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Abstract

Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand
binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system
perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating
metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side
effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic
kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have
previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects
observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized
and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal
disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems
biology and a first step towards computational systems medicine. The methodology introduced herein has important
implications for drug development and personalized medicine.
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Introduction

Despite the advantages gained from drug therapy in medicine,

drug development has historically presented an expensive and

frequently perplexing challenge for researchers. Identifying useful

drug targets for treating disease and matching them to chemical

compounds that can elicit the desired effect through drug-target

interaction has been the paradigm for the drug development

process in the era of molecular medicine. However, this approach

has yielded many failed drug treatments and an incomplete

understanding of the consequences of treatments for human

health, even with drugs that have made it to market and been

prescribed for decades. Two major contributing factors that

confound individual molecular target-based drug discovery are

drug off-target binding and the lack of systems-level understanding

of drug response [1]. Adopting a new, systems-based approach to

drug development is therefore a desirable goal in the era of systems

medicine.

The growing wealth of omics data offers a valuable opportunity

for novel approaches in systems medicine but also presents

significant challenges for data integration [2]. Increasingly

sophisticated computational approaches are being developed to

analyze and manipulate omics data in order to gain a greater

understanding of complex biological systems. An algorithm for

identifying and comparing ligand binding sites on protein

structures [3] was recently employed to predict drug off-target

binding sites across the proteome [4]. Such a tool offers unique

capabilities for drug development by providing a comprehensive

survey of uncharacterized drug targets that may participate

directly in drug response, which is likely to be important as

polypharmacology interactions suggest that drug promiscuity is a

predominant property of existing drugs [5].

Biological systems exhibit redundant pathways and synergistic

effects conferring a robustness of phenotype when confronted with

external stimuli. As a result, multi-target drugs are generally more

clinically efficacious than single-target drugs. These facts highlight

the critical importance of studying polypharmacology in a systems

level context [6]. The increasing use of genome-scale metabolic

network models for a variety of applications [7,8] has established

this research platform as a promising means for studying the

emergent properties of complex systems. The published applications

of metabolic models for drug development have thus far focused on

identifying drug targets for antibacterial treatment in such

pathogens as M. tuberculosis [9,10], S. aureus [11,10], H. pylori, and

E. coli [10]. However, the human metabolic network reconstruction

(Recon 1) [12] and developed context-specific metabolic modeling

algorithms [13,14] permit human-centered in silico drug studies.

Integrating these structural bioinformatics and human system

modeling techniques for application in drug development represents

a first computational step into the era of systems medicine. As an

example of this integrative approach, the results of protein off-target

prediction for the drug torcetrapib [4], a cholesteryl ester transfer
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protein (CETP) inhibitor, were evaluated in the context of a model

of renal metabolism.

CETP inhibitors are intended to treat patients at risk for

atherosclerosis and other cardiovascular diseases by raising high-

density lipoprotein cholesterol (HDL-C) and lowering low-density

lipoprotein cholesterol (LDL-C) [15]. Torcetrapib was withdrawn

from phase III clinical trials after a substantial investment of labor

and capital due to its observed side effect of fatal hypertension in

some patients [16]. It has since been of great interest to elucidate

the cause of this side effect in order to avert such failures in the

future and to better define the potential of CETP inhibitors for

treatment [17]. Subsequent studies have provided evidence in

favor of the hypothesis that the cause of this side effect was not due

directly to the mechanism of HDL-C and LDL-C regulation via

CETP inhibition [18]. Instead, it has been suggested that the

hypertensive side effect may result from uncharacterized drug off-

target effects [17]. Two other CETP inhibitors are now under

clinical trial, anacetrapib [18] and JTT-705 [19]. Thus far, studies

have not indicated the same risk of hypertension associated with

the latter two drugs; however, these studies have been limited to

relatively small patient groups lacking in diversity and over

relatively short-term treatment. Even if these alternative CETP

inhibitors do not carry the same adverse side effects, it is still of

value to future drug development to determine the exact

mechanism of torcetrapib’s adverse action. It has been suggested

that off-target effects of torcetrapib lead to increased activity of the

renin-angiotensin-aldosterone-system (RAAS) and thereby hyper-

tension [4,20], but a recent review of the published CETP

inhibitor clinical studies [21] concludes that the effect on blood

pressure is most likely independent of the increase in aldosterone.

Currently the exact cause of the hypertensive side effect of

torcetrapib remains to be unambiguously identified.

The predicted torcetrapib off-targets include many metabolic

enzymes and metabolite transport proteins. Although there are

several mechanisms involved in regulating blood pressure that may

be responsible for the hypertensive side effect, one possible mode is

the renal regulation of blood pressure via metabolite reabsorption

and secretion. The kidneys are the primary organs that filter the

blood and therefore are strong contributors to maintaining a

normotensive state even independent of RAAS function. Thus a

model of renal metabolism was developed as the system context in

which to analyze torcetrapib off-targets and predict drug response

phenotypes. The two best-supported causal off-targets predicted in

this study are prostaglandin I2 synthase (PTGIS), due to decreased

capacity for renal prostaglandin I2 (PGI2) secretion, and acyl-CoA

oxidase 1 (ACOX1), due to decreased capacity for renal citrate and

amino acid reabsorption. Four other predicted off-targets are also

predicted to impact amino acid, glucose, citrate, or bicarbonate

reabsorption. As well, the model predicts no effect on renal

reabsorption or secretion for a number of other predicted off-target

metabolic proteins.

The goal of this study is not only to provide new insight into the

torcetrapib problem but also to reveal the theoretical implications

that this computational systems medicine platform has for drug

development and personalized medicine. Characterizing the

influence that genetic variation has in determining drug response

phenotypes has been recognized as a crucial goal for the future of

drug development [22]. To this end, the renal model was also used

to analyze metabolic disorders resulting from genetic deficiencies

and to identify those deficiencies that may pose additional risks for

drug treatment in select individuals.

Although many of the predictions generated by this approach

are supported by clinical and other experimental evidence that

describe the impact of loss of function for predicted causal off-

targets and genetic deficiencies, the full set of exact metabolic

mechanisms of drug action predicted by our model remain to be

completely validated. While this is seen as a limitation of this study,

it also offers a number of opportunities to experimentally evaluate

promising hypotheses that, if validated, will lead to significant

advancements in developing CETP inhibitors for treatment and

novel insight into certain renal disorders.

Results

Renal Metabolic Model
The approach for context-specific organ modeling proposed in

this study (see Materials and Methods and Figure 1) yielded a renal

metabolic model capturing functions of the kidney for reabsorp-

tion and secretion (Table 1). Many components of the renal

objective function are factors known to be relevant determinants of

blood pressure. However, there is currently incomplete knowledge

about the exact role that some of these components play in blood

pressure regulation. Calcium reabsorption, for example, leads to

vasoconstriction in kidney glomeruli through the action of L-type

and N-type calcium ion channels [23] suggesting a resulting

increase in blood pressure if this mechanism applies across all

vascular tissues. Calcium reabsorption also leads to an inhibition of

renal sodium reabsorption in the proximal tubule [24] suggesting a

blood pressure lowering effect consistent with the observation that

increased dietary calcium also lowers blood pressure [25]. This

highlights the complexity of the effect certain renal reasborptions

have on blood pressure. Nevertheless, the many components

accounted for in the renal objective function enabled explicit

predictions about how system perturbations such as drug

treatment and genetic deficiencies affect the kidney’s ability to

regulate the small molecule content of the blood.

The kidney model included 336 explicitly predicted active

metabolic genes (Table S1) that met criteria for activity as

summarized in Figure 2. The majority, 243 genes, satisfied the

gene expression significance threshold (see Materials and Meth-

ods), although the activity of 58 genes was predicted despite

expression values below the threshold. These genes were activated

Author Summary

Pharmaceutical science is only beginning to scratch the
surface on the exact mechanisms of drug action that lead
to a drug’s breadth of patient responses, both intended
and side effects. Decades of clinical trials, molecular
studies, and more recent computational analysis have
sought to characterize the interactions between a drug
and the cell’s molecular machinery. We have devised an
integrated computational approach to assess how a drug
may affect a particular system, in our study the metabo-
lism of the human kidney, and its capacity for filtration of
the contents of the blood. We applied this approach to
retrospectively investigate potential causal drug targets
leading to increased blood pressure in participants of
clinical trials for the drug torcetrapib in an effort to display
how our approach could be directly useful in the drug
development process. Our results suggest specific meta-
bolic enzymes that may be directly responsible for the side
effect. The drug screening framework we have developed
could be used to link adverse side effects to particular drug
targets, discover new uses for old drugs, identify
biomarkers for metabolic disease and drug response, and
suggest genetic or dietary risk factors to help guide
personalized patient care.

Modeling Drug Off-Target Effects
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by the GIMME algorithm [13] to optimally achieve the renal

objectives while remaining minimally inconsistent with gene

expression data and may represent post-transcriptionally upregu-

lated genes. The other 35 genes were predicted to be active

without penalty since no corresponding probesets existed on the

microarray upon which the transcriptomic data was obtained.

Since many of these genes participated in optimal pathways for

achieving renal objectives, it is projected that experimental

measurement would confirm their expression if performed.

The active reactions in the model reflect both the possible

pathways by which the kidney can achieve the specified renal

objectives as well as other functions supported by the gene

expression data. The model included 1587 active reactions (Table

S2), excluding model-based reactions such as objective functions,

exchanges, and demands. Of these active reactions, 333 comprised

a single connected sub-model accounting for all pathways which

could possibly support the specified renal objectives. We refer to

this sub-model as the reduced kidney model (see Table S1 and

Table S2 for the contents of the reduced model and Dataset S1 for

the actual model in SBML format). It should be noted that because

the reduced model included all reactions that can carry flux in

support of the renal objectives, it had the exact same effective flux

state solution space as the full renal model. The reduced kidney

model reactions spanned a broad range of metabolic subsystems

(Figure 3). The largest subsystem consisted of plasma membrane-

spanning transport reactions, which is expected given that this

model captured renal filtration and secretion functions. The

second largest subsystem represented intracellular transport,

Figure 1. Context-specific organ metabolic modeling. Preliminary constraints were imposed upon metabolite exchange fluxes of the full
metabolic network based on coordinated experimental detection of transportable metabolites both in the organ tissue and the biofluids processed
by the organ. Metabolites detected in both biofluid and organ were assumed freely exchangeable in the model, and the remainder of the metabolite
exchanges were tentatively constrained to zero. Organ physiology literature was reviewed to compile an objective function consisting of the
metabolic functions of the organ. Each function was tested for compatibility with the preliminary model. Metabolite exchange, transport, and
demand reactions required to achieve some functions were added to the network, and exchange fluxes for objective metabolites were directionally
constrained in accordance with the literature. Functions not compatible with the model were removed from the overall objective function. The
objective function was then integrated with gene expression data obtained from an organ tissue sample to derive a net, context-specific metabolic
organ model representing the metabolic exchange between the organ and the rest of the body and the metabolic reactions that take place within
the organ to achieve this exchange.
doi:10.1371/journal.pcbi.1000938.g001

Modeling Drug Off-Target Effects
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signifying the importance of interaction among sub-cellular

compartments in renal function including the cytosol, endopla-

simic reticulum, Golgi apparatus, and mitochondria. A significant

proportion of the other active subsystems in the reduced kidney

model were involved directly in the metabolism of components of

the renal objective function including carbohydrate, amino acid,

vitamin, lipid, carboxylate, and glutathione metabolism as well as

the urea cycle. These permitted the indirect reabsorption of

metabolites as well as the required synthetic pathways for renal

secretions.

Causal Drug Off-Targets
The integrative framework adopted for predicting causal drug

targets associated with response phenotypes employed both

structural bioinformatics tools as well as modeling techniques of

systems biology (see Materials and Methods and Figure 4). The

Table 1. Renal objective function.

Exchange Class Metabolite Abbreviation Relation to Blood Pressure Reference

secretion hormones Prostaglandin I2 PGI2 vasodilation [60,61]

Prostaglandin D2 PGD2 vasodilation [61]

Calcitriol - lowers blood pressure, Ca2+ reabsorption [62–65]

urea Urea - water/ion counter current system regulating osmolality [66]

cyclic amp Cyclic AMP cAMP important for vaso-dilation/constriction [67]

urate Urate - uknown, but secreted [68]

tryptamine Tryptamine - uknown, but secreted [67]

absorption water Water H2O determinant of blood pressure, ion absorption [66,69,70]

ions/electrolytes Phosphate - determinant of blood pressure [71,72]

Sodium Na+ determinant of blood pressure [70]

Calcium Ca2+ determinant of blood pressure [23–25,63,73,74]

Chloride Cl- determinant of blood pressure [75–77]

Protium H+ determinant of blood pressure [78,79]

Potassium K+ determinant of blood pressure [25,75]

Bicarbonate HCO3- determinant of blood pressure [78]

carboxylates Acetate - unknown, but reabsorbed [80]

Citrate - effects sodium reabsorption [81]

Oxalate - effects sodium reabsorption [82]

glucose D-Glucose - effects sodium reabsorption [80,83–85]

amino acids L-Alanine Ala associated reduction of hypertension/vasodilation [80,85,86]

L-Arginine Arg associated reduction of hypertension/vasodilation [80,85,86]

L-Asparagine Asn associated reduction of hypertension/vasodilation [80,85,86]

L-Aspartate Asp associated reduction of hypertension/vasodilation [80,85,86]

L-Cysteine Cys associated reduction of hypertension/vasodilation [80,85,86]

L-Glutamine Gln associated reduction of hypertension/vasodilation [80,85,86]

L-Glutamate Glu associated reduction of hypertension/vasodilation [80,85,86]

Glycine Gly associated reduction of hypertension/vasodilation [80,85,86]

L-Histidine His associated reduction of hypertension/vasodilation [80,85,86]

L-Isoleucine Ile associated reduction of hypertension/vasodilation [80,85,86]

L-Leucine Leu associated reduction of hypertension/vasodilation [80,85,86]

L-Lysine Lys associated reduction of hypertension/vasodilation [80,85,86]

L-Methionine Met associated reduction of hypertension/vasodilation [80,85,86]

L-Phenylalanine Phe associated reduction of hypertension/vasodilation [80,85,86]

L-Proline Pro associated reduction of hypertension/vasodilation [80,85,86]

L-Serine Ser associated reduction of hypertension/vasodilation [80,85,86]

L-Threonine Thr associated reduction of hypertension/vasodilation [80,85,86]

L-Tryptophan Trp associated reduction of hypertension/vasodilation [80,85,86]

L-Tyrosine Tyr associated reduction of hypertension/vasodilation [80,85,86]

L-Valine Val associated reduction of hypertension/vasodilation [80,85,86]

oligopeptides L-Carnosine - unknown, but reabsorbed [66,87,88]

Glutathione GSH unknown, but reabsorbed [54]

doi:10.1371/journal.pcbi.1000938.t001
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workflow begins with screening of the entire human structural

proteome, with each subsequent step in the process narrowing the

list of proteins ultimately into a set of targets for which a response

phenotype was predicted upon functional inhibition. The first step

of this process identified putative off-target drug binding sites using

a ligand-binding site structural alignment algorithm (see Materials

and Methods). The 41 predicted metabolic protein off-targets were

the focus of this study (see Table S3), 28 of which had predicted

drug binding sites overlapping with their functional sites.

Simulated inhibition of these targets in the reduced kidney model

(see Materials and Methods) predicted response phenotypes for 6

of the off-target proteins with respect to renal function (Figure 5).

The results of all analysis steps for these 6 off-targets are

summarized in Table 2. The expression of all of these targets

was determined to be the most limiting for their associated

metabolic reactions included in the reduced kidney model (see

Materials and Methods), providing additional evidence supporting

that inhibition of these targets would be expected to have at least

some deleterious impact on those reactions.

The renal response phenotypes for inhibition of two of the

predicted drug off-targets were supported by existing scientific

literature. Simulated PTGIS inhibition completely precluded PGI2

secretion. Based on the relation of renal PGI2 secretion to blood

pressure (see Table 1), this inhibition would be expected to have a

hypertensive effect. Experimental studies confirmed that PTGIS is

associated with essential hypertension in humans [26] and that

transgenic rats highly expressing human PTGIS exhibited

decreased mean pulmonary arterial pressure despite treatment with

monocrotaline to induce hypertension [27]. Inhibition of hydro-

xyacid oxidase 2 (HAO2) in the reduced kidney model led to

reduced glutamate, glycine, and serine reabsorption suggesting a

possible role for HAO2 in the hypertensive side effect following

CETP inhibitor treatment based on the association of amino acid

reabsorption with vasodilation and hypertension (see Table 1).

Figure 2. Summary of gene activity predictions in the full kidney model. The pie chart at bottom represents the Recon1 gene activity
predictions resulting from deriving the kidney model. Genes predicted inactive are those genes with no associated active reaction fluxes in the kidney
model. Genes for which no activity prediction was made are those associated with active reaction fluxes in the kidney model but either are not
represented in the gene expression data or were not determined as the gene whose expression level is most limiting for any associated reaction through
evaluation of GPR Boolean rules with respect to gene expression data. The slice at top represents genes predicted active in the kidney model.
doi:10.1371/journal.pcbi.1000938.g002

Modeling Drug Off-Target Effects
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HAO2 is highly expressed in human kidney [28] and was identified

as a candidate quantitative trait locus for blood pressure in rat

kidney in a study comparing normal to hypertensive rats [29].

Two predicted causal CETP inhibitor off-targets, PTGIS and

ACOX1, exhibited notable binding affinity differences when

comparing docking results for their endogenous substrates to those

for the three CETP inhibitors (Figure 6). The mean predicted

binding affinity of PTGIS for its endogenous substrate prosta-

glandin H2 was weaker than for all three CETP inhibitors

(Figure 6A). Anacetrapib was predicted to have the strongest mean

binding affinity of all four tested molecules for PTGIS and JTT-

705 the weakest of the three drugs. The predicted mean binding

affinity of ACOX1 for its endogenous substrate palmitoyl-CoA

was weaker than for torcetrapib and anacetrapib but stronger than

the affinity of the protein for JTT-705 (Figure 6B). These results

supported potential competitive inhibition of PTGIS and ACOX1

by torcetrapib and anacetrapib, but the predictions suggested a

lesser effect of JTT-705 on ACOX1.

Renal Disorders and Drug Treatment
Similar to the use of the model to test inhibitory effects on drug

targets, the model was also used to predict genetic deficiencies that

lead to renal disorders and drug off-targets that act synergistically

with genetic deficiencies. Simulated gene knockouts predicted to

impact renal objective functions are displayed in Figure S1, Figure

S2 and Table S4. The 118 deficient genes predicted to cause

disorders impacted a variety of renal secretions and absorptions to

varying degrees. Thirteen of these deficiencies predicted total loss

of at least one renal function (see Figure S2).

Some renal disorders were only predicted in the gene-deficient

models in combination with drug treatment, not in the untreated

gene-deficient models or in the normal drug-treated model, and

are referred to in this study as cryptic genetic risk factors. Five such

gene deficiencies were predicted (see Table S4). A deficiency in

CYP27B1, which impacted vitamin D secretion alone, also

exhibited defects in proline reabsorption when combined with

drug treatment in simulation. Defects in three amino acid

transport proteins (SLC7A10, SLC3A1, and SLC7A9) were

predicted to decrease renal glycine reabsorption in combination

with drug treatment along with the disorders predicted in the

absence of drug treatment. The model deficient in the ATP-

binding cassette sub-family C member 1 gene (ABCC1) was

predicted to exhibit a cryptic deficiency in renal phosphate

reabsorption under drug treatment. These predictions are of

special importance because they suggest that these renal

phenotypes would only surface in gene-deficient individuals under

certain conditions, such as when treated with CETP inhibitors.

Model Evaluation and Validation
Multiple evaluations were performed to analyze and validate the

content of the reduced kidney model. The reduced kidney model

effectively predicted activity of significantly expressed metabolic

Figure 3. Reduced kidney model subsystem distribution. The distribution of metabolic reactions predicted to be active in the reduced kidney
model with respect to broad metabolic subsystem categories is shown. The distribution excludes objective function, exchange, and demand
reactions used to perform simulations in the model.
doi:10.1371/journal.pcbi.1000938.g003
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PLoS Computational Biology | www.ploscompbiol.org 6 September 2010 | Volume 6 | Issue 9 | e1000938



genes. The ability of our modeling approach to correctly and

robustly predict activity of highly expressing genes was evaluated

by a five-fold cross validation (see Materials and Methods). Our

approach showed significant recall of the 20% most highly

expressed metabolic genes, p-value = 4.57610222. This observa-

tion is especially notable since the reduced kidney model was not a

global model of kidney metabolism, and the result suggests the

relative importance of the renal functions captured by our model

within the context of total kidney gene activity.

We compared the metabolic gene activity predictions from the

reduced kidney model to the set of significantly expressed genes as

well as to a proteomic dataset derived from normal, healthy

human kidney glomerulus tissue [30] (Figure 7A). A total of 164

genes active in the reduced kidney model, 72% of the predicted

activities, were supported by either significantly expressed mRNA

levels, high-confidence protein detection, or both (see Table S1 for

a detailed list). The remaining 64 gene activities accounted for in

the model include 23 genes with no corresponding microarray

probesets, and therefore not experimentally measured mRNA,

and 41 genes that were determined to express more marginally

below the established significance threshold. Despite a strong

overlap between the transcriptomic and proteomic datasets, there

were also large proportions of both which are unique. This

disagreement may be due to tissue samples being taken from

different kidney sub-tissues in each experiment, absent probesets

on the microarray, or the propensity of mass spectrometry

proteomic experiments to produce false negatives. All of the

counted activities in Figure 7A were included in the full human

Figure 4. Identifying causal genes for drug response pheno-
types and metabolic disorders. First, the human proteome was
screened to identify off-target drug-binding sites. The resulting list of
putative off-targets was filtered to focus on just metabolic proteins.
Then, for each predicted metabolic off-target, the endogenous
functional sites were compared to the predicted drug-binding site to
identify overlap. Off-target proteins for which overlapping binding sites
were identified were considered to be competitively inhibitable by the
drug at the overlapping endogenous functional sites. The functional
consequences of such inhibitions were then tested in an appropriate
context-specific metabolic model. All possible individual gene knock-
outs were also simulated to predict genetic disorders that lead to
functional deficiencies either alone or in combination with drug
treatment. Those off-targets whose inhibition impacted model function
represent causal off-targets predicted to be associated with the drug
response phenotype, and the gene knockouts that impacted model
function represent genetic risk factors for metabolic disorders, which
may lead to amplification of the drug response phenotype.
doi:10.1371/journal.pcbi.1000938.g004

Figure 5. CETP inhibitor renal response phenotypes. Elements of
the color matrix represent the percent of the maximum normal,
untreated renal objective flux achievable by the CETP-inhibitor-treated
normal kidney model. The x-axis corresponds to individual renal
objective functions, and the y-axis corresponds to the predicted drug
off-targets. Metabolite abbreviations are defined in Table 1. Only the
subset of renal objective functions for which a drug response
phenotype was predicted is displayed.
doi:10.1371/journal.pcbi.1000938.g005

Modeling Drug Off-Target Effects
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metabolic network, signifying that the reduced kidney model was

not a global kidney model and that there is potential for expansion

to account for more metabolic functions than those of concern in

this study.

The literature-curated renal functions achievable by the kidney

model were also compared to those achievable by a model derived

from the predictions of Shlomi et al (Figure 7B). While the kidney

model developed in this study was compatible with all 41 curated

renal functions, the predictions of Shlomi et al were only

compatible with 25 functions. This difference in functionality

was due to false negative inactivity predictions made by Shlomi et

al such as inactive urea transport, prostaglandin synthesis, and

ATP synthesis. These results underscore the need to manually

curate automatically generated metabolic network reconstructions

and the advantage of integrating objective functions with context-

specific modeling.

Next, the model was functionally validated by comparing the

gene deficiencies predicted to cause renal disorder to disease

phenotypes in the OMIM database collected from clinical studies.

Twenty known gene deficiencies leading to specific disease

phenotypes were accurately predicted using the model (see Table

S4). Loss of function mutations in the gene encoding 25-

hydroxyvitamin D3-1-alpha hydroxylase (CYP27B1) have been

linked to vitamin D-dependent rickets type I in both human

patients [31] and pigs [32] consistent with the predicted inability of

the gene-deficient model to secrete calcitriol. Hypouricosuria, low

urinary excretion of urate, is a symptom of xanthinuria that is

caused by xanthine dehydrogenase (XDH) deficiency [33], which

is consistent with the deficient model’s inability to excrete urate.

Similarly, hypouricemia, low blood serum urate, is a consequence

of nucleoside phosphorylase (NP) deficiency [34] also predicted in

the model. Deficiency of aromatic L-amino acid decarboxylase

(DDC) leads to increased urinary excretion of 5-hydroxytrypto-

phan [35], which is consistent with the decreased ability to

reabsorb tryptophan and secrete tryptamine predicted through

simulation. Mutations in the mitochondrial cytochrome c oxidase

gene (COX6B1) lead to de Toni-Fanconi-Debre renal syndrome,

whose symptoms include a deficiency in the renal reabsorption of

glucose, amino acids, and bicarbonate [36,37], all of which were

predicted in the model. Deficiencies in seven NADH dehydro-

genase genes all lead to hypoglycemia, confirmed in simulation,

and a decreased ability to oxidize citrate and glutamate [38],

reactions important for indirect renal reabsorption of citrate and

glutamate in the model. Proline dehydrogenase (PRODH)

deficiency causes an inability to oxidize proline in kidney and

other tissues leading to hyperprolinemia that includes increased

urinary excretion of proline as a symptom [39–41], which is also

consistent with the predicted decrease in renal proline reabsorp-

tion. Deficiencies in two genes that take part in the ubiquinol-

cytochrome c reductase complex III (UQCRQ and UQCRB) lead

to proximal tubulopathy, including an inability to reabsorb amino

acids [42]; the gene-deficient model exhibited reduced renal

reabsorption of alanine, glutamate, and proline. Fumarate

hydratase (FH) deficiency leads to defects in glutamate oxidation

in kidney and other tissues [43,44], which is also consistent with

the decreased indirect renal reabsorption of glutamate predicted

by the model. Renal glucosuria, recapitulated in the model, results

from deficiency in a sodium-glucose transporter (SLC5A2) [45].

Dicarboxylicamino aciduria [46] exhibits impaired renal gluta-

mate and aspartate reabsorption and hypoglycemia resulting from

a deficient glutamate transporter (SLC1A1), all symptoms

predicted by the model. Severe dehydration is one symptom

resulting from another deficient transporter (SLC5A1) [47],

confirmed through decreased reabsorption of water in the model.

These results qualitatively describe the ability of our modeling

approach to predict perturbed phenotypic states.

To more rigorously quantify the predictive ability of our model

simulation approach, we performed area under receiver operating

characteristic (AROC) analysis based on not only the above-

mentioned clinical validations of our gene-deficient phenotype

predictions but based on the entire set of such known clinical

phenotypes that could potentially have been investigated using our

model (see Figure S3 and Materials and Methods). The sharp

declines in rates with increasingly stringent classifier ratio thresh-

olds (see Figure S3) reflect the likely low coverage of actual

disorder phenotypes by existing clinical studies. Nevertheless, our

approach performed very well based on this analysis, with an

AROC of 0.7565. Permutation trials resulted in a mean AROC of

0.5112, in close agreement with the expected theoretical randomly

achievable AROC of 0.5. Our approach achieved a significantly

greater AROC than could be expected by chance, p-value

= 8.71610270. Given the relatively low number of actual clinical

negatives available (see Table S5), we also assessed the significance

of our prediction results based purely on the true positive rates

determined through the AROC analysis. The mean true positive

rate of our results in this analysis was 0.2859, significantly greater

than the 0.0215 mean true positive rate obtained randomly, p-

value = 3.296102127. These analysis results illustrate that our

Table 2. Drug side effect causal off-targets.

Official
Symbol PDB ID Gene ID

SMAP
Prediction

Functional
Site Overlap

Reduced
Model
Reactions
Limited by
Expression

Impacts
Renal
Function in
Simulation

Stronger
Drug
Binding
Affinity

Cryptic Genetic
Risk Factors

References
Supporting
Causal Drug
Target
Prediction

PTGIS 2IAG 5740 6 6 6 6 6 [26,27]

ACOX1 1IS2a 51 6 6 6 6 6

AK3L1 2BBW 205 6 6 6 6

HAO2 1LTDa 51179 6 6 6 6 SLC3A1;SLC7A9;SLC7A10;ABCC1 [28,29]

MT-COI 1V54a 4512 6 6 6 6 CYP27B1;ABCC1

UQCRC1 1PP9a 7384 6 6 6 6 CYP27B1;ABCC1

aNon-human protein structures were mapped to human genes via bi-directional BLAST against the human proteome and choosing the top hit only if it had E-value
,10250.

doi:10.1371/journal.pcbi.1000938.t002
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approach for predicting perturbation phenotypes exhibits both

favorable sensitivity and specificity based on actual clinical data

and should hold not only for predicting genetic deficiency

phenotypes but also enzyme inhibition by drugs, which exhibits

a similarly deleterious phenotypic effect.

Parameter Sensitivity Analysis
In order to assess the effects of some of the critical assumptions

made in the model development and simulation procedures, we

performed sensitivity analysis with respect to the predicted renal

disorder phenotypes.

First, we compared the predictive capability of our reduced

kidney model to that of the original, unconstrained human

Recon1 metabolic network. The same approach to simulating

renal disorder states was employed using both models (see

Materials and Methods). We simulated all single gene knock outs

in both models and assessed the renal disorder phenotypes with

respect to each individual component of the renal objective

function based on the ratio of maximum objective flux in the

perturbed state to maximum objective flux in the unperturbed

state. Comparing the results achieved by each model (Figure 8), it

is apparent that although there are a few cases where both models

predict an equal degree of renal disorder given the same genetic

perturbation, the vast majority of disorder phenotypes are more

apparent in the reduced kidney model than in Recon1 alone. In

fact, 427 out of the 608 (71%) disorder phenotypes predicted by

the reduced kidney model showed no degree of disorder relative to

the unperturbed state in Recon1, including 36 of the most severe

phenotypes for which a total loss of renal function was predicted

by the reduced kidney model. These observations display the

predictive ability gained through integration of the gene expression

data via the GIMME algorithm, incorporating metabolomics data

to set exchange constraints, and the addition of six key membrane

transport reactions during the limited function-enabling manual

curation of the model. These reactions involve the transport of

prostaglandins I2 and H2, calcitriol, and carnosine. It should be

noted that the 7 disorders for which Recon1 predicted a more

severe phenotype than the kidney model result directly from the

addition of these transporters in that these transporters have

enabled additional pathways in the kidney model that are absent

in Recon1. All but one of the predictions concerning CETP

inhibitors showed a clearer phenotype in the kidney model as well;

this off-target is PTGIS for which both models predict a complete

loss of function when fully inhibited. Finally, 28 out of the 33

clinically validated phenotypes are predicted more noticeably by

the kidney model, 17 of these showing no disorder phenotype in

Recon1. Overall, this comparison establishes the relative con-

tribution of context-specific modeling in studying disorder and

drug response phenotypes.

Second, we investigated the sensitivity of our drug off-target

response phenotype predictions to the variability of two important

parameters used in our simulations, the system boundary flux

constraint, set as equal fractions of the upper bound on renal

objective fluxes (see Materials and Methods), and the degree of

enzymatic activity inhibition assumed to result from drug

treatment.

The system boundary flux constraint was imposed upon

demand and exchange reactions other than those optimized

during a given simulation. By default we set this constraint

assuming that all allowed boundary fluxes can carry an equal

fraction of the potential maximum renal objective flux. This

assumption was made to allow all pathways that could possibly

contribute to the objective to be used simultaneously in the

optimal flux state, providing the most flexible state while

maintaining maximum sensitivity of our model to additional

system perturbations such as gene deficiencies or drug effects. This

approach was unbiased in that it did not favor any possible

pathway over another in achieving a set objective without

imposing additional constraints, which may not always reflect

biological reality but was the most conservative assumption in the

absence of additional experimental data required to more precisely

set these flux constraints. In our sensitivity analysis, we varied this

parameter between 0 and 1000 flux units, the absolute lower and

upper magnitudes possible in our model, and repeated the

simulations of drug off-target effects. The result of this analysis

Figure 6. Differential causal off-target ligand and drug binding
affinities. (A) Binding affinities of the prostaglandin I2 (prostacyclin)
synthase protein for CETP inhibitors and prostaglandin H2, the
endogenous substrate. (B) Binding affinities of the acyl-Coenzyme A
oxidase 1, palmitoyl protein for CETP inhibitors and palmitoyl-CoA, the
endogenous substrate. Each bar shows the mean binding energy
predicted from docking trials. The standard error is indicated for each
bar along with the number of predicted binding poses.
doi:10.1371/journal.pcbi.1000938.g006
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Figure 7. Comparative reduced kidney model evaluation. (A) Overlap of gene activity predictions with genes expressing above the
significance threshold. Regions of the diagram are approximately proportional to their associated set sizes. The magenta circle represents the set of
genes predicted active in the reduced kidney model. The cyan circle represents the set of Recon1-associated genes with expression levels above the
significance threshold in the kidney tissue data. The yellow circle represents the set of genes encoding proteins that were detected in normal human
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(Figure S4) was captured in the normalized sensitivity coefficient

computed for each simulation (see Materials and Methods). The

coefficient can vary between negative and positive unity and

displays the deviation from a base result, the primary predictions

we have presented in this study. The base result is indicated by a

black star in Figure S4, and the parameter value in this case equals

13.5 flux units.

It is clear from Figure S4 that PTGIS inhibition resulted in the

same renal disorder phenotype regardless of the value of the

system boundary flux constraint parameter. This was because

there was only one pathway in the model by which prostaglandin

I2 could be secreted. Most other disorder phenotype predictions

begin to diverge from the base result around a parameter value of

200 flux units, a fairly permissive value, which shows that the

predictions were fairly robust to variability of this parameter. The

closer to 1000 flux units this parameter was set, the more

completely alternative pathways could compensate for a loss of

function in the simulations. If alternative pathways existed to

achieve a renal function, it was guaranteed that the ability to

predict a disorder phenotype with respect to that function would

be completely lost at the maximum possible parameter value of

1000.

We similarly analyzed the sensitivity of our predictions to

changes in the degree of enzyme inhibition assumed to follow from

drug treatment (Figure S5). For the primary results presented in

this study, we assumed complete inhibition of activity by the drug,

corresponding to a fraction of maximum enzymatic reaction flux

equal to 0 in Figure S5. Similar to the default setting of our system

boundary flux constraint, this default of complete inhibition was

chosen in order to maximize the sensitivity of our model in

detecting disorder phenotypes. Most of the phenotypes were still

detectable to varying degrees with as much as 25% of the

maximum activity of drug targets. The predicted phenotypes

associated with PTGIS, ACOX1, and AK3L1 were especially

robust to variation in degree of inhibition, still exhibiting a

phenotype near 50% of maximum activity. Decreased glucose and

kidney glomerulus tissue. (B) Renal metabolic objectives supported by predicted reaction flux states. The orange circle represents renal metabolic
objectives supported both by the kidney model developed in this study and a kidney model derived from the reaction activity predictions of Shlomi
et al. The red circle represents renal metabolic objectives supported only by the kidney model from this study. Metabolite abbreviations are defined
in Table 1.
doi:10.1371/journal.pcbi.1000938.g007

Figure 8. Predictive ability gained by modeling. The dotted black line is the line y = x for ease of visual comparison. Red marks represent
predictions resulting from inhibition of a predicted CETP inhibitor off-target. Blue marks represent predictions resulting from non-drug-target gene
inhibition. Pluses represent predictions validated in the OMIM database. There are 608 marks in total plotted and exact and partial overlap of some
marks precludes complete visual resolution.
doi:10.1371/journal.pcbi.1000938.g008
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bicarbonate reabsorption under drug-induced MT-COI and

UQCRC1 inhibition exhibited the most sensitivity to variability

in this parameter, although none of the predicted phenotypes

required complete inhibition of the drug target in order to be

detected.

Discussion

A novel approach for making functional predictions of drug

response phenotypes has been introduced that integrates techni-

ques of both structural bioinformatics and systems biology.

Although the current study focused on a specific metabolic system,

the general methodology excluding techniques particular to

metabolic modeling are extensible to other systems such as

signaling or transcriptional regulation. Non-metabolic protein

drug off-targets are predictable using the same structural analysis

tools, and many such off-targets have indeed been predicted as

well for CETP inhibitors [4].

The context-specific organ metabolic modeling strategy em-

ployed in this study represents an improvement upon previous

efforts in this realm. Model development algorithms such as

GIMME [13] or that developed by Shlomi et al, when integrated

with multiple omics datasets, can lead to more biologically realistic

models. It is also of critical importance to include context-specific

metabolic objective functions in the model development process in

order to yield a fully functional and predictive model, as is evident

from the functional comparisons of models performed in this study.

As an early effort at modeling such a context-specific metabolic

system it is important to discuss the limitations of our model.

Although the functional validations presented here are compelling,

currently available clinical data only permits the assessment of a

subset of the predictions possible in the model. Also, the functional

portion of the model, the reduced kidney model, does not and is

not intended to represent a global model of kidney metabolism but

only the specific renal functions studied in this work. As such, our

model does not fully resolve of complexity of the human kidney.

The human kidney fulfills a number of functions not studied here

and is a spatially distributed system across multiple distinct tissue

types. Here we have summarily replaced the various kidney sub-

tissues with a single, net system model. Because we integrated

expression data with curated renal functions that operate across

multiple kidney tissues, it is likely that our model approximates a

superset of the metabolic pathways supporting these functions.

Although we have made several simplifying assumptions in the

model development process, even the current level of model

validation suggests that the gene and reaction content of the model

is fairly accurate and that simulations in this model indeed hold

predictive capability.

The simulation approach taken, optimization of a linear

objective function, does not fully capture the full physiological

role of the kidney. The goal of these simulations was to determine

drug-target effects that may limit the capacity of the kidney to

move towards a homeostatic nominal state from a state of high

blood pressure, thereby decreasing the capacity of the kidney to

lower blood pressure. This strategy is appropriate for the goals of

the current study but would not be appropriate to simulate all

physiological states of interest in the kidney. On a related note, the

choice to define a disorder state based on the ratio of perturbed to

unperturbed maximum achievable renal objective flux demon-

strates a difference in the capacity of the renal function and not

necessarily a precise flux state. Therefore this strategy too is not

appropriate for modeling all physiological states.

The predictions made for CETP inhibitors in this study serve as

illustrative examples of many important implications that this

approach has for drug development and personalized medicine.

Predicted causal off-targets for renal metabolic disorders related to

blood pressure may be responsible in part or full for the clinically

observed hypertensive side effect of torcetrapib. The evidence

resulting from this study suggests that PTGIS and ACOX1 are

both potential causal torcetrapib off-targets, the inhibition of

which may explain the side effect of hypertension. In addition,

AK3L1, HAO2, MT-COI, and UQCRC1 may also play a role in

this side effect as we have predicted, although our docking trials

did not suggest that they are bound as strongly by torcetrapib. The

specific predicted deficiencies in renal function associated with the

drug off-targets can serve as biomarkers to be measured in patients

participating in clinical trials. A positive correlation of these

biomarkers with side effects would lend support to the predictions

of this study and confirm these biomarkers as risk indicators in

future patient treatment. It is important to note that although these

predictions comprise the basis for a renal filtration and secretion-

based hypothesis explaining the hypertensive side effect of

torcetrapib, these results do not refute the hypothesis based on a

RAAS-mediated mechanism. These two hypotheses are not

mutually exclusive and could potentially contribute alternatively

or synergistically to the clinically observed side effects. This

possibility illustrates the major tenet for systems biology: studying a

single protein or even a single pathway is not necessarily sufficient

to explain complex biological phenomena.

Aside from the confirmation that some of our predicted off-

targets are known to be involved in renal disorders, we do not

currently present direct experimental verification that torcetrapib

binds and inhibits the predicted targets and that this inhibition

leads to the predicted response phenotypes. Although this would

be the obvious next step, a retrospective validation is currently

hampered by the availability of the drug and the nature of the

phenotypes both predicted and known. Ideally, relevant physio-

logical studies would be carried out during actual clinical trials,

when a method such as ours would be most useful, in preclinical

and clinical phases of drug development.

The extended structural analysis of causal drug off-targets to

identify differential binding affinities for endogenous substrates

and drug molecules suggests possible differences in drug response

phenotypes across the CETP inhibitors tested. The results suggest

that anacetrapib may potentially lead to a similar response

phenotype to that of torcetrapib, while JTT-705 may not carry the

same adverse effect, at least with respect to the off-targets detailed

in this study. This particular type of analysis may aid in

differentiating between likely response phenotypes expected for

chemically and functionally similar drugs. Results of the

computational pipeline for interaction prediction between proteins

and CETP inhibitors employed in this study, SMAP and docking,

have yet to be confirmed experimentally. Although we are

currently unable to provide direct experimental evidence for the

off-target interaction predictions for this class of drugs, multiple

recent studies have shown experimental support for the general

efficacy of this approach for interaction prediction [48,49].

The predicted renal metabolic disorders with a genetic basis

suggest classes of individuals in which treatment with CETP

inhibitors may pose a higher risk for adverse side effects. These

predictions suggest a likely relationship between participants in

torcetrapib clinical trials exhibiting symptoms of these disorders

and the observed adverse side effects. The concept of cryptic

genetic risk factors for drug treatment introduced in this study

suggests a novel approach to personalized medicine. Should

polymorphisms within these genes be clinically linked to side

effects of drug treatment, the result would comprise a basis for

genetic screening to assess the risk of drug treatment for future
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patients. Given that these cryptic risk factors are not expected to

elicit the predicted abnormal phenotypes in the absence of drug

treatment, identification of causal polymorphisms through associa-

tion studies could only occur during clinical phase when a

sufficient number of patients could be observed to gain the

statistical power needed to draw significant correlations.

As illustrated above, this approach for in silico drug testing could

become an indispensible tool during the pre-clinical and clinical

phases of new drug development for studying the nature of adverse

side effects. In addition, this platform holds obvious potential for

analyzing drug efficacy in general and identification of potential

beneficent drug side effects that may be useful for drug repositioning

and could also be easily adapted for studying combinatorial drug

treatment. For a failed drug like torcetrapib, results from this

approach could reinitiate the drug development process, providing

new insight to help target patients who could benefit from the

treatment without the risk of serious adverse side effects.

Materials and Methods

Prediction of CETP Inhibitor Drug Off-Targets
The binding site for CETP inhibitors on the CETP structure

and the predicted off-target binding sites for this class of drug

across the proteome were assumed to be as previously predicted

using the SMAP program [4], which implements the Sequence

Order Independent Profile-Profile Alignment (SOIPPA) algorithm

to identify significant structural similarity to a given ligand-binding

site [3]. The results contained proteins from all organisms

represented in the PDB, not just human structures.

Mapping Off-Target Proteins to the Metabolic Network
In order to integrate the result of drug off-target predictions

with the metabolic network, it was necessary to first map all PDB

structures (http://www.pdb.org) corresponding to human meta-

bolic proteins included in Recon1, downloaded from the BiGG

database, to their respective gene identifiers as represented in

Recon1. The BiGG database requires registration and a password,

which can be requested by visiting (http://bigg.ucsd.edu/bigg/

home.pl). The UniProt ID mapping tool (http://www.uniprot.

org/) was used to map PDB structures corresponding to human

proteins to gene identifiers linked to metabolic reactions in Recon1

accounting for all predicted human metabolic protein drug off-

targets. All non-human predicted metabolic protein drug off-

targets were mapped to their human orthologs using the Basic

Local Alignment Search Tool (BLAST) [50] to perform a bi-

directional BLAST with a mutual best hit criterion. BLAST was

also used to resolve inconsistencies in functional annotation

between Recon1 gene-protein-reaction associations (GPRs) and

gene annotations from the Entrez Gene database (http://www.

ncbi.nlm.nih.gov/sites/entrez?db = gene) with respect to predicted

drug targets, leading to the reannotation of three Recon 1 GPRs.

The overall result of this mapping was that 97 metabolic reactions

in Recon1 were linked to 41 predicted CETP inhibitor off-targets.

Enzyme Inhibition Analysis
The metabolic enzymes predicted as CETP inhibitor off-targets

using SMAP were evaluated to determine potential enzymatic

inhibition by the drug. The predicted drug-binding sites of the

putative off-targets were compared to endogenous ligand-binding

sites from existing PDB protein-ligand complex structures (http://

www.pdb.org) and catalytic sites from the Catalytic Site Atlas (http://

www.ebi.ac.uk/thornton-srv/databases/CSA/). Ligand-binding sites

were defined as amino acid residues lying within 4.5 Å from atoms of

the ligand. Drug-binding sites were defined as residues aligned with

the cholesteryl ester binding sites on the CETP structure using

SMAP. Overlap between endogenous ligand-binding sites and drug-

binding sites was defined by a sharing of any amino acid residues

between the sites. The function of predicted drug targets present in

Recon1 with at least a partial such overlap was considered to be

competitively inhibitable by the drug.

Protein-Ligand Docking
Enzyme substrates were identified from Recon1 reaction

formulas. Certain molecules (H+, H2O, O2, phosphate, ferricyto-

chrome C, and ferrocytochrome C) were excluded from docking

trials due to size or structural challenges prohibiting a useful docking

result for the purposes of binding affinity predictions. All protein

structures used in this study were downloaded from the PDB

(http://www.pdb.org). Three-dimensional structures for endogen-

ous enzyme substrates were downloaded directly from the PDB if

available. If the PDB ligand structure did not exist or was non-

functional for docking, the structure was searched for in PubChem

(http://pubchem.ncbi.nlm.nih.gov/). The subsequently down-

loaded SDF file was converted to PDB format using the ChemAxon

web applet available at the PDB website (http://www.rcsb.org/

pdb/ligand/chemAdvSearch.do). If the three-dimensional ligand

structure could not be found in PubChem, the two-dimensional

structure was derived from the canonical SMILES [51] representa-

tion of the compound available in PubChem and then converted to

a three-dimensional structure in PDB format using the Clean3D

Fine Build tool available through the Marvin web applet (http://

www.chemaxon.com/marvin/sketch/index.jsp). The three-dimen-

sional structures for glycolipids were derived from their KEGG

glycan structures (http://www.genome.jp/kegg/glycan/) using

SWEET-II (http://www.glycosciences.de/spec/sweet2/doc/in-

dex.php).

Protein structures were pre-processed for docking using

AutoDockTools (ADT) version 1.5.2 [52] by adding polar

hydrogen atoms, removing all non-protein molecules from the

PDB structure including water, detergents, and ligands, adding

Kollman charges to the protein and converting it to PDBQT

format. Ligand structures were also prepared using ADT, using

the default method for preparing ligands for docking that adds

hydrogens and charges. The default rotatable bonds were accepted

as well, and the structure was converted to PDBQT format. The

search space for docking was determined visually by centering the

Grid Box in ADT central to the experimentally determined

binding site of the ligand and expanding the dimensions of the

cubic search space to just completely encompass the site.

Docking was performed using AutoDock Vina [53] with default

parameter settings other than the search space specification

described above, and the mean predicted binding affinity from the

set of predicted binding poses was accepted as the true binding

affinity for each docking run. The predicted binding affinities for

endogenous substrates were compared to the affinity of the same

site for the CETP inhibitor drugs in order to make predictions

about differential responses with respect to each of the drugs.

Renal Objective Function
As the preliminary step in modeling human renal function, the

scientific literature was reviewed to compile a list of specific

metabolic functions of the kidney, with a focus on functions

implicated as determinants of blood pressure. This list includes a

number of renal reabsorptions and secretions. Each function in

this list was tested for compatibility with Recon1, downloaded

from the BiGG database (http://bigg.ucsd.edu/bigg/home.pl), by

performing flux balance analysis (FBA) on the fully unconstrained

network optimizing for the given function. Those functions
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compatible with Recon1 were those that could achieve a positive

flux and are summarized in Table 1. These metabolic functions

were combined with a basic ATP maintenance function to form a

single model reaction that represents the kidney’s ability to filter

the metabolic content of blood with preference for lowering blood

pressure. This model reaction was used as the objective function in

developing the metabolic kidney model and is referred to as the

renal objective function in this study. All stoichiometric coefficients

in this reaction were set equal to one, which is a safe assumption

for the model development step as this only significantly impacts

the magnitude of fluxes through pathways that support each

individual renal objective and not generally whether or not certain

fluxes will be active in the resulting model. For the full renal

objective function reaction to be seen as useful in performing

simulations, more careful balancing of these coefficients based on

experimental evidence would be required. As such, the full renal

objective function was not used in any subsequent simulations with

the model, instead being substituted as an objective by the

reactions representing individual reabsorptions or secretions.

Metabolite exchange and transport reactions needed to achieve

some of the renal functions were also added to the network. It was

observed that Recon1 as a base model could not achieve flux

through certain key renal metabolite reabsorptions: sodium,

calcium, chloride, potassium, and oxalate. These deficiencies were

corrected for by simply adding demand fluxes for these metabolites

in the cytosol model compartment. Demand fluxes were also added

for the remaining kidney reabsorptions and secretions as well to

enable an array of simulations involving individual components of

the renal objective function to be tested. In the case of reabsorption,

this allows for direct reabsorption of metabolites in addition to

indirect reabsorption in which the absorbed metabolite is first

metabolized into other compounds and then reabsorbed into the

blood, as is the primary mechanism of reabsorption for some

metabolites, such as reduced glutathione (GSH) [54].

Kidney Metabolite Exchange Flux Constraints
A preliminary model was created by imposing kidney-specific

exchange flux constraints representing the metabolic exchanges

the kidney carries out with the blood and urine. The preliminary

model was initialized by loading Recon1 into the COBRA

Toolbox [55] and, by default, unbounding all reaction fluxes by

setting them to the default maximum magnitude of 1000 flux

units. Next, the renal objective function was added to the network

as a single reaction. Exchange fluxes for kidney secretion

objectives were constrained to preclude uptake of those metabo-

lites to achieve the renal objective, forcing the model to synthesize

those metabolites in order to secrete them. The resulting

preliminary model included 407 exchange fluxes, only 49 of

which were explicitly unconstrained based on literature-curated

kidney functions and the most basic of metabolic precursor

requirements. The basic metabolic exchanges assumed to take

place include ions and other inorganic compounds.

The Human Metabolomics Database (HMDB) (http://www.

hmdb.ca/) was queried to derive further evidence in support of

allowable exchange fluxes for the kidney. All 407 exchange

metabolites in the preliminary model were searched in HMDB for

experimental detection in specific biofluids and tissues. Those

metabolites detected both in the blood and kidney tissue were

assumed to be freely exchangeable in the kidney model, leading to

78 more explicitly unconstrained exchanges beyond what was

derived from basic and curated kidney-specific metabolic func-

tions. This assumption is based on the kidney’s physiological role

of filtering the blood and the observation that if both the blood and

kidney contain a metabolite, it must either be exchanged between

the two or synthesized separately in both. In the former case, this

data provides evidence of that exchange. In the later case,

although the model might allow a biologically unrealistic

exchange, because the metabolite exists in both blood and kidney,

the impact on simulations using the resulting model should be

merely quantitative in terms of the maximum renal objective

fluxes achievable by the unperturbed model. The integration of

gene expression data in the model development process described

below should reduce the propensity for biologically unsound

metabolic pathway activation that could follow from precursors

introduced by any biologically unsound exchanges. Those

metabolites detected both in the urine and kidney were assumed

to be possible excretions, and exchange constraints were set

accordingly. Excretions determined utilizing the urine metabolo-

mics data mostly showed redundancy in determining exchange

constraints with exchanges determined using blood data or

literature curation with the exception of 4 additional metabolites.

The remaining 276 exchange fluxes for which no evidence was

found to support were tentatively constrained to 0 flux units.

The resulting preliminary model was again tested for the ability to

achieve all kidney-specific metabolic functions. It was found that this

model could not absorb and metabolize GSH, without also

absorbing oxidized glutathione, the exchange of which was

subsequently unconstrained. Also, L-threonine and L-methionine

could not be absorbed and metabolized in this model without

exchange of 2-hydroxybutyrate and 2-methylcitrate, the exchanges

of which were similarly unconstrained as a corrective measure. The

resulting preliminary model could still achieve all the same renal

objectives as the fully unconstrained model. As a final preliminary

constraining measure, all system effluxes were bound to equal

fractions of the default upper bound on influxes of 1000 flux units;

we term this parameter the system boundary flux constraint. This

was done so that any available direct or indirect reabsorption

pathways could possibly be used to achieve metabolite reabsorption

without biasing the model towards use of any particular pathways

without further evidence. This represents the state of the model just

prior to final processing using the GIMME algorithm. The fitting of

the allowable fluxes to the gene expression data by GIMME

ultimately determined the usable reabsorption and secretion

pathways in accordance with gene expression.

Gene Expression Microarray Data Processing
Two gene expression microarray dataset for normal, healthy kidney

tissue [56] were obtained from the GEO database (http://www.ncbi.

nlm.nih.gov/geo/), accession GSE803. The two background-sub-

tracted datasets were first normalized using a global normalization

factor equal to the sum of probe intensities from the first dataset

divided by the sum of probe intensities from the second dataset to

account for any systematic differences in procedure between the two

experiments. The resulting data were then normalized using the

Lowess method [57] to reduce random noise. The resulting

normalized datasets were then weighted equally as replicates in

determining the final data for integration with the human metabolic

network by taking the mean of the two normalized datasets.

The gene-protein-reaction associations (GPRs) in Recon1 use

Entrez Gene IDs to annotate reactions in the network. To map the

data from the AffyHG-U95 chips to Recon1, all genes included in

Recon1 were mapped to corresponding AffyHG-U95 probesets

using Bioconductor [58] and the most recent chip annotations [59].

A single expression value was then assigned to each gene in Recon1

based on the maximum normalized data value associated with any

of the probesets mapped to a given gene. Next, a single expression

value was assigned to each reaction in Recon1 by evaluating the

Boolean rules in the GPRs with respect to the normalized
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expression data. The minimum data point was chosen for genes

linked by an AND operator in a GPR, and the maximum data point

was chosen for genes linked by an OR operator in a GPR.

Finally, a significant expression threshold was established for

subsequent use in the GIMME algorithm. This was done by fitting

the normalized gene expression data to a Gaussian distribution,

estimating the mean and standard deviation of this distribution, and

calculating p-values associated with each data point by subtracting

the cumulative distribution function from one. The normalized data

value corresponding to the p-value closest to but not exceeding 0.05

was chosen as the significance threshold; this resulted in a threshold

of 991.3698 for the normalized expression data.

Implementation of GIMME to Obtain Metabolic Kidney
Model

To integrate the renal objective function and kidney gene

expression data with the preliminary model to derive a functional

kidney model, the GIMME algorithm [13] was implemented. The

GIMME algorithm takes a metabolic network model, a gene

expression dataset, and specified required metabolic functions as

input and solves a linear programming optimization to yield the

network flux activity state that maximizes the specified functions

while remaining as consistent as possible with the gene expression

data. The complete renal objective function, the combination of all

functions presented in Table 1, was set as the metabolic objective

with a minimum requirement of 90% of the maximum possible

flux set as a parameter for GIMME in determining the final kidney

model. The reaction expression threshold parameter was set as

described above. GIMME was run with these parameters and the

normalized expression data and preliminary model as inputs. The

resulting reaction activity predictions were used to constrain

metabolic reactions yielding the full kidney model. Subsequently,

the connected sub-graph of this full kidney model, which includes

all functioning reactions possible for achieving the renal objectives,

was isolated and is this portion of the model we focused on for

validation and simulation. We refer to this sub-model as the

reduced kidney model (available in SBML format as Dataset S1).

Validation of Kidney Model Content
Gene activity predictions made when deriving the metabolic

kidney model were compared to the set of expressed genes with

normalized expression values above the significance threshold

described above. Activity predictions were also validated against a

comprehensive proteomics dataset from normal human kidney

glomerulus tissue [30] for overlap with network-associated proteins

detected with high confidence, that is, identified through detection

of two or more peptides.

To evaluate the modeling approach used in this study, a five-fold

cross validation was performed in which the data corresponding to the

most highly expressed 20% of network-associated genes were excluded

before deriving the kidney model. The ability of each approach to

correctly predict the activity of these most highly expressed 20% of

genes was measured from the overlap of predictions with the highly

expressed gene set assuming a hypergeometric distribution, and the

resulting probability was Bonferroni-adjusted.

Simulating Drug Target Effects and Renal Metabolic
Disorders

All predicted metabolic protein drug off-targets were tested in the

kidney model to assess the drug response phenotype caused by

inhibitory effects in this system. Inhibition of metabolic proteins by the

drug was modeled by constraining corresponding reactions catalyzed

by drug targets to 0 flux units. Simulations of the consequences of

these drug effects were performed using FBA as implemented in the

COBRA Toolbox [55] in the MATLAB programming environment.

Each drug target was evaluated with respect to its impact on each

individual renal function to determine if target inhibition by the drug

leads to a renal deficiency relative to the untreated normal kidney

model. This was done by optimizing single exchange or demand fluxes

at a time, representing reabsorptions and secretions respectively, out of

the full set listed in Table 1. The cumulative effect of all predicted drug

targets being simultaneously inhibited was also tested against each

individual renal function. Renal secretion fluxes were maximized in

simulation. Renal reabsorption fluxes were set as unbounded and then

maximized while the remainder of allowable uptakes were constrained

to equal fractions of the default maximum magnitude of 1000 flux

units. The additional constraints were imposed for reabsorption

simulations in order to allow the resulting network flux state to include

concurrently active alternative optimal direct and indirect reabsorp-

tion pathways rather than having to identify alternative optimal

pathways by performing multiple simulations.

Single gene deficiencies were also simulated in the kidney model

to assess their effects on renal function and their potential as risk

factors for treatment with CETP inhibitors. Each of the genes

annotated to reactions in Recon1 was knocked-out of the kidney

model and simulations were run using the gene-deficient kidney

model both with and without drug treatment to assess effects on

each individual renal reabsorption and secretion.

Drug response and metabolic disorder phenotypes were assessed

by taking the ratio of maximum gene-deficient, untreated renal

function flux to maximum normal, untreated renal function flux. A

ratio of less than unity indicates a deleterious phenotype. Predicted

metabolic disorder phenotypes were validated against previous

clinical studies as represented in the Online Mendelian Inheritance

in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim/).

Cryptic genetic risk factors for drug treatment were also

predicted for which the maximum gene-deficient, untreated renal

objective flux equals the maximum normal, untreated renal

objective flux but the ratio of maximum gene-deficient, drug-

treated renal objective flux to maximum normal, drug-treated

renal objective flux is less than unity.

Parameter Sensitivity Analysis
Sensitivity of our prediction approach to variability in

parameters was performed through repeated simulation in which

we varied the parameter value across the full range of possible

values. We investigated sensitivity with respect to each parameter

independently. A normalized sensitivity coefficient was calculated

as the result of each of these simulations. This coefficient was

calculated by first taking the percent difference in the predicted

outcome relative to a base case, our primary results, and then

dividing it by the maximum possible percent difference.

Area under Receiver Operating Characteristic (AROC)
Analysis

Benchmark data was collected from the OMIM database (http://

www.ncbi.nlm.nih.gov/omim/) by searching for all metabolic dis-

orders related to renal reabsorptions or secretions that are associated

with deficiencies in genes included in the reduced kidney model. The

resulting list of disorders was manually curated using literature

references to identify precisely which metabolic renal reabsorptions

and secretions were impacted. These included not only those renal

functions captured in Table 1, but also other renal exchanges. All

resulting reabsorptions and secretions that can have corresponding

non-zero fluxes under unperturbed conditions in the reduced kidney

model were included in our benchmark data set (see Table S5). Every

phenotype in the benchmark data was investigated through our model

Modeling Drug Off-Target Effects

PLoS Computational Biology | www.ploscompbiol.org 15 September 2010 | Volume 6 | Issue 9 | e1000938



as described for simulating drug target effects and renal metabolic

disorders, taking the ratio of perturbed to unperturbed flux capacities as

a measure of phenotype, where a ratio of one signifies no disorder

phenotype and a ratio of less than one signifies some degree of disorder.

Next, the ratio threshold for classifying normal versus disorder

phenotype was iteratively set to assess the sensitivity and specificity of

our approach for predicting true and false positives across the full range

from zero to one. Note that a threshold of one was used by default for

the main results presented in this study. The true positive rate was

plotted against the false positive rate (see Figure S3), the ROC curve,

and the AROC was computed using the trapezoidal rule for

approximating definite integrals. The statistical significance of our

result was determined by comparison to 100 permutation trials in

which all reaction flux ratios, perturbed to unperturbed, were

randomly shuffled for each simulated gene deficiency and AROC-

analyzed. The permutation trials exhibited true positive and false

negative rates expected for random disorder phenotype classification

(see Figure S3), and thus comprised an appropriate assessment of the

predictive ability of our model simulation approach relative to chance.

One-sample left-tailed student t-tests were performed using an alpha

value of 0.05 to assess the statistical significance of the AROC and

mean true positive rate achieved by our model simulation approach

relative to the permutation results.

Supporting Information

Dataset S1 Reduced kidney model.

Found at: doi:10.1371/journal.pcbi.1000938.s001 (0.50 MB

XML)

Figure S1 Genetic deficiencies causing renal metabolic dis-

orders. Elements of the color matrix represent the percent of the

maximum normal, untreated renal objective flux achievable by the

drug-treated gene-deficient kidney model. The x-axis corresponds

to individual renal objective functions, and the y-axis corresponds

to the individual gene deficiencies represented by their official

gene symbols. Metabolite abbreviations are defined in Table 1,

and official gene symbols are defined in Table S4. Only the subset

of renal objective functions for which a metabolic disorder was

predicted is displayed.

Found at: doi:10.1371/journal.pcbi.1000938.s002 (0.53 MB TIF)

Figure S2 Genetic deficiencies causing renal metabolic disorders

(continued).

Found at: doi:10.1371/journal.pcbi.1000938.s003 (0.48 MB TIF)

Figure S3 ROC curves for gene-deficient phenotype prediction.

The blue line represents the analysis of the predictions of the

model simulations presented in this study. The red lines represent

the analysis of 100 different permutation trials. The dashed black

line is the line y = x.

Found at: doi:10.1371/journal.pcbi.1000938.s004 (0.11 MB TIF)

Figure S4 System boundary flux constraint sensitivity. Only

those drug targets and renal functions are shown for which a

deficient phenotype was predicted. The x-axis is in units of flux.

The black star represents the base case which is presented as our

primary result.

Found at: doi:10.1371/journal.pcbi.1000938.s005 (0.77 MB TIF)

Figure S5 Degree of drug-induced inhibition sensitivity. Only

those drug targets and renal functions are shown for which a

deficient phenotype was predicted. The x-axis values correspond

to the fraction of maximal enzymatic flux achievable in the

untreated simulation, which represents the constraint placed on

associated reactions for each simulation. The black star represents

the base case which is presented as our primary result.

Found at: doi:10.1371/journal.pcbi.1000938.s006 (0.93 MB TIF)

Table S1 Kidney gene activity predictions. A one indicates that

the given gene satisfies the criterion corresponding to that column.

Found at: doi:10.1371/journal.pcbi.1000938.s007 (0.15 MB XLS)

Table S2 Kidney reaction activity predictions. Reactions with at

least one non-zero flux bound are predicted active in the kidney

model. All other reactions are predicted inactive in the kidney

model.

Found at: doi:10.1371/journal.pcbi.1000938.s008 (0.74 MB XLS)

Table S3 Metabolic protein drug target predictions. All

predicted metabolic protein targets for CETP inhibitors were

subject to multiple levels of analysis to determine their possible

causal role in adverse drug response phenotypes. An x indicates a

positive result with respect to column labels representing each level

of analysis. The proteins are sorted by the number of analyses

suggesting a causal role.

Found at: doi:10.1371/journal.pcbi.1000938.s009 (0.03 MB XLS)

Table S4 Summary and validation of gene deficiencies causing

renal metabolic disorders. The complete list of gene deficiencies

predicted to cause renal metabolic disorders is presented. Specific

impacted renal secretions and reabsorptions are also displayed

using metabolite abbreviations as represented in Recon1.

Clinically observed phenotypes validating the association of these

genetic deficiencies with predicted metabolic renal disorders found

in the OMIM database and literature are noted. These validated

predictions are listed first in the table, and the remaining

predictions are sorted by the type of renal disorders caused by

the gene deficiencies in simulation.

Found at: doi:10.1371/journal.pcbi.1000938.s010 (0.05 MB XLS)

Table S5 Clinical gene-deficient renal disorder benchmark data.

The set of clinically-observed gene-deficient renal metabolic

disorder phenotypes collected from the OMIM database are

presented that were used to perform AROC analysis. Clinical

positives are observed disorder phenotypes with respect to specific

metabolite reabsorptions or secretions associated with a gene

deficiency, and clinical negatives are disorder phenotypes that

were clinically confirmed not to occur in association with a gene

deficiency.

Found at: doi:10.1371/journal.pcbi.1000938.s011 (0.03 MB XLS)
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