated with misophonia (Cassiello-
Robbins et al., 2020; Jager et al., 2020; Guetta et al., 2022) [i.e.,
moody, anxious, and tense (Goldberg, 1990)]. It is manifested
in misophonia as behavioral and psychological responses to
misophonia triggers including irritation, anger, anxiety, disgust,
general psychological distress, and difficult regulating emotions
(Rouw and Erfanian, 2018; Swedo et al., 2021). Like misophonia,
sensory over-responsiveness (SOR) has been widely reported to
co-occur with negative emotionality and psychological distress
(Kinnealey et al., 2011; Bar-Shalita and Cermak, 2016; Carpenter
et al., 2019) which significantly interferes with everyday function
and quality of life (Cosbey et al., 2010; Carter et al., 2011;
Kinnealey et al., 2011; Bar-Shalita et al., 2015; Bar-Shalita and
Cermak, 2016). Unlike misophonia, characterized by hyper-
sensitivity mainly in the auditory modality, specifically to
human sounds, yet not solely (i.e., olfaction) (Brout et al.,
2018; Swedo et al., 2021), SOR is characterized by multi-
modal sensory hyper-sensitivity (Zero, 2005; PDM, 2006; Miller
et al., 2007; Interdisciplinary Council on Developmental and
Learning Disorders, 2012). SOR, a type of sensory modulation
dysfunction, alters the ability to regulate behavioral adaptive
responses to everyday sensory stimuli, in one or more sensory
modalities (Miller et al., 2007). Specifically, individuals with
SOR perceive non-painful daily stimuli as unpleasant and
painful, lasting longer compared to non-SOR individuals
(Kinnealey et al., 2011; Bar-Shalita et al., 2015). Likewise,
laboratory testing of experimental pain in individuals with
SOR who are otherwise healthy, utilizing psychophysical pain
paradigms, indicated hyperalgesia (enhanced pain intensity)
which lasted longer compared to controls (Bar-Shalita et al.,
2009b, 2011, 2014; Weissman-Fogel et al., 2018). Moreover, our

research found that SOR and the personality trait of neuroticism
together contribute to enhanced pain sensitivity to daily
sensations, experienced as more aversive by individuals with
SOR, compared to healthy controls (Bar-Shalita and Cermak,
2020). Given sparse reports on sensory hyper-sensitivity in other
modalities beyond audition in individuals with misophonia
(Edelstein et al., 2013; Wu et al., 2014; Schröder et al., 2019),
and since pain perception has not been reported in misophonia,
it is worthy to study SOR and pain perception in individuals
with misophonia. Taken together, misophonia and SOR share
symptoms anchored in the pattern of reacting to sensations cued
by environmental stimuli, eliciting suffering, and functional
limitations. Accordingly, it is somewhat surprising that the
relationship between misophonia and SOR has yet to be
rigorously empirically tested. Because (a) misophonia triggers
are perceived as aversive sensations, (b) pain hypersensitivity is
linked to SOR, and (c) misophonia may be conceptualized as a
phenomena associated with SOR, the primary aim of the present
study was to examine the relationships among misophonia,
SOR, and pain hypersensitivity. Specifically, we hypothesized
that (1) misophonia and SOR will be positively correlated,
and (2) individuals with misophonia will demonstrate pain
hypersensitivity compared to healthy controls using quantitative
sensory testing (QST) and self-report measures.

Materials and methods

This exploratory research was approved by the review
committee at Tel Aviv University and the Helsinki Committee
at Sheba Medical Center (5360-18-SMC). All participants
completed and signed an informed consent form before
enrolling in the study.

Participants

A non-referred convenience sample of thirty healthy
adults aged 18–50 years (73% female, n = 22; M age
30.5 years, SD = 9.84), with (n = 15, study group) and
without misophonia participated in this study. Individuals
with self-identified misophonia were recruited via misophonia
social networks online, and healthy individuals (n = 15,
comparison group) recruited through a pool of individuals
interested in participating in research. Exclusion criteria
stipulated audiological (hearing loss, hyperacusis, and tinnitus
or other) neurological, psychiatric, developmental, or chronic
pain diagnoses, and language proficiency. Exclusion criteria
included the use of analgesia or consumption of psychoactive
substances less than 24 or 6 h, respectively, before arriving at
the lab. The study group inclusion reported a score of 7≤ on
the impairment rating scale of the Misophonia Questionnaire
(MQ) (Wu et al., 2014) (see below). The comparison group
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inclusion criteria included scoring <6 on the MQ (Wu
et al., 2014) as well as scoring within the normal cut-off
scores on the Sensory Responsiveness Questionnaire-Intensity
Scale (SRQ-IS) (Bar-Shalita et al., 2009a) (mean ± 1 SD)
[SRQ-Hedonic <2.43; SRQ-Aversive <2.13], demonstrating no
sensory modulation dysfunction.

Measures

Self-report questionnaires
Misophonia was assessed using the MQ (Wu et al.,

2014), a three-part self-report questionnaire aimed at assessing
misophonia consisting of: (1) Misophonia Symptom Scale which
examines the presence of specific sound sensitivities (e.g., eating,
tapping, throat sounds); (2) Misophonia Emotions and Behaviors
Scale which examines emotional and behavioral reactions
associated with misophonia, and (3) Misophonia Severity Scale
which was adapted from the National Institute of Mental
Health Global Obsessive-Compulsive Scale (Murphy et al.,
1982) applicable for misophonia utilizing a 15 point rating scale
(1 “low sensitivity” up to 15 “severe sensitivity”). A score equal
or greater than 7 indicates clinically significant “moderate sound
sensitivities”that cause “significant interference” (Wu et al.,
2014). High internal reliability (Cronbach’s α = 0.88−0.90),
convergent and distinct validity were reported (Wu et al., 2014).
In this study we used the Misophonia Severity Scale.

Sensory responsiveness was assessed using the SRQ-IS (Bar-
Shalita et al., 2009a), a self-report questionnaire assessing
behavioral response patterns to daily sensation, and aimed to
identify sensory modulation dysfunction in adolescents and
adults. The questionnaire consists of 58 statements describing
everyday situations involving stimulation in one of the following
modalities: auditory, visual, gustatory, olfactory, vestibular, and
somatosensory, excluding pain. Participants rate the intensity
of the enjoyment or disturbance in the situation described in
each statement using a five-point Likert scale (1 “not at all” up
to 5 “very”), comprising 2 scales: Applying the SRQ-Aversive
scale (32 items), scores higher than the normal mean cut-off
score (+2 SD; 1.87 + 0.52) indicate SOR. Applying the SRQ-
Hedonic scale (26 items), scores higher than the normal mean
cut-off score (+2 SD; 2.10 + 0.66) indicate sensory under
responsiveness (SUR) (Weissman-Fogel et al., 2017). Internal
reliability (Cronbach’s α= 0.90−0.93), and test–retest reliability
(r = 0.71−0.84; p < 0.001−0.005) as well as content, criterion,
and construct validity were reported (Bar-Shalita et al., 2009a).

Daily pain sensitivity was assessed using the Pain Sensitivity
Questionnaire (PSQ) (Ruscheweyh et al., 2009), a self-report
questionnaire, aimed at assessing the intensity of daily pain
sensitivity. The PSQ contains 17 items describing everyday
situations associated with a wide range of somatosensory pain.
Fourteen of the items relate to situations that describe painful
situations for most people (e.g., hot, cold, sharp, or dull). The

three remaining items (5, 9, and 13) describe situations typically
not rated as painful by healthy participants (e.g., taking a warm
shower). Participants are requested to imagine how painful this
situation would be for them and use a 10 point response scale
ranging from 0 (not painful at all) to 10 (worst pain imaginable).
The questionnaire provides a total score (PSQ-total) and two
additional scores (PSQ-moderate, PSQ-minor) ranging from
0 to 10; higher score denotes high sensitivity to daily pain.
The PSQ has internal reliability for the total score (α = 0.92),
as well as for the 2 sub-scales PSQ-minor: α = 0.81; PSQ-
moderate α= 0.91, and test–retest reliability (ICCs= total score
0.83; PSQ-moderate 0.79; PSQ-minor 0.86). Content, criterion,
and construct validity have been previously reported for this
measure (Ruscheweyh et al., 2012).

Pain psychophysics evaluation applying
quantitative sensory testing

Prior to testing, participants were informed that the heat
stimuli will be delivered at intensities not causing harm
or damage and are safe in line with the Food and Drug
Administration (FDA) requirements. Heat stimulus, using a
computerized thermal stimulator, the Pathway system for
Contact Heat-Evoked Potential Stimulator (CHEPs) (Medoc
Ltd. Advanced Medical Systems, Ramat Yishai, Israel), was
applied on the central volar aspect of the right forearm using
a flat disk probe 572.5 mm2 thermode. After each stimulus
the thermode was removed to avoid adaptation/sensitization.
During the inter-stimulus interval (ISI) periods participants
were asked to rate the pain intensity after each stimulus using a
verbal numeric pain scale (NPS; 0 = no pain at all; 100 = worst
imaginable pain). The baseline temperature was 32◦C, increased
temperature rate was set on 70◦C/sec, and decreased rate was
set on 40◦C/sec for all stimuli. Following familiarization with
the pain stimuli and required rating the following tests were
performed:

Dose response test

Three separate runs, each comprising of 20 CHEPs heat
stimuli (8–10 s ISI, randomized) at 46, 49, and 51◦C were
utilized, counterbalancing 46 and 49◦C randomly to avoid risk
of order effects. Between runs interval of 5-min was utilized (see
Figure 1).

Determination of testing temperature

Since pain evoked from heat stimuli depends on the
peripheral and central pain pathways function and varies among
participants (Staud et al., 2004), the testing temperature for the
following somatosensory psychophysical tests was individually
tailored to evoke a peak pain magnitude of 50/100 (henceforth
pain-50) on the NPS. Searching for the individual pain-
50 temperature, we used the Methods of Levels. The initial
temperature choice was based on the pain ratings each subject
provided in the Dose response test (i.e., 46, 49, and 52◦C).
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FIGURE 1

Schematic representation of the QST: Dose response test and Habituation (Runs 1 and 2) and CPM tests paradigms. QST, quantitative sensory
testing; CPM, conditioned pain modulation.

Thereafter, temperature search was respectively, decreased or
increased by 1◦C followed by increase/decrease of 0.5◦C until
reaching the desired pain level of 50. When 2 out of 3 CHEPs
stimuli (ISI 8 s) were rated as 50 on the NPS, the individually
tailored temperature of pain-50 was attained and served as the
individual testing temperature. For participants not reporting 50
on the NPS, the maximum temperature (55◦C) was set as their
testing temperature (Weissman-Fogel et al., 2018).

Habituation paradigm

Two runs of 20 CHEPs heat stimuli each (ISI of 8–12 s)
utilizing the individually tailored pain-50 temperature were
applied, with between runs interval of 5-min. Participants were
asked to rate the pain intensity following each stimulus. A lower
average in the second run indicated habituation (see Figure 1;
Weissman-Fogel et al., 2018).

Conditioned pain modulation paradigm

Using the cold water tub (8–10◦C) as a conditioning
test stimulus, participants inserted their left hand and were

requested to rate the pain intensity after 10 s. Thereafter,
while the hand remained in the cold water tub, participants
received a series of 15 heat stimuli (test stimuli) (ISI 8–12 s)
delivered to the right forearm at the individually tailored pain-
50 temperature and were asked to rate the pain intensity
after each stimulus using the NPS. At the end of this series,
participants reported their left hand pain intensity before
removing their hand from the cold water tab. Conditioned
Pain Modulation (CPM) magnitude was derived from the
deduction of the mean pain intensity ratings of the test
stimuli given alone from the mean pain intensity ratings given
simultaneously with the conditioning stimulus. Negative values
indicate an efficient CPM (see Figure 1; Yarnitsky et al.,
2012).

Auditory psychophysics evaluation
Sounds were delivered to both ears via headphones

Audio-Technica, Japan (ATH-M40×). Sounds were
calibrated using an Audio Scan Verifit VF-1 (Etymonic
Design Inc., Dorchester, ON, Canada) in a 2-cm3 HA2
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coupler, by means of a manual control procedure,
with an A-weighted filter. To eliminate tester bias
we ensured no eye contact between the participant
and the researcher.

Auditory intensity discrimination test

To ensure intact intensity discrimination, we measured
auditory discrimination acuity by using a computerized test. Six
intensity levels of 1-kHz tone (pure tone produced at a stable
sound pressure level), differing in amplitude by increments of
5 dB (range = 60–85 dB), lasting for 2 s each (ISI 8 s), were
delivered three times in a random order. Participants were
asked to verbally rate the sound intensity on a computerized
numerical scale ranging from least intense (Swedo et al., 2021) to
most intense (Schröder et al., 2013). Before testing, participants
were familiarized with the least and most intense sounds twice
(Assayag et al., 2020).

Battery of aversiveness to sounds

Computerized testing with six ecological sounds each
applied 3 times: (1) scraping a dish, (2) apple eating, (3) ticking
clock, (4) water drops, (5) alarm, and (6) 1 kHz tone (a pure
tone produced at a stable sound pressure level). A total of
18 sounds (each: 30 s duration; ISI 30 s) were delivered in-
within and between participants random order. The sounds
were calibrated to volume levels up to 80 dB SPL. Sounds 1–5
were normalized for intensity (78–80 dB SPL) using the Manual
control mode of the Verifit VF-1 (Audioscan, 2006) analyzed
by 1/12th octave, A-weighted filter, at a rate of 384 ms. After
each sound, participants were instructed to verbally rate the
pain and unpleasantness intensities (Price et al., 1983) on an
11-point scale (0 “no pain/no disturbance” up to 10 “maximum
pain possible/the highest level of disturbance you can imagine ”)
(Mazor-Karsenty et al., 2019; Assayag et al., 2020).

Procedure

The study was administered in the Sensory Integration
Lab at Tel Aviv University in a quiet, air-conditioned
room (22–24◦C) with ambient noise typically not exceeding
45 dB SPL and the participant sitting on a comfortable
recliner. The session lasted for approximately 2 h. After
verifying the inclusion criteria using the MQ, SRQ-IS,
and demographic questionnaire, participants undertook the
psychophysical testing in counterbalanced order. Thereafter,
participants completed the PSQ electronically.

Data analysis

Data analysis was performed using SPSS (Quintero
et al., 2013) software version 27. Descriptive statistics

were used to describe the population and study variables.
The Shapiro–Wilks test was used to test the distribution
type of the dependent variables. Group differences were
examined via Mann–Whitney- or t-tests, according to
variables distribution type. Pearson Correlation Coefficient
or the Spearman’s Rank Coefficient tests were used to test
correlations. Correlations were compared between the groups
using Fisher’s z transformation test where they were then
treated as normal random variables. To determine the relative
contribution of the independent variables [SRQ, PSQ, and
battery of aversiveness to sounds (BAS-R)] in predicting the
dependent variable (MQ), two multiple regression models were
established, one for each group; additionally we established
a model for the whole sample. All statistical tests were
two-sided and tested at a 5% level of significance. Nominal
p-values are presented.

Results

Demographic characteristics

No statistically significant group differences were found
in age [study vs. control groups Mean (SD): 31.7 (11.77)
vs. 29.29 (7.67)], sex (women 73.33% both groups), years
of education [study vs. control groups Mean (SD): 14.67
(1.91) vs. 14.47 (7.39)] and dominant hand. A statistically
significant group difference was found in the MQ scores,
score Mean (SD); ranges among the study and comparison
groups were 8.47 (1.68); 7–13, and 2.27 (1.90); 0–6, respectively.
Of note, 66% of participants in the study group scored 7–
8 on this MQ.

Group differences in the Sensory
Responsiveness Questionnaire and
Pain Sensitivity Questionnaire scores

Statistically significant group differences were found
in both SRQ scores, showing higher scores (higher
responsiveness) in the study group. Yet, within the
study group the two SRQ scores (SRQ-Hedonic; SRQ-
Aversive) were found below cut-offs, indicating no sensory
modulation dysfunction (SMD). We also examined group
differences in the mean scores in all sensory modalities.
A statistically significant group difference was found in
the auditory and the olfactory sub-scales demonstrating
higher scores (higher responsiveness) in the study group
(Table 1). Groups did not differ in the mean scores of
the other sensory sub-scales (vision, taste, vestibular, and
somatosensory) (Table 1).

No statistically significant differences were found between
the two groups in the PSQ scores (p > 0.05).
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Correlations of the Misophonia
Questionnaire score with the Sensory
Responsiveness Questionnaire and
Pain Sensitivity Questionnaire scores

Within each of the groups no statistically significant
correlations were found between the MQ and SRQ scores.
Further, between group comparison in these correlations we
found no statistically significant group differences were found.
However, while in the comparison group the MQ significantly
correlated with the PSQ total (r = 0.524, p = 0.04) and
PSQ-Moderate (r = 0.525, p = 0.044) scores, no statistically
significant correlations were found in the study group. Between
group comparison in these correlations found no statistically
significant group differences. Indeed, after running a bootstrap
analysis we did not reach statistically significant correlations
within the control group.

Psychophysics

Group differences in thermal pain ratings
No statistically significant differences (p > 0.05) were found

in pain intensity and unpleasantness ratings in Dose-Response,
Testing Temperature (pain-50), Habituation, and CPM testing.
Of note, the study group ratings were consistently slightly
lower (Table 2).

Group differences in auditory discrimination
No statistically significant group differences were found

(p > 0.05) in the Auditory Discrimination Test for all of the six
intensity levels of the 1-kHz sound.

Group differences in the battery of
aversiveness to sounds pain and
unpleasantness ratings

Testing auditory pain intensity found statistically significant
pain ratings only in the apple eating sound indicating higher
ratings in the study group (Table 3). Testing ratings of
unpleasantness found statistically significant group differences
in scraping a dish and apple eating sounds, indicating higher
ratings in the study group. No statistically significant group
differences were found in pain intensity and unpleasantness
ratings in the ticking clock, tone 1 kHz (Tone 1), water drops,
and alarm sounds (Table 3).

Correlations between the Misophonia
Questionnaire and battery of
aversiveness to sounds scores

No statistically significant correlations were found within
each group. However, group comparisons indicated statistically

significant group differences in the correlations between MQ
scores and the unpleasantness ratings of the ticking clock
r = −0.08 vs. 0.47 p = 0.039; water drops r = −0.22 vs. 0.49
p = 0.009; and alarm sounds r = −0.31 vs. 0.30, p = 0.028,
study vs. comparison groups, respectively, showing negative
low correlations in the study group, whereas positive low to
moderate correlations were observed in the comparison group.

The final multiple regression model to
predict Misophonia Questionnaire

In the separate models for each group the residuals
were not normally distributed based on the P-P plots,
and the predictors were highly correlated showing a high
multicollinearity (VIF > 10). Therefore, the results were not
valid and we referred to the model on the whole sample.

In this model the residuals were normally distributed
and showed homoscedasticity, yet high multicollinearity was
identified. Since the main assumptions of this regression model
had been met we refer to the results. The model was found
statistically significant [F(15,14) = 2.87; p = 0.03; R2

= 0.75],
yet none of the effects i.e., SPQ, PSQ, and BAS-R were found
statistically significant (p > 0.05).

Discussion

This preliminary study is the first to test SOR and
pain sensitivity using psychophysical measures via QST in
individuals with misophonia. Using QST, our findings support
the consensus definition (Swedo et al., 2021) by demonstrating
that the sounds with differentially aversive responses in the
misophonia group were mostly human-generated. This suggest
a difference between SOR and misophonia, where SOR entails
a very wide range of auditory stimuli that may be aversive,
whereas misophonia may be associated, with some variability,
with a more limited scope of aversive auditory cues. This
conclusion is further supported by the absence of general
sensory modulation dysfunction among individuals with
misophonia in the study sample, namely, they were not defined
having SOR. Yet, these individuals with misophonia scored
higher in the normal range of multisensory responsiveness.
Specifically they reported increased sensory responsiveness in
the auditory and olfactory sensory systems, suggesting sensory
responsiveness beyond the auditory system in misophonia.
However, contrary to our hypothesis findings indicate that
individuals with misophonia did not demonstrate pain hyper-
sensitivity in different QST paradigms, but consistently reported
lower pain ratings. This further suggest that misophonia is
not similar to SOR.

The pain matrix includes brain areas processing of both
noxious and non-noxious stimuli (Mouraux et al., 2011;
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TABLE 1 Group differences in the SRQ scores.

Study group (n = 15) Comparison group (n = 15) t/z p

Median (IQR) Mean (SD) (Range) Median (IQR) Mean (SD) (Range)

SRQ-Aversive 2.03 (1.50–2.16) (0.31) 1.91 (1.41–2.3) 1.70 (1.50–1.87) 1.67 (0.22) (1.08–2.11) 2.434 0.022

SRQ-Hedonic 1.96 (1.77–2.30) 2.02 (0.32) (1.56–2.7) 1.87 (1.38–2) 1.74 (0.34) (1.08–2.11) 2.309 0.029

SRQ-Auditory 2 (1.50–2.33) 1.96 (0.58) (0.83–3) 1.67 (1.33–1.83) 1.59 (0.34) (1–2.33) 2.136 0.042

SRQ-Olfactory 2.50 (2–3) 2.51 (0.76) (1.25–3.75) 1.83 (1.33–2.50) 1.63 (0.61) (1–3) −2.770 0.006

SRQ-Visual 2 (1.83–2) 1.93 (0.37) (1.17–2.5) 1.83 (1.67–2.17) 1.84 (0.39) (1.17–2.67) 0.643 0.53

SRQ-Vestibular 2 (1.78–2.33) 2.04 (0.35) (1.33–2.56) 2 (1.67–2.22) 1.90 (0.38) (1.22–2.67) 1.006 0.32

SRQ-Somatosensory 1.71 (1.50–1.86) 1.67 (0.25) (1.09–2.05) 1.57 (1.45–1.67) 1.55 (0.2) (1.05–1.91) 1.404 0.17

SRQ-Taste 2.33 (2–2.50) 2.30 (0.41) (1.67–3.17) 1.83 (1.33–2.50) 1.93 (0.34) (1–3.33) 1.724 0.10

SRQ, sensory responsiveness questionnaire; IQR, interquartile range; SD, standard deviation. Bold values denote statistically significant group differences.

TABLE 2 Group differences in thermal pain psychophysics tests ratings.

Study group (n = 15) Comparison group (n = 15) t/z p

Median (IQR) Mean (SD) (Range) Median (IQR) Mean (SD) (Range)

Dose-Response 46◦C 9.25 (5.8–12.5) 15.79 (19.37) (1.25–70) 12 (8.9–25.1) 19.11 (19.63) (0.45–76.45) −0.850 0.395

Dose-Response 49◦C 10.75 (8.4–23.8) 16.17 (14.04) (1.05–55.35) 16.6 (9.5–35.3) 23.30 (21.32) (0.75–84.35) −0.100 0.319

Dose-Response 52◦C 14.25 (9.8–21.5) 19.68 (19.84) (0.93–83.4) 21 (13.8–23.8) 25.21 (21.80) (0.8–87.45) −1.26 0.206

Destination Temperature 55 (55–55) 54.63 (0.76) (53–55) 55 (53–55) 53.62 (3.49) (41.5–55) −0.853 0.393

Habituation 1 17.3 (8.8–29.4) 20.68 (14.85) (0.55–55.5) 31 (12.0–40) 29.51 (17.67) (4.35–68.25) −1.483 0.149

Habituation 2 21 (12–38.3) 22.69 (14.3) (0.51–48.25) 25 (17–44.3) 28.83 (17.12) (3.9–67.75) −1.065 0.296

Conditioned pain modulation −4 (−11.8 to –0.2) −3.06 (14.01) (−23.05–29) 0.2 (−8–3.5) −2.47 (10.54) (−26.9–17.8) −0.730 0.943

SD, standard deviation; IQR, interquartile range.

TABLE 3 Group differences in auditory psychophysics pain and unpleasantness ratings.

Study group (n = 15) Comparison group (n = 15) t/z p

Median (IQR) Mean (SD) (Range) Median (IQR) Mean (SD) (Range)

BAS-R Pain Scraping a dish 0.67 (0–2.67) 2.53 (2.58) (0–10) 0.67 (0–2.67) 1.64 (2.33) (0–8) −1.440 0.15

Eating apple 0 (0–0.67) 2.35 (2.93) (0–8.33) 0 (0–0.67) 0.62 (1.25) (0–3.66) −1.995 0.046

Ticking clock 0 (0–0.67) 0.49 (1.13) (0–4) 0 (0–0.67) 0.47 (0.89) (0–2.66) −0.364 0.71

Tone 1 kHz (Tone 1) 0 (0–1.33) 1.73 (3.12) (0–10) 0 (0–1.33) 0.80 (1.26) (0–4) −0.722 0.47

Water drops 0 (0–0.33) 0.44 (1.38) (0–5.33) 0 (0–0.33) 0.20 (0.41) (0–1.33) −0.336 0.74

Alarm 0 (0–2) 1.55 (2.01) (0–7.33) 0 (0–2) 1.07 (1.68) (0–5.33) −1.116 0.26

BAS-R unpleasantness Scraping a dish 3.67 (2.3–5.3) 6.91 (2.29) (3–10) 3.67 (2.3–5.3) 4.22 (2.72) (0–10) 2.931 0.007

Eating apple 3.67 (3.33–6) 8.49 (1.33) (5.33–10) 3.67 (3.33–6) 4.29 (2.3) (0–8.66) −4.102 <0.001

Ticking clock 3.33 (1–4.67) 2.58 (2.47) (0–8) 3.33 (1–4.67) 3.02 (2.28) (0–7.33) −0.605 0.54

Tone 1 kHz (Tone 1) 3.67 (1.67–6) 3.73 (2.31) (0.66–8) 3.67 (1.67–6) 3.73 (2.31) (0.66–8) 0.606 0.55

Water drops 2.67 (1–3.33) 2.58 (1.97) (0–7) 2.67 (1–3.33) 2.58 (1.97) (0–7) 1.503 0.14

Alarm 5 (1.67–6.33) 4 (2.47) (0–7) 5 (1.67–6.33) 4 (2.47) (0–7) 0.924 0.36

BAS-R, battery of aversiveness to sounds, ratings range 0–10; SD, standard deviation; IQR, interquartile range. Bold values denote statistically significant group differences.

Senkowski et al., 2014) suggestive of an interaction between
sensory systems. Indeed, we have previously reported a coupling
between multisensory systems and pain (e.g., Bar-Shalita
et al., 2011, 2014, 2015, 2019; Weissman-Fogel et al., 2018;

Granovsky et al., 2019), i.e., individuals with SOR demonstrate
pain hyper-sensitivity in response to experimental and daily life
pain stimuli. Further, chronic pain patients, e.g., fibromyalgia,
temporomandibular disorders, and chronic pelvic pain show
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sensory hyper-sensitivity to non-noxious stimuli (Schrepf et al.,
2018). Specifically to the auditory and pain systems, hyperacusis
was found prevalent in chronic pain conditions (de Klaver et al.,
2007; Irimia et al., 2008; Suhnan et al., 2017). Thus, based on the
bidirectional shaping of the noxious and non-noxious sensory
perception via painful and non-painful stimuli (Mouraux et al.,
2011; Pomper et al., 2013; Senkowski et al., 2014), we speculated
that the auditory aversive stimuli, at least those which may be
considered triggers, will elicit pain response. Indeed, human
sound, i.e., eating apple perceived not only as aversive for
individuals with misophonia, but also as painful. This finding
supports the auditory-pain interaction probably in cortical brain
areas that have a role in multi-sensory integration such as S2, the
insula, and the anterior cingulate cortex (Mouraux et al., 2011).

Contrary to our assumption, we did not find pain hyper-
sensitivity in misophonia. This further supports the distinction
between SOR and misophonia. Specifically, while in SOR
abnormally intense central neural processing is the suggested
mechanism (Parush et al., 2007; Zlotnik et al., 2015; Granovsky
et al., 2019), increased activity and connectivity in top–down
modulatory brain areas is evident in misophonia (Kumar et al.,
2017). The latter may explain our finding that individuals with
misophonia consistently rated lower pain intensities. In detail,
the auditory and the pain systems share the same top–down
modulatory mechanisms which involve prefrontal brain areas
and parallel descending inhibitory components (Rauschecker
et al., 2015; De Ridder and Vanneste, 2021). A key brain area
in the descending inhibitory pathways is the periaqueductal
gray that receives collaterals from the spinothalamic tract
(Zhang et al., 1990) as well as form several auditory nuclei
(Halladay and Blair, 2012; Wang et al., 2019), and have a role
in auditory-induced analgesia (Dobek et al., 2014). Thus, we
speculate that the prefrontal cortex which is part of a central
“gatekeeping” system, evaluates the relevance and affective value
of auditory stimuli and controls information flow including
pain, via descending pathways, with an attempt to inhibit
sensory stimuli. Indeed they successfully inhibit experimental
pain stimuli and demonstrated efficient CPM, which evaluates
the efficiency of the descending inhibitory pathways. The
assumed excessive inhibitory processes in misophonia is also
reflected in our findings demonstrating negative correlations
between unpleasantness ratings of the ecological non-human
sounds and the misophonia scale score in the misophonia group
compared to controls who demonstrated opposite direction.
These allude to a successful inhibition to auditory non-trigger
sounds yet not to trigger sounds.

This is a preliminary study consisting of a small sample
size. Further, we did not test the emotional aspect nor
behavioral regulation profiles, both of which characterize
misophonia and SOR, as well as affecting pain perception.
Future studies should establish multiple regression models
using independent variables that are not correlated, and
use large samples. Further, future studies should investigate

the link between somatosensory and auditory pain using
neurophysiological tools.

To conclude, this preliminary study found increased
sensory responsiveness in misophonia, yet not defined as SOR,
and no differences in pain sensitivity. Thus, this suggests that
misophonia and SOR are two distinct conditions, differing in
their behavioral responses to painful and non-painful stimuli.
Findings allude to future exploration of the pain, auditory
analgesia, and auditory hyperalgesia neurophysiological
mechanisms in misophonia (Manohar et al., 2020).
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