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Abstract

Triticale, a hybrid species between wheat and rye, is one of the newest additions to the plant kingdom with a very short history of improve-
ment. It has very limited genomic resources because of its large and complex genome. Objectives of this study were to generate dense
marker data, understand genetic diversity, population structure, linkage disequilibrium (LD), and estimate accuracies of commonly used
genomic selection (GS) models on forage yield of triticale. Genotyping-by-sequencing (GBS), using PstI and MspI restriction enzymes for
reducing genome complexity, was performed on a triticale diversity panel (n¼289). After filtering for biallelic loci with more than 70%
genome coverage, and minor allele frequency (MAF) >0.05, de novo variant calling identified 16,378 single nucleotide polymorphism
(SNP) markers. Sequences of these variants were mapped to wheat and rye reference genomes to infer their homologous groups and chro-
mosome positions. About 45% (7430), and 58% (9500) of the de novo identified SNPs were mapped to the wheat and rye reference
genomes, respectively. Interestingly, 28.9% (2151) of the 7430 SNPs were mapped to the D genome of hexaploid wheat, indicating
substantial substitution of the R genome with D genome in cultivated triticale. About 27% of marker pairs were in significant LD with an av-
erage r2> 0.18 (P<0.05). Genome-wide LD declined rapidly to r2 < 0.1 beyond 10 kb physical distance. The three sub-genomes (A, B,
and R) showed comparable LD decay patterns. Genetic diversity and population structure analyses identified five distinct clusters.
Genotype grouping did not follow prior winter vs spring-type classification. However, one of the clusters was largely dominated by winter
triticale. GS accuracies were estimated for forage yield using three commonly used models with different training population sizes and
marker densities. GS accuracy increased with increasing training population size while gain in accuracy tended to plateau with marker
densities of 2000 SNPs or more. Average GS accuracy was about 0.52, indicating the potential of using GS in triticale forage yield improve-
ment.
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Introduction
Triticale (� Triticosecale Wittmack) is a man-made cereal species
developed through the hybridization of wheat (Triticum spp.) and
rye (Secale cereale L.) for combining the hardiness and nutrient-use
efficiency of rye and grain yield and quality of wheat. It can have
different ploidy levels and genome compositions ranging from
tetraploid to octoploid depending on the type of wheat parent in-
volved in the hybridization (Ayalew et al. 2018). Hexaploid triticale
(2n¼ 42¼AABBRR) is the most commonly cultivated form be-
cause of its better genomic stability and superior agronomic per-
formance (Ammar et al. 2004; Oettler 2005). Triticale has a large
and complex genome (�17 Gb) with some degree of outcrossing
(Oettler 2005).

Triticale is mainly grown for animal feed and cover crop (Newell
and Butler 2013; Ayalew et al. 2018). As a result, current triticale
breeding efforts in the southern Great Plains of the United States

are mainly focused on biomass yield and biotic/abiotic stress resis-

tance improvement (Saha et al. 2015; Kim et al. 2017; Kumssa et al.

2019). Triticale breeding can benefit from the contemporary devel-

opments in molecular markers and genomics-assisted breeding,
but marker development for genetics and breeding studies in triti-

cale has lagged behind other cereal crops. Most of the markers used

in triticale were derived from either wheat or rye while only limited

number of markers were directly developed from triticale (Kuleung
et al. 2004; Badea et al. 2011).

The advent of high-throughput sequencing technologies

enabled relatively easy and rapid marker development, even in

highly complex and large genomes (Craig et al. 2008; Huang et al.

2009; Elshire et al. 2011; Poland et al. 2012b; He et al. 2014; Scheben

et al. 2017). Genotyping-by-sequencing (GBS), one of the high-
throughput genotyping technologies, utilizes restriction enzymes

to reduce genome complexity (Elshire et al. 2011; Poland et al.
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2012b; He et al. 2014). GBS has been reported to be a highly
efficient marker discovery tool in wheat and barley (Poland et al.
2012b), rice and soybean (Deschamps et al. 2010), maize (Liu et al.
2015; Wang et al. 2020), oat (Carlson et al. 2019), and potato
(Bastien et al. 2018), thereby facilitating genome-wide association
studies (GWAS) and genomic selection (GS) applications.

Developments in statistical genetics enabled utilization of the
rapidly increasing marker data in plant breeding and genetics. GS
is one of the most promising tools to exploit marker technologies
in plant breeding through estimation of breeding values of indi-
viduals even before phenotyping (Meuwissen et al. 2001;
Endelman 2011; Xu et al. 2020). Unlike conventional marker-
assisted selection (MAS), which uses markers linked to traits of
interest as a diagnostic tool, GS computes genomic estimated
breeding values (GEBVs) of individuals using all available
genome-wide markers regardless of their effects on the pheno-
type (Goddard 2009; Xu et al. 2020). This makes GS an attractive
strategy for genetic improvement of highly quantitative and com-
plex traits controlled by many genes with minor effects (Crossa
et al. 2010; Jannink et al. 2010).

GS accuracy varies depending on the underlying population
structure, linkage disequilibrium (LD), training population size,
and marker density (Meuwissen et al. 2001; VanRaden 2008;
Endelman 2011). It is a common consensus that increasing train-
ing population size increases GS accuracy but the trend of in-
crease declines once the genome is well covered by a set of
representative markers (Xu et al. 2020; Maulana et al. 2021). The
extent of LD in a population and its decay distance determines
the number of markers to be used (Flint-Garcia et al. 2003; Liu
et al. 2015; Vos et al. 2017). Generally, cross-pollinated crops have
shorter LD decay distance, as a result, they require larger number
of markers compared with self-pollinated crops (Liu et al. 2015;
Hao et al. 2019). Consequently, no single model is universally rec-
ommended, making model selection and optimization a neces-
sary step to practice GS in plant breeding.

The objectives of this study were to (1) generate a set of triticale
markers using a diversity panel consisting of diverse breeding
parents and representative triticale accessions from the National
Small Grains Collection (NSGC); (2) characterize the marker set
through genome mapping and LD analysis; (3) characterize diversity
and population structure of the panel; and (4) evaluate the
feasibility of GS in forage triticale breeding.

Materials and methods
Plant materials and phenotyping
The experiment started in 2017–2018 season by characterizing
1400 accessions in a paired-row single observation plot of 1.5-
m long and 40-cm wide at Gene Autry, Oklahoma, USA. A total
of 289 diverse hexaploid triticale lines were selected out of the
initial 1400 accessions on the basis of phenology, plant archi-
tecture, winter hardiness, biomass, and grain yield represent-
ing available diversity to compose an association mapping
population. This population consisted of 39 cultivars or elite
breeding lines developed primarily from the southern Great
Plains, and 250 accessions from the NSGC that are being used
as newly introduced parents in our breeding program.
Altogether, there are 75 spring, and 196 winter-type lines in the
panel. The panel was further evaluated in replicated trials at
one location (Burneyville, Oklahoma, USA) in 2018–2019, and
two locations (Gene Autry and Burneyville, Oklahoma, USA) in
2019–2020. Triple lattice design with plot size of 2.25 m2 was
used in the 2018–2019 season while simple lattice with the

same plot size was used in the 2019–2020 season. Forage

biomass sample was manually harvested from two adjacent

rows and total dry weight was converted to g m�2 scale.

DNA isolation, library construction, and
sequencing
Genomic DNA of each accession was isolated from bulked fresh

leaf samples of 10 days old seedlings immediately frozen in liquid

nitrogen. DNA was extracted using DNeasy Plant Mini Kit (Qiagen

Inc., USA). The DNA concentration and quality of each sample

were assessed before library construction using a nano-

photometer (Thermo Fisher Scientific). Genome complexity

reduction and multiplexed GBS library construction were

performed based on the PstI–MspI method (Poland et al. 2012b)

with 48� multiplex sequencing libraries in seven plates. DNA

sequencing was performed on an Illumina NextSeq 500 platform

following standard protocols for paired-end reads.

De novo read assembly and variant calling
Raw sequence data in FASTQ format were processed using ipyr-

ad_v.0.9.45 software (Eaton and Overcast 2020) with the default

assembly parameters to demultiplex, trim, and align the reads,

followed by identifying variant calls for generating a VCF file for

each plate. A single merged VCF file of all seven plates was then

produced by aligning sequences and single nucleotide polymor-

phism (SNP) calls across all seven plates. The final merged file

was further filtered to include only those SNP positions with at

least 70% in coverage and 0.05 for minor allele frequency (MAF).

Accessions with missing values greater than 30% were removed

before downstream analysis. Sequences of the filtered SNPs were

mapped to the wheat and rye genomes to identify their genome

origins and homoeologous groups (IWGSC 2018; Rabanus-

Wallace et al. 2021). Of the two recent rye genome references (Li

et al. 2021; Rabanus-Wallace et al. 2021), we used the Lo7 refer-

ence because our initial analysis was based on sequences pub-

lished previously (Bauer et al. 2017).

Linkage disequilibrium analysis
The LD pattern was estimated by using squared allele frequency

(r2) based on loci that have been mapped on the wheat and rye

reference genomes (Bauer et al. 2017; IWGSC 2018; Rabanus-

Wallace et al. 2021). Pairwise LD was computed using a sliding

window of 50 kb using TASSEL v5.2.50 (Bradbury et al. 2007).

Genome-wide LD (r2) was plotted against the physical distance

(bp) between markers to determine the LD decay distance (bp).

Differences in LD patterns and decay distances were evaluated

and compared among the three sub-genomes (A, B, and R). It was

assumed that r2 values higher than 0.1 are likely to be caused by

genetic linkage. Mean r2 values were calculated for every 500 bp

interval window. The interval at which the r2 values fall below 0.1

was taken as LD decay distance. This LD decay distance was sup-

ported by fitting a nonlinear smoothing curve (Hill and Weir

1988) and determining the intersection between the smoothing

curve and the horizontal line that passes through r2¼ 0.1 (r2 cut-

off value). The expected value of r2 under drift-recombination

equilibrium with a low level of mutation and an adjustment for

sample size n, was calculated using Hill-Weir’s equation as fol-

lows (Hill and Weir 1988),
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where n is the effective population size, and C is the product of

population level recombination (q) and distance, which can be

calculated as C¼ q*distance.

Genetic diversity and population structure
analysis
Three population clustering methodologies were used i.e., hierar-

chical clustering, k-means clustering, and principal components

analysis (PCA). Principal components (PCs) were further analyzed

by using discriminant analysis of the principal components

(DAPCs).
PC analysis was performed using the dudi.pca function of the

adegenet package in R (Jombart and Ahmed 2011). Missing values

were imputed using genome-wide mean. Hierarchical clustering

was performed using hclust function in R (Murtagh and Legendre

2014). K-means clustering using find.clusters function in the ade-

genet/R was used to identify the number of groups of lines

(Jombart and Ahmed 2011). The optimal number of k-means was

determined by using the Bayesian information criterion (BIC) as a

statistical measure of goodness of fit. Population structure was

further described using DAPC with the optimum number of PCs

interactively determined using the adegenet/R package with 105

iterations (Jombart et al. 2010; Jombart and Ahmed 2011).

Forage yield data analysis
Data were analyzed in two steps. In the first step, data from each

year and location were analyzed separately using agricolae/R

package (de Mendiburu 2019) for lattice design analysis to ac-

count for incomplete block effects. The same data set was ana-

lyzed using a two-dimensional P-spline mixed model to correct

for spatial effects using SpATS/R package (Rodrı́guez-Álvarez

et al. 2018) and residuals were compared to determine the

optimum model for final analysis. Spatial analysis was per-

formed for each environment separately using the following

model (Velazco et al. 2017): Y¼XbþXsbsþZsSþZuUþZgGþ e,

where the vector Y contains forage yield arrayed as rows within

columns, b is a resolvable block effect, and X is the associated de-

sign matrix. The fixed (unpenalized) term Xsbs and the random

(penalized) component ZsS form the mixed model expression of

the smooth spatial surface, i.e., f(r, c) ¼XsbsþZsS, where the

vector of random spatial effects s has covariance matrix S. The

vector U comprises the mutually independent sub-vectors of ran-

dom row and column effects accounting for discontinuous field

variation, with design matrix Zu¼ [ZrjZc] and covariance matrix

U¼diag (r2
rIr, r2

cIc). The vector G contains the random genotypic

effects and Zg is the associated design matrix. We assumed

independent genotypic variance, i.e., g � N(0, G), with G¼ r2
gIg.

The vector e consists of spatially independent residuals with

distribution e � N(0, r2
eI). Since spatial analysis significantly

reduced residual error, final analysis to obtain predicted means

for each environment was done using spatial analysis.
In the second step, combined analysis was performed on

adjusted means from each season and location using the follow-

ing mixed linear model: Yijk¼ lþGiþ EjþGEijþ eijk, where Yijk is

the observed mean, l is the grand mean, Gi is the effect of the ith

genotype, Ej is the effect of the jth environment (locations and

seasons were considered as separate environments), GEij is the

effect of the ith genotype in the jth environment, eijk is the

random error. Genotypes were considered as fixed effects while

environments were considered random.

Genomic selection model evaluation
GS was performed using the ridge regression best linear unbiased

prediction (rrBLUP) R package (Endelman 2011). Three different

GS models, RRBLUP using mixed.solve function with marker design

matrix, GBLUP using kinship. BLUP with additive relationship ma-

trix, and GUASS model using Euclidean distance matrix, were

tested with 103 iterations each. GS accuracy was evaluated as the

average correlation value between GEBV and phenotypic

estimated breeding value (PEBV).

Results
Variant calling and quality control
Average read depth for each individual over all variants was 13,

while some individuals showed very low coverage

(Supplementary Figure S1A). A total of 204,106 SNP variants were

identified via de novo variant calling. Missing value percentage

was close to 86% before some low coverage SNPs were filtered

out (Supplementary Figure S1B). After filtering for biallelic SNPs

with at least 70% genome coverage, and MAF> 0.05, a total of

16,378 biallelic SNPs were identified (Supplementary Figure S1C).

Homologous groupings of markers were identified by mapping

sequence reads to the wheat (IWGSC 2018), and rye (Rabanus-

Wallace et al. 2021) reference genomes. Out of the 16,378 SNPs,

30% (4913) were mapped to both wheat and rye reference

genomes while the other 15% (2516) were mapped specifically to

wheat genome making the total number of SNPs mapped to

wheat genome 7430 (45%). Similarly, about 58% (9500) of the

16,378 SNPs were mapped to the rye genome with 28% (4519) be-

ing specific to rye. Twenty-eight percent (4510) of the 16,378 SNPs

remained unmapped, but were used to analyze genetic diversity

as unmapped groups.
Chromosomal locations of SNPs were determined based on

the locations of the SNPs mapped to the wheat genome. All the

SNPs mapped to the D genome of wheat are hereafter considered

as R genome SNPs as triticale does not have a D genome. Out of

the 7430 SNPs mapped to wheat reference genome, 31% (2284),

40% (2995), and 28.9% (2151) SNPs were located at A, B, and R

sub-genomes, respectively. Similarly, out of the 9500 high-quality

SNPs mapped to the rye reference genome, about 6670 SNPs were

potentially located on the R sub-genome of triticale (2151 from

those mapped to the D genome of wheat and 4519 from those

specifically mapped to rye reference genome).

Linkage disequilibrium
The nature of LD and the extent of its decay distance were in-

vestigated using markers that have known location in a ge-

nome. Close to 27% of all marker pairs were in significant LD

with r2> 0.18 (P< 0.05). The r2 values from the whole genome

LD were separated into the respective genomes to compare LD

patterns. LD based on the whole genome dropped quickly to

r2< 0.1 at about 10 kb (Figure 1A). About 24% of marker pairs

on the A genome were in significant LD (P< 0.05), while the B

and R genomes had 25% and 27% of marker pairs in significant

LD. The A genome had the shortest LD block (4 kb) while B and

R genomes had similar decay distances in the range of 10 kb

(Figure 1, B–D).
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Genetic diversity and population structure
Three different methods were used to infer population structure
and allelic diversity of the panel. Hierarchical clustering, PCA and

DAPC all showed five clusters. Genotypes were grouped into five
clusters based on Euclidian distance matrix and Wad.D2 agglom-
eration (Supplementary Figure S2). The first three PCs explained

Figure 1 Genome-wide linkage disequilibrium (LD) decay plot in hexaploid triticale. LD, measured as r2 between pairs of polymorphic sites, is plotted
against physical distance (bp) between the sites. LD decayed to r2< 0.1 beyond 10-kb distance.

Figure 2 The first three principal components, (A) for PC1 vs PC2 and (B) for PC1 vs PC3, explained 19% variation of the population. Cluster numbers were
based on the k-means output. Each cluster was admixture of both winter and spring types.
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19% of genetic variation (Figure 2). For k-means clustering, a sta-
tistical measure of goodness of fit was computed for each k-value
to assist determining the optimal cluster number. The BIC was
the lowest at k¼ 5 (Figure 3A), indicating five distinct clusters are
most suitable for classifying genotypes in the panel. The results
of hierarchical clustering and k-means clustering were in a good
agreement in grouping the genotypes into five distinct clusters
(Supplementary Figure S2, Figure 3B). Clustering did not follow
cultivation classification as winter vs spring type, except that
cluster 5 was largely dominated (82%) by winter triticale.

Further analysis using DAPC was conducted to capture more
genetic variation. Result from DAPC showed that about 95% of
the total genetic variation was explained by the first 200 PCs
(Figure 3B inset, PCA eigenvalues). The first three axes of dis-
criminant analysis (DA) captured most of the subpopulation
structures of the total population. The first discriminant axis
(DA1) separated cluster 5 far from the rest of the clusters
(Figure 3B). The DAPC analysis helps identify SNPs that are direc-
tionally selected relative to the clusters identified. Markers that
had the highest loadings on DA1 were located on groups 1, 2, 5,
and 6 (Supplementary Figure S3). These markers had higher fre-
quency in winter than in spring triticale.

Variation for forage yield
There was high and erratic field heterogeneity that was corrected
with spatial smoothing using 2D tensor product splines
(Supplementary Figure S4). Spatial analysis showed about 24.5%
higher efficiency in reducing random error compared with lattice
design. There was significant variation between genotypes, envi-
ronments, and the interactions between the two. Broad sense
heritability was 42% and 47% for lattice and spatial analysis, re-
spectively. Best linear unbiased estimates were used for estimat-
ing GEBV of individuals.

Genomic selection applications
Individuals and markers were randomly assigned into training
and validation populations. Prediction accuracy of forage yield
(dry matter) increased with increasing training population size
when a large number (7000) of markers were used (Figure 4A).
The RRBLUP model showed relatively higher accuracy, but its
trend of increase was fluctuating relative to the size of training
population (Figure 4A). The other two models, GBLUP and
GUASS, were similar in performance with minimum fluctuations
when the size of training population was increased up to 200.
However, gain in accuracy tended to plateau (or even decrease)

Figure 3 Discriminant analysis of principal components of the triticale panel. (A) The optimal number of k-means was determined using BIC relative to
the numbers of clusters (k) tested. (B) Scatter plot of DAPCs showed well-separated clusters through maximizing variation among groups and
minimizing variation within groups. The main figure shows the relative scatter of the five clusters, in which each dot represents a unique genotype. The
PCA eigenvalue inset (bottom right) indicated that about 95% of variation was captured by using 200 PCs.
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for all three models when the training population size was be-
yond 200. As a result, the optimal marker density was deter-
mined using 200 training population size. Similar to training
population size, increasing marker density improved GS accuracy
(Figure 4B). However, increasing marker density beyond 2000 did
not show any substantial increase in prediction accuracy
(Figure 4B). There was a tendency of overfitting when more than
3000 markers were used while the training population size was
fixed to 200. Average selection accuracy of all three models was
about 0.52 for forage yield when the models were trained with
200 genotypes and 2000 markers. Figure 4, C–E show scatter plot
of GEBV and PEBV by the three models. From the scattering pat-
tern of points, GBLUP was the most precise and consistent for
this analysis (Figure 4D).

Discussion
Genotyping-by-sequencing enables efficient
marker discovery in triticale
This study showed that GBS is an effective marker development
technology for triticale breeding and genetics research. GBS is es-
pecially suited for genetic improvement of orphan crops like triti-
cale through combined marker discovery and genotyping of large
populations, even in the absence of a reference genome (Poland
et al. 2012a). Reference genomes of closely related species like
wheat can be used to develop markers for triticale. In this study,
45% of high-quality triticale SNPs were mapped to hexaploid
wheat genome. Interestingly, a significant fraction of the SNPs
was mapped to the D genome of hexaploid wheat. This result

indicated that some of the triticale accessions in this study were
substituted triticale lines, which were derived from crosses be-
tween hexaploid wheat and triticale (Gustafson et al. 1989; Hao
et al. 2013). The percentage of SNPs that were mapped to the R ge-
nome was much higher than that of mapped to A and B genomes
combined. This should be attributed to the out-crossing rye pro-
genitor and recently released rye reference sequence (Rabanus-
Wallace et al. 2021). Previously, Kuleung et al. (2004) reported that
57% of wheat and 39% of rye simple sequence repeat (SSR)
markers were transferable to triticale. Transferability of markers
seemed also to depend on the types of marker technologies used
and diversity of the population studied. Badea et al. (2011)
reported that 24% of diversity array technology (DArT) markers
originating from rye, and only 9% from wheat genomes were
polymorphic on triticale. Allopolyploidization of the two parental
genomes was reported to cause sequence modifications or losses
of 10–30% in wheat and up to 50% in rye genomes (Boyko et al.
1984; Ma et al. 2004; Ma and Gustafson 2008), which might partly
explain these discrepancies. Moderate transferability of markers
(45% to wheat and 58% to rye) was observed in the present study,
even though the initial marker density was very high compared
with previous studies.

Linkage disequilibrium decayed in a relatively
short genomic distance
LD is a population specific parameter commonly estimated using
a squared value of the correlation coefficient (r2 statistics) of the
allelic states of two given polymorphic loci (Hill and Weir 1988).
The extent of LD in a population determines the number of

Figure 4 Genomic selection modeling of forage yield of the population. Genomic selection accuracy as a function of training population size when 7000
markers were used (A), and marker density when training population size was 200 (B). Scatterplots showing correlations between the observed (PEBV)
and the predicted values (GEBV) of forage yield using the three models (C–E). The shaded area shows the 95% confidence interval of the correlation line
(blue).
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markers, and experimental design to be used for a successful
genome-wide association analysis (Flint-Garcia et al. 2003). LD
decayed very quickly to r2< 0.1 over 10 kb, indicating the absence
of long LD blocks shared in this population. The relatively quick
LD decay in this population might be due to the slightly open pol-
linating nature of triticale which can be up to 10% (Oettler 2005).
The three genomes showed comparable LD decay distances and
percentage of markers that were in LD. Introduction of chromo-
somes from different ancestries often results in LD that breaks
down rapidly with random mating (Pritchard and Rosenberg
1999). The decline of LD with distance is generally affected by
nonrandom mating, selection, mutation, migration or admixture,
genetic drift, and the effective population size (Flint-Garcia et al.
2003). Short LD blocks in this population bear a potential for high
resolution GWAS because long LD blocks increase frequency of
false positive associations (Balding 2006; Otyama et al. 2019).

Large genetic diversity exists in the triticale panel
Population structure was analyzed using three different method-
ologies including hierarchical clustering, k-means clustering and
PCA. The three methods grouped the population into five clusters
with similar subpopulation memberships. The first three PCs of
the PCA only explained 19% of variation. Information in the first
three PCs showed structuring patterns emerging, but it also did
not use the larger proportion of genomic information in remain-
ing PCs (Figure 2). Therefore, PCs were further analyzed using
DAPC to extract more information from nearly all of the PCs
(Jombart et al. 2010; Ayalew et al. 2020). In addition to the larger
amount of information used in DAPC, it enables to interpret load-
ing of individual markers along discriminant axes
(Supplementary Figure S3). K-means clustering provides statisti-
cal validation to decide optimum cluster number during hierar-
chical clustering, which is mostly subjective otherwise.
Clustering in this population did not follow the winter—spring
cultivation classification except for cluster 5 which was largely
dominated by winter types (82%). K-means clustering handles
large dataset better compared with hierarchical clustering
(Jombart et al. 2010).

Genomic selection shows a good potential in
selecting for forage yield in triticale
GS accuracy increased with increasing training population size.
This was in agreement with previous studies (Norman et al. 2018;
Maulana et al. 2021). However, the rate of increase slowed down
beyond 150 lines in the training population (Figure 4A). In addi-
tion to training population size, heritability of the trait, extent of
LD, physical distance, and genetic relationship matrix also affect
GS accuracy depending on the underlying assumptions of models
used (Solberg et al. 2008; Zhong et al. 2009; Habier et al. 2010). LD
decayed in a relatively short physical distance, which negatively
affects the prediction accuracy. This is usually the case when
individuals are distantly related in a diverse population.

The moderate level of GS efficiency in this study is encourag-
ing to incorporate GS in forage triticale breeding programs. A rea-
sonable level of accuracy can be achieved by using training
population size of as low as 100 individuals but the most optimal
number of training size is 200 in terms of gain in accuracy rela-
tive to size of training population (Figure 4A). The RRBLUP model
performed very well when a large number (7000) of markers were
used (Figure 4A), however, its performance was not ideal com-
pared to GBLUP when the number of markers were reduced to
2000 (Figure 4B). Prediction accuracy did not increase beyond
2000 markers for RRBLUP and GBLUP models, and 3000 markers

for GUASS when training population size was fixed to 200

(Figure 4B). Therefore, 200 training individuals and 2000 markers

gave optimal combination for predicating forage yield in this pop-

ulation. As most genotypes in the population are parents of our

breeding program, this study provides immediate guidelines for

structuring our GS strategies in forage triticale breeding.
Reducing or controlling field heterogeneity is one of the long

standing experimental design principles in agricultural research

(Gilmour et al. 1997; Rodrı́guez-Álvarez et al. 2018). In addition to

the number and quality of markers, the quality of the phenotype

data used in GS models is equally important for successfully ap-

plying GS in breeding. We compared the efficacies of lattice de-

sign and spatial analyses techniques for their ability to reduce

residual error. The use of spatial analysis in this study showed a

24.5% reduction in residual error, and a 12% increase in heritabil-

ity estimate. Heritability is one of the main factors that affect pre-

dict ability of GS.

Conclusion
Even though triticale is a new species with a very short history of

development, we found large genetic diversity in this population.

LD declined quickly partly because triticale has some degree of

out crossing and partly because of the introduction of chromo-

somes from different ancestries that breaks down rapidly with

random mating and genomic mixing. This makes triticale ame-

nable for high-resolution GWAS analysis. Average GS accuracy

for forage yield was 0.52 with 200 training individuals and 2000

SNPs, which is encouraging for such a quantitative trait. The re-

sult indicates that GS can facilitate triticale breeding for forage

yield improvement. In conclusion, this panel has large genetic di-

versity that can be exploited though genome mapping and be

used for selective breeding.
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