
Citation: Khairi, M.H.F.; Nor

Muhammad, N.A.; Bunawan, H.;

Abdul Murad, A.M.; Ramzi, A.B.

Unveiling the Core Effector Proteins

of Oil Palm Pathogen Ganoderma

boninense via Pan-Secretome Analysis.

J. Fungi 2022, 8, 793. https://

doi.org/10.3390/jof8080793

Academic Editor: Ana

Cristina Esteves

Received: 26 May 2022

Accepted: 12 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Article

Unveiling the Core Effector Proteins of Oil Palm Pathogen
Ganoderma boninense via Pan-Secretome Analysis
Mohamad Hazwan Fikri Khairi 1 , Nor Azlan Nor Muhammad 1 , Hamidun Bunawan 1 ,
Abdul Munir Abdul Murad 2 and Ahmad Bazli Ramzi 1,*

1 Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
p97633@siswa.ukm.edu.my (M.H.F.K.); norazlannm@ukm.edu.my (N.A.N.M.);
hamidun.bunawan@ukm.edu.my (H.B.)

2 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; munir@ukm.edu.my

* Correspondence: bazliramzi@ukm.edu.my; Tel.: +603-8921-4546; Fax: +603-8921-3398

Abstract: Ganoderma boninense is the major causal agent of basal stem rot (BSR) disease in oil palm,
causing the progressive rot of the basal part of the stem. Despite its prominence, the key pathogenicity
determinants for the aggressive nature of hemibiotrophic infection remain unknown. In this study,
genome sequencing and the annotation of G. boninense T10 were carried out using the Illumina
sequencing platform, and comparative genome analysis was performed with previously reported
G. boninense strains (NJ3 and G3). The pan-secretome of G. boninense was constructed and com-
prised 937 core orthogroups, 243 accessory orthogroups, and 84 strain-specific orthogroups. In total,
320 core orthogroups were enriched with candidate effector proteins (CEPs) that could be classified as
carbohydrate-active enzymes, hydrolases, and non-catalytic proteins. Differential expression analysis
revealed an upregulation of five CEP genes that was linked to the suppression of PTI signaling cas-
cade, while the downregulation of four CEP genes was linked to the inhibition of PTI by preventing
host defense elicitation. Genome architecture analysis revealed the one-speed architecture of the
G. boninense genome and the lack of preferential association of CEP genes to transposable elements.
The findings obtained from this study aid in the characterization of pathogenicity determinants and
molecular biomarkers of BSR disease.

Keywords: effector proteins; pan-secretome; genome-wide analysis; Ganoderma boninense; basal stem
rot; genome architecture

1. Introduction

Basal stem rot (BSR) disease is a devastating disease affecting oil palm trees in major
oil palm-producing countries such as Malaysia and Indonesia. This disease is characterized
by the rotting of the basal stem of the tree, which disrupts nutrient transport and results
in fully elongated but unopened spears [1]. The progressive degradation of the wooden
material can result in stem hollowness and root death [2]. Significant economic damage
exacerbated by global warming has been predicted in plantation fields across Malaysia
and Indonesia due to the increasing occurrence of infected oil palm trees [3,4]. Ganoderma
boninense is a white-rot fungus that belongs to the Basidiomycota division and is considered
the major causal agent of BSR, mainly aiding it via root-based penetration and coloniza-
tion [5]. This fungus has been suggested to form intra- and intercellular hyphae during
colonization [6] and to harbor a wide variety of cell wall-degrading enzymes (CWDEs) that
hydrolyze the plant lignin structures, resulting in the rotting of the wood components [7].
The hemibiotrophic lifestyle of G. boninense complicates disease management since the
asymptomatic phase of BSR has been associated with the fungal ability to avoid traditional
detection methods [2,8]. On the other hand, the manifestation of the symptomatic phase
only occurs following successful colonization and fully established disease progression [2].
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During infection, the plant secretes molecules that are responsible for exerting the
primary broad-spectrum primary defense response and for transducing signals to activate
the stronger, pathogen-specific secondary defense response [9]. These molecules constitute
the cytoplasmic, apoplastic, and cell surface-localized defense receptors that can detect
the presence of pathogens and signal for the initiation of the defense response [10,11]. To
circumvent the defense strategies of the plant, the pathogen secretes effector proteins to
facilitate successful colonization by manipulating the plant defense response, hiding the
presence of the fungi and protecting the fungi from the plant’s hydrolytic enzymes [12].
The effector proteins in G. boninense are relatively understudied and are poorly understood.
Evidence from transcriptomic studies has highlighted the upregulation of effector proteins
during Ganoderma infection [13,14]. Further characterization of the NLP-class effector
recombinant necrosis-inducing protein (GbNEP1) was not able to determine any cytotoxic
effects of the purified protein against oil palm leaves [15]. The lack of molecular and
genome-level analysis of the effector repertoire in G. boninense has created a big knowledge
gap, especially in the potential roles of the effector proteins as key virulence factors in the
pathogenesis of BSR.

Importantly, perennial issues involving Ganoderma infection have been associated with
fungal adaptation strategies toward monocot oil palm hosts. In other model monocot fungi
such as Magnaporthe oryzae, the adaptation strategies have been driven by the prevalence
of transposable elements (TEs) and the architecture of the fungal genome [16,17]. Our
understanding of virulence factors such as effectors has led to several conceptual models
that link relevant genomic features, including TEs, to the evolution of effector genes [18].
The genomes of the highly studied pathogens were discovered to have bipartite compart-
mentalization characterized by the gene-sparse, TE-rich compartment and the gene-rich,
TE-sparse compartment [19]. The gene-sparse, TE-rich compartment was found to be
enriched with effector genes and was suggested to act as the cradle for the evolution of
effector genes [20]. To date, there are no reports on the occurrence of genome compart-
mentalization and possible TE-associated adaptation strategies in G. boninense that could
explain the aggressiveness and dynamic interplays of the plant pathogens in adapting and
overcoming the host defense mechanism in certain time periods.

In this study, genome-wide analyses of G. boninense were performed to investigate
the repertoire of the secreted proteins that are associated with the pathogenesis of BSR.
To augment the current genomic resources of G. boninense, this work sought to sequence
and annotate a highly virulent Malaysian isolate, specifically the G. boninense T10 strain,
using the Illumina platform. Following this, functional annotation of G. boninense genomes,
including the NJ3 and G3 strains, was performed to identify the repertoire of candidate
effector proteins (CEPs). The pan-secretome of the G. boninense strains was constructed
to provide a better representation of the repertoire of the secreted proteins, especially
of the pathogenicity-associated CEPs. Using the available transcriptomic datasets, the
expression of CEP genes was assessed through differential expression analysis. The genome
architecture of G. boninense was also inferred by visualizing a density plot of the flanking
intergenic distances. The results from this study therefore shed more light on the repertoire
of virulence factors in G. boninense in addition to providing a genome-wide investigation of
the function and the evolution of the effector genes in the monocot plant pathogen.

2. Results and Discussion
2.1. Whole-Genome Sequencing, Assembly, and Functional Annotation of G. boninense Genomes

This work presents a newly sequenced T10 strain of G. boninense that was isolated in
Malaysia to complement the available genomic assemblies for the fungus. This strain was
first described as a strain with a high degree of disease incidence on the severity index
compared to the other G. boninense strains collected from various locations in Peninsular
Malaysia [21]. As this strain has not been previously listed in the NCBI repository, a
new BioProject record was opened (NCBI BioProject accession: PRJNA789134). De novo
assembly of the T10 genome was performed from paired-end Illumina reads, producing
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9678 contigs with a total length of 65.0 Mb and an N50 of 8987 (Table 1). In comparison,
the G3 assembly that was assembled using PacBio and Illumina HiSeq 4000 reads, which
generated a higher quality and less contiguous assembly with 494 contigs and a total length
of 79.0 Mb. On the other hand, the NJ3 assembly that was assembled using Illumina HiSeq
2000 and 454 GS FLX reads, which generated a lower quality and more contiguous assembly
with 12,643 contigs and a total length of 60.3 Mb. The T10 genome has 11.50% repetitive
DNA content compared to the 8.99% and 6.98% in G3 and NJ3. A total of 25,220 genes
was predicted in the T10 genome in comparison to the G3 (19,978) and NJ3 (25,745) strains.
The difference in the number of predicted genes may be attributed to the over-prediction
of genes due to the fragmentation of the T10 and NJ3 genomes. The subsequent BUSCO
analysis revealed a comparable degree of completeness of the T10 assembly to the G3
genome (90.0 vs. 91.0%, respectively), while the NJ3 assembly, which was also assembled
using short sequence reads, possessed 76.0% completeness. However, both the assembled
genomes of the T10 and G3 strains contained a considerable number of duplicated BUSCO
genes (G3: 193; T10: 252) despite having a higher degree of completeness compared to the
NJ3 genome.

Table 1. Assembly statistics and the result of Benchmarking Universal Single-Copy Orthologs
(BUSCO) analysis in the genomes of the three strains of G. boninense.

Strain G3 NJ3 T10

Assembly Statistics
BioProject Accession PRJNA421251 PRJNA287769 PRJNA789134

Sequencing platform Illumina HiSeq 4000 and
PacBio RSII

Illumina HiSeq 2000 and
454 GS FLX Illumina HiSeq 4000

Number of contigs (≥1000 base) 494 12,643 9678
Total length 79,188,463 60,324,849 64,965,238

N50 272,644 6116 8987
GC (%) 56 56 56

Repetitive elements (%) 8.99 6.98 11.50
Predicted genes 19,978 25,745 25,220

BUSCO
Complete (%) 1606 (91.0%) 1341 (76.0%) 1588 (90.0%)

Single-copy (%) 1413 (80.1%) 1286 (72.9%) 1336 (75.7%)
Duplicated (%) 193 (10.9%) 55 (3.1%) 252 (14.3%)
Fragmented (%) 64 (3.6%) 200 (11.3%) 35 (2.0%)

Missing (%) 94 (5.3%) 223 (12.6%) 141 (8.0%)

Next, 60,405 protein-coding genes (G3: 17,527; NJ3: 21,442; T10: 21,436) were function-
ally annotated against different databases (InterPro, eggNOG, SwissProt, PHI-base, dbCAN,
and MEROPS) (Figure 1). This represented 86.7%, 82.1%, and 83.8% of the protein-coding
genes predicted from the G3, NJ3, and T10 genomes, respectively. The genes encoding
secreted proteins represented 6.6%, 4.8%, and 5.8% of the genome in the respective G.
boninense strains (Supplementary Table S1). These proteins comprised a high number of
catalytic proteins that were classified as the carbohydrate-active enzymes (CAZymes),
hydrolases, oxidoreductases, and isomerases as well as non-catalytic proteins containing
functional domains such as the CFEM, LysM, thaumatin, and cerato-platanin (CP) do-
main. The identification of candidate effector proteins (CEPs) through the three versions of
EffectorP and the PHI-base database resulted in about 376, 455, and 451 genes being identi-
fied as CEPs from the G3, NJ3, and T10 genomes, respectively (Supplementary Table S1;
Supplementary Figure S1).
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PHI-base annotation identified 467 homologs of the proteins making an experimen-
tally verified contribution to pathogenicity (G3: 145; NJ3: 151; T10: 171) (Supplementary
Table S2). This set of proteins comprised proteins that act as effector proteins (effector),
contribute to pathogen virulence (reduced virulence), are essential for pathogenicity (loss
of pathogenicity), and are involved in the negative regulation of virulence (increased
virulence). PHI-base classified a protein as an effector based on its ability to induce a
hypersensitive response (HR) from the compatible interaction between the protein and
the cognate receptor protein of the host plant [23]. The genes encoding homologs to the
PHI-base proteins classified as effectors predominantly comprised carboxylesterases (G3:
18; NJ3: 22; T10: 25) and CAZymes (G3: 6; NJ3: 9; T10: 6). On the other hand, the genes
encoding homologs to the PHI-base proteins that contribute toward pathogen virulence
(reduced virulence) were enriched with CAZymes (G3: 52; NJ3: 60; T10: 73). These predom-
inantly comprised genes encoding the CWDEs (G3: 33; NJ3: 33; T10: 38) that degrade the
plant cell wall by hydrolyzing cell wall constituents such as cellulose, hemicellulose, lignin,
and pectin [7,24]. In contrast, 51 genes encoding homologs to the PHI-base proteins that are
essential for pathogenicity (loss of pathogenicity) were enriched with genes encoding the
glyoxal oxidase 1 enzyme. This enzyme was reported to be involved in hyphal formation
in Ustilago maydis [25] and Fusarium spp. [26]. This enzyme has also been suggested to
catalyze the detoxification of the toxic aldehydes produced from lignin degradation [27].
There were also 28 genes encoding homologs to the PHI-base proteins involved in the
negative regulation of virulence (PHI-base tag: “Increased virulence”) (G3: 11; NJ3: 5;
T10: 12). These proteins comprised secreted proteins classified as CWDE, cytochrome
P450, and CP family proteins. The cytochrome P450 proteins were predominant relative
to the other classes, with 20 secreted proteins (G3: 7; NJ3: 3; T10: 10) homologous to
cytochrome P450 monooxygenase CLM2. This protein was involved in the negative regula-
tion of the deoxynivalenol (DON) toxin production that contributes to the virulence of F.
graminearum [28].
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2.2. The Pan-Secretome of Ganoderma boninense

The predicted secretome across the three G. boninense strains was compared by de-
termining the proteins present in all of the strains (“core”) and the proteins that were
only present in one or two of the strains (“accessory”). The pan-secretome of G. boni-
nense was composed of 1264 orthologous gene groups (orthogroups) that formed the core
secretome (937 orthogroups), accessory (243 orthogroups), and strain-specific secretome
(84 orthogroups) (Figure 2). There were 365 genes encoding secreted proteins that were
not assigned to any orthologous groups (Supplementary Table S3). Notably, there were
several core and accessory orthogroups with missing genes, as they were not predicted
as genes encoding secreted proteins. G. boninense has a high degree of genetic variability
considering its heterothallic mode of reproduction, which requires two compatible partners
to produce sexual spores [29–31]. This has been reflected in the considerably high number
of orthogroups in the accessory and in the strain-specific secretome that is typical of the
open pan-genome. These findings can augment the current insights into the pan-genome
of Ganoderma spp., which was first described by Sulaiman et al. (2018) [32]. There were
2400 paralogous genes identified across 702 orthologous groups in the pan-secretome
(Supplementary Table S4). However, this figure is likely to be partially contributed to by
the high number of duplicated genes generated from the fragmented assemblies used in
this study.
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strains (G3, NJ3, and T10).

The core secretome of G. boninense represents the genes encoding secreted proteins
that are conserved across the three strains of G. boninense and that are essential for the
pathogenesis of BSR. These genes were enriched with genes encoding catalytic proteins
classified as CAZymes and hydrolases such as peptidase, carboxylesterase, phosphatase,
and nuclease (Table 2). Non-catalytic proteins were also found in the core secretome; these
proteins were classified as hydrophobins, members of the cytochrome P450 protein family,
and effector-associated proteins (BAS1, NLP, and proteins that contains effector-associated
domains) (Table 2). In total, 320 of the core orthogroups were found to be enriched with
proteins that were identified as CEPs (Supplementary Table S5).
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Table 2. Distribution of proteins across different protein classes in the pan-secretome of G. boninense.

Class Core Accessory G3-Specific NJ3-Specific T10-Specific

Carboxylesterase 118 26 4 5
CAZyme

Cell wall-degrading enzyme (CWDE) 672 110 12 12 10
Other CAZyme 253 41 6 5 11

Peptidase
Aspartic peptidase 129 19 2
Glutamic peptidase 40 2 2
Metallo peptidase 65 15
Serine peptidase 162 11 9

Effector-associated
CP family protein 37 2

CFEM domain-containing protein 34 9
Nis1 domain-containing protein 21 8

NEP1-like protein family 6
LysM domain-containing protein 9 3

Biotrophy-associated secreted protein 2 8 1 2
Other classes

Isomerase 20 2
Nuclease 18 2

Phosphatase 73 8 2
Chaperone 19 3 1

Hydrophobins 79 18
Thaumatin-like protein family 34

Other 767 160 4 14 12
Unannotated 349 73 5 18 22

The abundance of CAZyme-class proteins found throughout the pan-secretome of
G. boninense was to be expected due to their prominence in wood rot fungi. In total, 292
of the core orthogroups found in the pan-secretome of G. boninense were enriched with
CAZymes. Out of the 292 core orthogroups, 61 were enriched with genes classified as CEPs.
The CAZyme-class effectors were able to trigger HR independent of their enzymatic func-
tions [33–35]. Two of the orthogroups contained CEP genes encoding xyloglucan-specific
endo-beta-1,4-glucanase (xyloglucanase) harboring the glycosyl hydrolase (GH) family
12 domain (Supplementary Table S5). These conserved, paralogous effectors were found
to act as a paralogous decoy that competitively binds to the glucanase inhibitor protein
secreted by the host, as reported in the oomycete pathogen Phytophthora sojae [36]. The other
CAZyme-class CEPs that were identified in the core secretome was the cellulose growth-
specific protein containing the Auxiliary Activity (AA) family 9 domain. This effector was
identified in M. oryzae and was characterized as targeting the heat shock-dynamic protein
to perturb mitochondrial dynamics, consequently suppressing mitochondria-mediated
PAMP-triggered immunity (PTI) [37].

The core secretome of G. boninense was also predominated by CEP genes classified
as carboxylesterases. In total, 15 out of 45 core orthogroups containing carboxylesterases
were enriched with CEP genes. Interestingly, 12 of these orthogroups were homologous
to the lipase effector AGLIP1 (PHI-base tag: “Effector (plant avirulence determinant)”)
(Supplementary Table S5). In the necrotrophic fungus Rhizoctonia solani, the effector AGLIP1
was demonstrated to induce cell death and inhibit the PTI-associated defense response [38].
The high number of this effector found across the three strains of G. boninense is likely
due to the multiple functions carried by the lipase effector, which was also suggested by
Li et al. (2019) [38]. The lipase effector found in F. graminearum was able to suppress PTI
by hydrolyzing the lipids in host tissue to release polyunsaturated free fatty acids (FFAs)
(linoleic and α-linolenic acids), resulting in the suppression of callose deposition at the
sites of pathogen attacks to reinforce the plant cell wall [39]. This defense mechanism
was suggested in oil palm when the transcript encoding callose synthase was found to be
upregulated in G. boninense-treated oil palm [14]. However, the release of FFAs can be a
double-edged sword for the fungus, as fatty acids (FAs) play a dynamic role in different
defense response mechanisms, such as the biosynthesis of the antimicrobial oxylipin and
the biosynthesis of the major defense hormone jasmonic acid (JA) [40]. The genes involved
in FA biosynthesis were found to be upregulated as a defensive response to G. boninense
infection [41], while the antimicrobial fatty acid methyl esters were found in abundance in
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oil palm roots infected with G. boninense [42,43]. In addition, oleic acid, a polyunsaturated
FA, was also found to have an inhibitory effect on G. boninense growth in vitro [44].

There was a low number of peptidase-class CEPs identified in the core secretome of G.
boninense. Out of the 126 core orthogroups containing peptidases, only 11 orthogroups were
enriched with genes classified as CEP genes (Supplementary Table S5). PHI-base annotation
returned no hits corresponding to proteins with an experimentally validated contribution
to pathogenicity. However, the conserved peptidase-class CEPs found within the core
secretome could play an important role in establishing successful infection, particularly
through serine-type peptidases and metallopeptidases. Peptidases that were classified as
serine peptidase family S53 were involved in the formation of infection cushions (IC) [45].
Rather, metallopeptidases such as fungalysin were reported to cleave the plant chitinases to
control chitin-signaling and to suppress the activation of PTI during the biotrophic phase
of the infection [46–48].

Besides the carboxylesterase-class and peptidase-class hydrolases, the core orthogroups
were also composed of other hydrolases such as nuclease and phosphatase. These enzymes
were found in smaller numbers, but they were conserved across the three strains. The role
of these proteins is likely that of a contributor to pathogen virulence (PHI-base tag: reduced
virulence) compared to putative effectors (Supplementary Table S5). The phosphatases
such as phytase found in the core secretome were linked with phosphate acquisition from
the host phytate to overcome phosphate limitations during infection [49]. Phosphatases
such as acid phosphatase can contribute to virulence by regulating the synthesis of other
virulence factors such as the mycotoxin DON [49,50]. On the other hand, the nucleases
found in the core secretome are likely to contribute to fungal virulence by hydrolyzing the
extracellular DNA secreted by the host root cells to trap soil-borne pathogens [51,52].

Apart from the catalytic proteins, the core orthogroups were also composed of genes en-
coding secreted proteins associated with effectors such as the biotrophy-associated secreted
protein 2 (BAS2), the NEP1-like protein family, and proteins containing effector-associated
domains (CP, CFEM, LysM, and Nis1) (Supplementary Table S5). CP and CFEM domain-
containing proteins are conserved fungal proteins associated with diversified functions.
CP effectors are known for their capacity to elicit a PTI-mediated defense response and
HR [53,54]. However, this class of effectors can also play essential roles in facilitating hyphal
growth [55] and conidiation [56]. CP proteins have been suggested to possess expansin-like
properties in loosening the host’s cellulosic materials to facilitate hyphal growth [57–59].
Besides that, several CP effectors possess a chitin-binding capacity and have been suggested
to protect the fungal cell wall against plant hydrolytic enzymes [60,61]. The role of CFEM
domain-containing proteins in pathogenicity is uncertain. There is a growing amount of ev-
idence to suggest that extracellular-localized CFEM effectors are involved in pathogenicity
and have cell death-inducing activity [62–65]. In contrast, the extracellular-localized CFEM
effectors found in Setosphaeria turcica and Colletotrichum graminicola were found to suppress
cell death in Nicotiana benthamiana leaves [66,67]. These contradicting results suggest that
CFEM effectors have diverse functions that need to be explored to elucidate their roles
in pathogenicity.

LysM effectors have been extensively studied over the years and have been charac-
terized as being responsible for sequestering chitin oligosaccharides to suppress chitin-
mediated PTI [68,69]. These effectors have also been reported to protect fungal hyphae
against hydrolysis from the host chitinase [70]. Nis1 domain-containing proteins were
widely conserved in Basidiomycetes and Ascomycetes [71]. Nis1 effectors interact with
host protein kinases BAK1 and BIK1 to suppress the production of reactive oxygen species
(ROS) and HR signaling [71]. The biotrophy-associated secreted protein 2 (BAS2) effector
has been reported to be expressed and localized at the biotrophic interface complex (BIC).
This effector has been reported to be translocated in the cytoplasmic region of the plant
cell at the BIC and to be involved in the formation of appressoria and penetration [72].
NEP1-like protein (NLP) effectors are necrotrophic effectors that are capable of inducing
HR in the host. This class of effector has been previously reported in G. boninense [14,15].
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However, this effector was found to be unable to cause HR in oil palm [15]. This has also
been reported in other monocot hosts despite their conservation in fungi [73–75]. Intra-
family diversification has been linked to the functional [76] diversification that gave rise to
homologous NLP effectors with different roles in certain pathosystems [77–79].

2.3. Differential Expression of Candidate Effector Genes in G. boninense

Differential expression analysis was performed to assess the expression of genes
encoding candidate effectors using a publicly available G. boninense transcriptome dataset.
In this study, the transcriptome dataset produced by Wong et al. (2019) was used (NCBI
BioProject accession: PRJNA514399). This dataset described the transcriptome of the G.
boninense strain PER71 across axenic and in planta culture conditions [80]. A previous
study conducted by Dhillon et al. (2021) utilized this dataset to describe the differential
expression across the whole transcriptome of G. boninense [81]. In contrast, this study
focuses on assessing the differential expression of the genes encoding CEP.

A total of 82 differentially expressed CEP genes were identified from the in planta
samples, in which 35 and 47 genes were upregulated and downregulated, respectively
(Figure 3). The downregulated CEP genes signify the genes that were expressed in the
axenic conditions relative to in planta. The expression of candidate effector genes during
axenic growth has been documented, and factors such as the presence of antibiotics,
temperature, pH, nitrogen, and carbon source were demonstrated to be able to regulate the
expression to a different degree [82].

The differentially expressed CEP genes revealed the upregulation of CEP genes that
were linked to the suppression of PTI. These genes encoded CEPs that were identified as
carboxylesterase-class CEPs (two genes), Nis1 domain-containing CEPs (one gene), and
CAZyme-class CEPs containing the AA9 domain (two genes) (Supplementary Table S7).
The upregulated carboxylesterase-class CEPs were homologous to the lipase effector
AGLIP1 that was reported to suppress the PTI-characterized defense response [37]. How-
ever, the mechanism of PTI suppression by this effector is unknown. In contrast, the upreg-
ulated Nis1 domain-containing CEP was classified as the NIS1 effector that interacts with
the host protein kinases BAK1 and BIK1 to inhibit the signaling towards the PTI-associated
production of ROS [71]. The upregulated AA9-containing CEPs were homologous to the
effectors MoCDIP4 and MoAa91 of M. oryzae. These effectors were reported to suppress
mitochondria-mediated and chitin-induced PTI, respectively [36,83]. Consequently, the
suppression of PTI-signaling and the associated defense response may contribute to the
symptomless phase during the early stage of G. boninense colonization and to the virulence
of the fungus by protecting G. boninense from the plant’s pathogen-related (PR) proteins.

The downregulation of the CEP genes encoding GH16- and GH45-containing CEPs
(three genes and one gene, respectively) was thought to prevent the elicitation of PTI
(Supplementary Table S7). A GH16-containing effector was reported to localize in the
cytoplasm of the host cell through BIC to elicit ROS production in Botrytis cinerea [84]. A
similar defense-eliciting capacity was observed from the GH45-containing endocellulase
effector in Rhizoctonia solani [76]. These effectors may be recognized by PTI receptors such
as pattern recognition receptors (PRRs), as the elicitor activity of these effectors was found
to be independent of their enzymatic activity [76,84].
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Besides that, several differentially expressed CEP genes were also linked to the modu-
lation of HR. The downregulated CEP genes encoding the papain inhibitor and guanyl-
specific ribonuclease were suggested to suppress HR by inhibiting the protease involved in
HR induction and binding to the host’s ribosome-inactivating proteins, respectively [85,86]
(Supplementary Table S7). This was also coupled with the upregulation of the cell death-
associated NLP-class CEP that was previously reported in G. boninense [14,15]. However,
this effector failed to induce cell death in G. boninense [15]. This pattern of HR induction was
contradicted by the downregulation of the CP-class CEP that can elicit HR [54]. Previously
described effectors identified from upregulated and downregulated CEPs (carboxylesterase-
class CEPs, Nis1 domain-containing CEPs, GH16, GH45, and AA9 domain-containing
CEPs) were also linked to elicit HR-characterized cell death. The induction of HR is often
dependent on the recognition of effectors by its cognate immune receptor. Hence, this
response is different between resistant and susceptible strains of the infected host. The
downregulation of CP-class CEP can be attributed to the high expression of these genes
during axenic growth relative to in planta due to its other function, which may be related
to the development of hyphae [54]. Taken together, these genes resulted in inconclusive
evidence of HR modulation in the samples.

Notably, the CEP genes involved in fruiting body development were found to be
downregulated. These genes encoded CEPs that were classified as thaumatin-like proteins
(TLPs) (five genes) and hydrophobins (eight genes) (Supplementary Table S7). TLPs have
been linked to the modification of fungal cell wall through their β-1,3-glucanase activities
conferred by their GH152 domain and are thought to be involved in fruiting body senes-
cence [87,88]. On the other hand, the genes encoding hydrophobins have been reported
to be expressed during fruiting body development and have been suggested to coat the
fruiting structures to confer water-repellant properties [89,90]. The downregulation of these
CEP genes can likely be attributed to the expression of the genes during axenic growth.

The use of secondary data poses a limitation that can contribute to the lack of ex-
pression of the genes encoding CEP. The transcriptome dataset used was sampled from
the PER71 strain that is considered a moderate virulence strain [80]. This may result in
the diminished or lack of expression of virulence-associated genes. However, the use of
this dataset is necessary due to the lack of the G. boninense transcriptome dataset that was
sampled under in planta conditions. The expression of CEP genes during axenic growth
may affect the identification of differentially expressed CEP genes, as there could be genes
that are expressed in both conditions. Hence, the expression of these genes across different
growth media can be explored in future research to study the biotic and abiotic factors that
influence their expression.

2.4. Ganoderma boninense Possesses the One-Speed Genome Architecture

In this study, the genome architecture was visualized by generating a density plot
using the flanking intergenic distances of the predicted genes in the G3 genome (Figure 4).
The density plot resembled the architecture of a one-speed genome and was characterized
by a single cluster of genes in the gene-rich regions. In addition, the distribution of the
genes encoding secreted proteins was even across the plot, suggesting that they were
evenly distributed across the genome (Supplementary Figure S2). The association of
genes with TE was also investigated by visualizing the distance to the most proximal
TE for BUSCO, CEP, and the genes encoding other secreted proteins using a Violin plot
(Figure 5). The distributions of the distances to the most proximal TE were similar across
the compared gene categories (the Kruskal–Wallis rank sum test demonstrated a significant
difference across the gene categories; p-value = 3.719 × 10−11). This suggests that there
was no preferential association with TE across the gene categories. Together, both of
the observations support the hypothesis of the one-speed architecture of the G. boninense
genome. The one-speed architecture has been reported in genomes of different fungal
species such as the Ascomycete fungi Blumeria graminis [91] and Ramularia collo-cygni [92]
as well as the Basidiomycete fungi Puccinia striiformis [93]. With the increasing number
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of studies investigating the genomic architectures in the pathogenic fungi, more fungal
genomes may deviate from the compartmentalization and localization of the pathogenicity
genes observed in the two-speed architecture. The emergence and the maintenance of the
two-speed genome were thought to be due to the selective advantage in the evolution
of the effector gene, which is facilitated by the TE-rich compartments that act as a cradle
for adaptive evolution [94]. Hence, the lack of compartmentalization and preferential
association of TE in G. boninense may suggest that the evolution of the effector genes in this
fungus may be driven by other factors.
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With more observations on genome architecture being reported, the focus has turned
towards inferring the origin and the selective advantage associated with the different
genome architectures. Such understandings need to be made from a sample set that
includes less-studied fungal species such as G. boninense. This is especially true, as there is
limited knowledge on the genome architecture of Basidiomycetes, despite their prominence
in plant diseases. Moreover, insight into genome compartmentalization could assist in
the discovery of novel pathogenicity genes and disease markers, which are critical in
less-studied fungal species with limited genomic resources.

This study presented comparative and genome-wide analyses of the core effector
genes in geographically different strains of G. boninense. The pan-secretome constructed in
this study has revealed a repertoire of the secreted proteins enriched with proteins with
a hydrolytic capacity as well as non-catalytic proteins with highly conserved functional
domains. Differential expression analysis revealed the regulation of candidate effectors to
inhibit the host basal defense by suppressing PTI signaling and preventing PTI elicitation.
This study has also presented evidence for the one-speed architecture of the G. boninense
genome, which may add to the current observations on genome architecture. The dataset
presented in this study can serve as the preliminary work establishing the genomic resources
for the pathogenicity genes of G. boninense.
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3. Materials and Methods
3.1. Data Retrieval

Two genome assemblies were retrieved from the National Center for Biotechnology
Information (NCBI). The retrieved genomes were the whole genome sequences of two
Indonesia-originated G. boninense strains; the G3 strain (NCBI BioProject accession: PR-
JNA421251) and the NJ3 strain (NCBI BioProject accession: PRJNA287769). Fungal samples
from both strains were collected from the North Sumatra Province; the mycelia of G3
strain were isolated from oil palm trees with severe symptoms of BSR [95] whereas the NJ3
mycelia were isolated from carpophore of the fungus from infected oil palms [96].

3.2. Ganoderma Boninense Strain T10

The fungus Ganoderma boninense strain T10 was originally collected from an oil palm
plantation located in Kedah, Malaysia [21]. The sample plates were obtained from Applied
Agricultural Resources Sdn Bhd and were cultured at 30 ◦C on a potato dextrose agar
(PDA) plate.

3.3. Genomic DNA Extraction and Whole-Genome Sequencing

Five-day-old mycelium was freeze-dried in liquid nitrogen and ground to break the
fungal cell wall. Isolation of genomic DNA was performed using the protocol outlined
in the Fungal/Yeast Genomic DNA Isolation Kit (Norgen Biotek Corp, Thorold, ON,
Canada). The quality and quantity of the extracted DNA were assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) before whole-genome
sequencing was performed using the Illumina HiSeq 4000 platform.



J. Fungi 2022, 8, 793 13 of 20

3.4. Data Pre-Processing and Genome Assembly

Shotgun sequencing produced 2 × 8 289 698 paired-end reads (2 × 150 bp) and was
inspected using FastQC v0.11.8 screening tools to determine its quality. The reads were
trimmed using Trimmomatic v0.39 using SLIDINGWINDOW: 4:15 and the MINLEN:30
options. De novo genome assembly was performed using the de Bruijn-based assembler
ABySS v2.0 [97]. The optimal k value was obtained by performing kmer estimation using
KmerGenie v1.7051 [98]. The assembly was finished by gap-filling using the GapCloser
module from the SOAPdenovo2 package [99]. Assembly quality was assessed using BUSCO
v5.2.2 (Benchmarking Universal Single-Copy Orthologs) analysis [100] to determine its
completeness. The lineage gene set used for the analysis was the Basidiomycota_odb10
gene set.

3.5. Annotation of Repetitive Elements

The annotation of repetitive elements in the genomes of G. boninense was performed us-
ing the Repeat Masker v4.0.9 tool [101] using the combination of fungi-specific transposon
and repetitive DNA sequences retrieved from Dfam v3.4 [102], the Repbase database [103],
and the TREP v19.0 database [104]. To supplement the fungi-specific transposon dataset,
high-quality repeat libraries were constructed de novo using EDTA v1.9.0 [105] and
Repeat Modeler v1.0.11 [106] using the genomic sequence from the G3 isolate as the
reference sequence.

3.6. Gene Prediction and Annotation

Gene prediction was performed under the BRAKER2 v2.11.6 pipeline [107]. Two
RNA-seq datasets were retrieved from the NCBI (NCBI BioProject accession: PRJNA514399,
PRJNA269646) [80,108] and were aligned against the masked genomes of G. boninense
using the HISAT2 v2.2.1 aligner [109]. These datasets were generated from G. boninense
strain PER71 and were used due to the lack of transcriptome datasets specific to the
strains used in this study. A fungi-specific dataset of the conserved orthologous proteins
was retrieved from OrthoDB v10.1 [110] and was also used as additional evidence for
gene prediction. The predicted genes were functionally annotated through InterProScan
v5.52-86.0 analysis [111,112] and with a BLASTP search against the Swiss-Prot database
(e-value ≤ 1 × 10−5, HSP-query coverage ≥ 70) [113,114]. Additionally, the orthologous
group database, eggNOG v5.0 [115], was also employed for the annotation. To identify
the genes encoding peptidase, the genes were subjected to BLASTP search against the
peptidase database MEROPS v12.3 (e-value ≤: 1 × 10−5, HSP-query coverage ≥ 70) [116],
while the carbohydrate-active enzymes (CAZymes) were identified through the dbCAN2
v10.0 [117,118] web server under default parameters (HMMER (e-value ≤ 1 × 10−15, cov-
erage ≥ 0.35), Diamond (e-value ≤ 1 × 10−102), Hotpep (conserved peptide hits > 6, sum
of conserved peptide frequencies > 2.6)). The pathogen–host Interaction database v4.12
(PHI-base) [22] was used to annotate the genes with experimentally verified evidence of
involvement in pathogenicity (BLASTP e-value cut-off: 1 × 10−5, HST-query coverage
cut-off: 70). To focus on the secreted proteins with experimentally verified contributions
to pathogenicity, only hits with the tags ‘Effector (plant avirulence determinant)’, ‘Loss of
pathogenicity’, ‘Reduced virulence’, and ‘Increased virulence’ were considered. The results
from all of the annotations were manually inspected to ensure the accurate assignment of
functions across the genes.

Genes encoding secretory protein were predicted using a combination of tools. SignalP
5.0 [119] and Phobius v1.01 [120–122] were used to predict the presence of signal peptides at
the N-terminal of the protein sequence. Next, TMHMM 2.0 [123,124] was used to predict the
transmembrane domain, and WoLF PSORT v0.2 [125] was used to predict the subcellular
localization of the protein. A protein is only considered to be secreted if it meets all of the
predetermined criteria: (i) predicted to possess a signal peptide by SignalP 5.0 and Phobius,
(ii) contains ≤ 1 transmembrane domain based on TMHMM, and (iii) predicted to localize
in the extracellular region based on WoLF PSORT.
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Clusters of orthologous proteins across the strains were predicted via Orthofinder
v2.3.8 [126] using a Diamond [127] all-vs.-all sequence search for distance estimation.
Candidate effector protein (CEP) was predicted from the identified secreted protein by
using all three releases of the machine learning-based classifier EffectorP (EffectorP 1.0,
EffectorP 2.0, and EffectorP 3.0) [128–130]. Blast hits from the PHI-base curated as effectors
(PHI-base phenotype: Effector (plant avirulence determinant)) were also considered as
CEPs, regardless of their prediction as secreted proteins.

3.7. Differential Expression Analysis

The transcriptome dataset (NCBI BioProject accession: PRJNA514399) used in this
analysis consisted of RNA-seq reads sampled from G. boninense strain PER71. This strain
was first isolated in Perak, Malaysia, by extracting the fungal fruiting body from an infected
oil palm tree [131]. As reported by Wong et al. (2019), the fungus was grown in two
conditions: (i) axenic condition—G. boninense culture was grown on malt extract agar for
seven days (three replicates), and (ii) in planta—oil palm (Elaeis guineensis) roots were
inoculated with G. boninense-colonized rubber wood blocks (RWB) for one month before
RNA isolation (three replicates) [80]. The reads were aligned against the G3 genome
using the HISAT2 v2.2.1 aligner [109], and the raw count matrix was obtained using
the htseq-count function available from the HTSeq v0.13.5 package [132]. Differential
expression analysis was performed using DESeq2 v1.30.1 [133]. The genes were considered
to be differentially expressed if (i) the absolute value of log2 fold change was ≥ 2 and
(ii) adjusted p-value (padj) was < 0.05. Heatmaps visualizing the differentially expressed
genes were generated using the pheatmap v1.0.12 package in R v4.0.3 [134].

3.8. Genome Architecture Analysis

Genome architecture was inferred by generating a density plot using the flanking
distance to the nearest neighboring genes (flanking intergenic region; FIR). The association
of genes to the TE was assessed by calculating the distance from the genes to the most
proximal TE using the closest module from the Bedtools v2.30.0 package [135]. Three gene
categories were assessed without allowing for overlap (CEP genes, non-effector secreted
genes/other secreted genes, and BUSCO genes). Genes annotated as BUSCO genes were
used to represent the non-virulence gene set.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof8080793/s1, Supplementary Figure S1: Flowchart of the computational prediction pipeline
for identifying secreted and effector proteins, Supplementary Figure S2: Density plot illustrating
the 5′ and 3′ intergenic distance for genes encoding secreted proteins, Supplementary Table S1: The
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with PHI-base, Supplementary Table S3: Pan-secretome statistics, Supplementary Table S4: The
paralogous proteins identified in the pan-secretome of G. boninense, Supplementary Table S5: List of
secreted proteins predicted from the genomes of three strains of G. boninense, Supplementary Table S6:
List of strain-specific proteins found in the pan-secretome of G. boninense, Supplementary Table S7:
List of differentially expressed genes identified in the transcriptome of G. boninense grown on two
culture conditions
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