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Impact of hypoxia on the hippocampus
A review
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Abstract 
Oxygen is the most abundant chemical substance and is a basic material for human activities. A decline in oxygen concentration 
affects many physiological processes in the body, leading to pathological changes and even the occurrence of diseases. Therefore, 
an increasing number of studies have focused on the pathological state of hypoxia. The hippocampus is the most sensitive tissue 
to oxygen in the brain. The reduction in oxygen concentration affects the morphology and functioning of the hippocampus, 
including a decline in learning and memory, immunity, and energy metabolism, causing great problems to people’s physical 
and mental health. To keep people healthy in hypoxic environments, adapt to hypoxic environments, and avoid diseases, it is 
necessary to review the morphology and function of the hippocampus, as well as the effect of oxygen on the hippocampus.

Abbreviations: BDNF = brain-derived neurotrophic factor, CREB = cAMP-response element binding protein, ERK = extracellular 
regulated protein kinases, GABA = γ-aminobutyric acid, HIF-1α = hypoxia-inducible factor 1 alpha, LDH = lactate dehydrogenase, 
mtDNA = mitochondrial DNA, mTOR = mammalian target of rapamycin, NF-κB = nuclear factor kappa-B, NLRP3 = NOD-, LRR- and 
pyrin domain-containing protein 3, NSE = neuron-specific enolase, P2X7R = P2X7 receptor, PI3K = phosphatidylinositol-3-kinase, ROS 
= reactive oxygen species, TLR4 = toll-like receptor 4, TNF-α = tumor necrosis factor-α, VEGF = vascular endothelial growth factor.
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1. Introduction
Hypoxia can be divided into acute, chronic, persistent, intermit-
tent, chemical, and postpartum hypoxia based on the cause of 
the disease. Hypoxic preconditioning and treatment can also be 
used to treat diseases. Hypoxia is a major pathological factor in 
brain injury.[1] The hippocampus is the most sensitive tissue in the 
brain to hypoxia, and hypoxia affects attention, executive func-
tion, learning and memory, speed of memory processing, declar-
ative memory, and other functions of the hippocampal tissue.[2,3] 
Different degrees and types of hypoxia have different effects on 
the hippocampus. Some studies have proposed that transient 
hypoxia can cause structural changes and dysfunction of neurons, 
including the shortening and thinning of dendrites and weaken-
ing of excitatory synaptic transmission strength, which affect 
brain development.[4] This article reviews the effects of hypoxia 
on hippocampal learning and memory, neuronal development 
and angiogenesis, synaptic plasticity, inflammation and immunity, 
oxidative stress, autophagy, apoptosis, and energy metabolism.

2. Morphology and function of hippocampus
The hippocampus, also known as the hippocampal gyrus, hippo-
campal area, or brain hippocampus, is named for its structural 
shape, which is similar to that of the hippocampus. Located 
between the cerebral colliculus and medial temporal lobe, the 

hippocampal formation is composed of the dentate gyrus and 
inferior torus of the hippocampus and its adjacent temporal 
lobe, which can be divided into CA1, CA2, CA3, and DG areas, 
which belong to a part of the limbic system (Fig. 1).

Currently, the role of the hippocampus remains controversial, but 
most scientists believe that the hippocampus has episodic or auto-
biographical memories. The hippocampus is not only involved in 
the formation of new memories but also in learning and emotion. 
There are also some fixed-point cells in the hippocampus, which are 
involved in the storage and processing of spatial information. When 
information enters the hippocampus, it first passes through the CA3 
area, then the CA1 area, and then reaches the subthalamus.

Damage to the hippocampus can affect memories and the ability 
to form new memories. Spatial memory is the ability to remember 
direction, position, and orientation. Damage to the left hippocam-
pus affects the memory of language information, whereas damage 
to the right hippocampus affects the memory of visual information.

3. Effects of hypoxia

3.1. Learning and memory and cognitive function

Hypoxia impairs the cognitive and motor abilities of mice by 
affecting hippocampal mitochondrial oxidative phosphorylation 
but has no significant effect on the morphology and structure of 
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the brain in mice.[5] The learning and memory abilities of rats 
were also affected by hypoxia, which showed that the escape 
latency of rats was prolonged, damage to hippocampal neurons 
was reduced, and learning and memory abilities were restored 
to some extent. In addition, hypoxia-induced hippocampal 
atrophy, memory impairment, and decreased motor responses 
in rats.[6] Hypoxia promotes tau phosphorylation through the 
extracellular regulated protein kinases (ERK) signaling path-
way, which affects learning and memory.[7] Hypoxia promotes 
the expression of matrix metalloprotein 9 in the rat hippocam-
pus and affects passive avoidance learning abilities in rats.[8] 
Hypoxia affects horizontal movement and carding activity in 
rats. Rats show differences in different areas of hypoxia, and 
the results also differ according to sex.[1] In a hypoxic environ-
ment of 4010 m in the hippocampus, the latency and number of 
crossings of the salidroside platform in mice were reduced, the 
damage to hippocampal neurons was alleviated, the expression 
of apoptotic proteins was reduced, and the learning and mem-
ory ability was improved.[9]

Acute high-altitude hypoxic exposure can change the mor-
phology of vertebral neurons in the hippocampal CA1 area, 
affect the expression of proteins in the hippocampus, and lead 
to cognitive dysfunction.[10] Under continuous hypoxia, the den-
dritic spines in the hippocampal CA1 region of mice decreased, 
synaptic plasticity decreased, escape latency was prolonged, 
and spatial learning and memory abilities decreased.[11] After 
acute high-altitude exposure for 7 days, mice showed obvi-
ous memory impairment, hippocampal neuron pyknosis, and 
increased expression of apoptotic proteins.[12] Exposure to acute 
hypobaric hypoxia exposure can impair cognitive function 
in rats. Ginkgolide B intervention may regulate hippocampal 
neuronal calcium homeostasis by regulating the hippocampal 
Calcium/calmodulin-dependent protein kinase type Ⅱ signaling 
pathway, alleviating hippocampal neuronal injury, improving 
learning and spatial memory in rats, and alleviating cognitive 
dysfunction.[13]

The effects of hypobaric hypoxia on the nervous system 
have become increasingly serious over the years. When exposed 
to hypoxia for 2 days, the dendritic length of pyramidal cells 
decreased and was the most serious on the 7th day. One of the 
mechanisms underlying the hippocampal-dependent spatial 
learning decline is dendritic cell atrophy.[14] Single-simulated 
hypobaric hypoxia is beneficial to the behavior of mice by acti-
vating mild stress in the mitochondria.[15] Hypobaric hypoxia 
impairs the cognitive, motor coordination, and spatial memory 

ability of rats by inhibiting the synthesis of catecholamine,[16] also 
available via peroxisome proliferator-activated receptor-gamma 
coactivator (PGC)-1alpha/fibronectin type III domain- 
containing protein 5/brain-derived neurotrophic factor (BDNF) 
signaling pathway causes damage to hippocampal mitochondria 
and synapses, leading to memory impairment.[17] Hypobaric 
hypoxia can improve oxidative stress and synaptic plasticity 
by activating the Notch pathway, which can cause learning and 
memory impairment and reduce the cognitive index of new 
objects in mice.[18]

Chronic exposure to hypoxia at high altitudes results in a 
reduction in hippocampal gray matter volume, impaired learn-
ing and memory ability, and anxiety-like behavior in rats.[19] 
Chronic intermittent hypoxia leads to anxiety-like behavior in 
mice, which is related to the compensatory increase in NMDA 
receptor 2B, ERK, and the synaptic plasticity of neurons.[20] 
Chronic intermittent hypoxia can reduce synaptic plasticity in 
hippocampal neurons by activating adenosine A2AR, resulting 
in spatial memory impairment in mice. Knocking out or inhibit-
ing adenosine A2AR improves synaptic plasticity in hippocam-
pal neurons and reduces spatial memory impairment in mice.[21] 
Chronic intermittent hypoxia can promote the expression of 
ERK1/2 in the hippocampus, reduce the volume of hippocam-
pal neurons, pyknosis of nucleus, cause cognitive dysfunction, 
increase the escape latency, and reduce the number of cross-
ing the platform. Chronic intermittent hypoxia promotes the 
expression of inflammatory factors in the hippocampus, lead-
ing to microglia damage and cognitive decline.[22] Intermittent 
hypoxia caused the loss of NMDA receptor-dependent long-
term enhancement and the increase of reactive oxygen species 
(ROS) in the hippocampal CA1 region, resulting in the decrease 
of hippocampal synaptic plasticity and the impairment of spa-
tial memory ability, which was related to hypoxia-inducible fac-
tor (HIF-1) alpha (HIF-1α) dependent redox state changes.[23] 
Intermittent hypoxia through the nuclear factor kappa-B 
(NF-κB) signaling pathway causes neuronal apoptosis, affects 
cognitive function of mice, and prolongs the latency of target 
quadrant in mice.[24] Intermittent hypoxia therapy promotes 
tau phosphorylation through the mammalian target of rapa-
mycin (mTOR) signaling pathway, reduces the expression of 
glutamate-relevant proteins in the hippocampus, and improves 
cognitive function in mice.[25] Intermittent hypoxia promotes 
oxidative stress in rat hippocampal neurons and affects learning 
and memory. This situation can be improved using the total gly-
cosides of Cistanche deserticola.[26]

Prenatal hypoxia interferes with hippocampal CA3-CA1 syn-
aptic transmission and reduces long-term potentiation, which 
may be caused by the inhibition of GluN2B protein expression, 
ultimately leading to serious damage to the learning and mem-
ory ability of rats.[27] It can also reduce the number of hippocam-
pal neurons and damage long-term memory.[28] Ischemia and 
hypoxia can inhibit the expression of BDNF and glialcellline- 
derivedneurotrophic factor, leading to hippocampal atrophy,[29] 
neurological dysfunction, and learning and memory impairment 
in rats.[30] Hypercapnia combined with hypoxemia can improve 
the nuclear translocation efficiency of HIF-1α in hippocampal 
neurons, promote the expression of matrix metalloproteinases, 
damage the blood-brain barrier in the hippocampus, and lead to 
cognitive dysfunction.[31] Hypoxic preconditioning downregu-
lated the expression of miR-103, reduced the incubation period, 
increased the number of crossings, and improved hypoxic toler-
ance and cognitive function in mice.[32]

3.2. Neurons and blood vessels

Hypoxia at high altitudes led to the widening of the gap around 
nerve cells, swelling of cells, atrophy and deformation of neu-
rons, disordered arrangement, and loss of neurons in the hippo-
campal CA1 region of rats.[33] Hypoxia reduces the proliferation 

Figure 1.  The structure of the hippocampus in the brain
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and differentiation of hippocampal dentate gyrus neurons in 
mice, which may be related to the ERK signaling pathway.[34] 
Repeated hypoxic exposure reduced the metabolic rate and 
promoted the expression of immediate early gene products in 
hippocampal neurons.[35] Hypoxia increases the expression of 
neurodegenerative genes in hippocampal neurons.[36] Hypoxia 
increases the number of proximal dendrites of hippocampal 
CA1 pyramidal neurons and prolongs the branches of apical 
dendrites, affecting certain functions of hippocampal neuronal 
circuits.[37] Hypoxic exposure promotes the growth of hippo-
campal neuronal axons and enhances the reverse transport 
function of mitochondrial axons, which may be achieved by 
promoting the expression of the mitochondrial transport regula-
tory protein HUMMR.[38] The decrease in calcium accumulation 
in hippocampal CA1 neurons during hypoxia may be related to 
the enhanced hypoxia tolerance in hippocampal neurons caused 
by long-term hypoxia.[39] Hypoxia improves the permeability of 
the blood-brain barrier through the ERK signaling pathway.[40] 
After the administration of kaempferol, the learning and spatial 
memory abilities of rats were restored, and neuronal degener-
ation was reduced.[41] Egg-laying defective nine 1 regulates the 
hypoxic response of hippocampal neurons by regulating the 
transcriptional activity of HIF-1α. Therefore, inhibiting expres-
sion of Egg-laying defective nine 1 has a protective effect on 
hippocampal neurons.[42] Hypoxia combined with propofol can 
induce iron death, mitochondrial swelling, cristae dissolution, 
and disappearance in hippocampal neurons by promoting the 
expression of the transferrin receptor and ferrous ions, further 
aggravating the damage of immature hippocampal neurons.[43] 
Astragalus membranaceus protected hippocampal neurons 
from intermittent hypoxia-induced injury in rats.[44] The expres-
sion of synaptophysin in the hippocampus decreased, and the 
expression of vascular endothelial growth factor increased in 
the hypoxia group.[45] Hypoxia disrupts the formation of hippo-
campal capillaries. The older the age, the lower the plasticity of 
hippocampal capillaries.[46]

Acute high-altitude hypoxia can promote the necrosis 
of pyramidal neurons in the hippocampal CA1 area, mito-
chondrial swelling, and the appearance of a large number of 
mitochondrial autophagosomes, leading to the apoptosis of hip-
pocampal neurons. This mechanism may be regulated by the  
phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mTOR 
signaling pathway.[47] After the AAV-syn-BDNF-Enhanced green 
fluorescent protein virus was transferred into hippocampal 
neurons and treated with acute hypobaric hypoxia, the sponta-
neous bioelectrical activity of the neurons was restored, the anti- 
hypoxia ability was improved, and neuropathy was reduced.[48] 
Acute high-altitude hypoxia reduces cerebral blood flow and 
damages the central nervous system of mice.[49]

Chronic hypobaric hypoxia exposure leads to increased 
neuronal degeneration in the hippocampal CA3 region, which 
is related to the regulation of tropomyosin receptor kinase B. 
Hypoxia-induced memory impairment leads to decreased spa-
tial memory in adult rats by reducing the immunoreactivity 
of the postsynaptic density protein kalirin-7.[50] Intermittent 
hypoxia can promote hippocampal functions, including cell 
proliferation, migration of newborn neurons, and increased spi-
nous processes, which may be related to notch1-mediated neu-
rogenesis.[51] Intermittent hypoxia inhibits the development of 
adult hippocampal neurons, impairs the spatial memory ability 
of animals, and increases the generation of adult neurons after 
the termination of hypoxia. HIF-1α in intermittent hypoxia- 
dependent hippocampal neurons is activated in early neurons 
and promotes the formation of adult neurons after removing 
hypoxia conditions.[52] Intermittent hypoxia leads to decreased 
growth of growth hormone and vascular endothelial growth 
factor (VEGF) in the hippocampus, resulting in neuronal loss 
and cognitive impairment.[53] Chronic intermittent hypoxia 
reduces synaptic plasticity by inhibiting the protein kinase A 

signaling pathway, leading to neuronal damage.[54] Intermittent 
hypoxia promotes neuronal deformation, nuclear membrane 
blurring, and mitochondrial vacuolation in the rat hippocampal 
CA1 region. Edaravone increases and reduces the expression of 
apoptotic proteins and autophagy in hippocampal neurons and 
plays a neuroprotective role.[55]

Hypoxic ischemia promotes the expression of hypoxia- 
inducible factor-1, HIF-1α, which leads to decreased systolic 
and diastolic blood pressure and mean arterial pressure in 
rats. After treatment with salidroside, hemodynamic indi-
ces improved. This result is consistent with the regulation of 
HIF-1α protein.[56] Ischemic hypoxia can affect the survival 
rate of hippocampal neurons and promote neuronal degener-
ation by promoting the expression of HIF-1α.[57] The expres-
sion of HIF-1α positive cells increased in the hippocampus of 
rats in the hypoxia group, and the density of VEGF-positive 
cells was higher than that of the control group.[58] Studies have 
found that early inhibition of the Toll-like receptor 4 (TLR4) 
signaling pathway can increase the density of the spinal cord 
in the hippocampus, improve the loss of neurons, and decrease 
synaptic plasticity caused by hypoxic-ischemic injury.[59] 
Ischemia and hypoxia reduce cerebral perfusion, affect brain 
metabolism, and damage hippocampal neurons in oligoden-
drocyte nuclei.[60] Prenatal hypoxia reduced reelin expression 
in the rat hippocampus but did not affect VEGF expression.[61] 
Hypoxia induced by hypercapnia reduces the expression of 
proteins involved in neuronal stratification and migration in 
the hippocampal CA1 region, particularly in the hippocampal 
pyramidal cell layer.[62] Hypoxia and hypoglycemia can reduce 
the synaptic plasticity of hippocampal neurons, resulting in 
reduced cAMP-response element binding protein (CREB) and 
BDNF expression. After using jitianjiannao, the CREB/BDNF 
pathway is activated, which enhances the expression of syn-
aptic plasticity proteins, promotes synaptic remodeling, and 
has a protective effect on hippocampal neurons in rats.[63] 
The administration of sodium pyruvate under hypoxic con-
ditions can activate autophagy signaling and reduce apoptosis 
in hippocampal neurons, thus playing a neuroprotective role 
and reducing hypoxic injury.[64] Hypoxic preconditioning can 
improve cell viability and protect hippocampal neurons from 
hypoxia-induced injury.[65] Intermittent preconditioning for 6 h 
per day can effectively improve the number of remaining hip-
pocampal neurons and tissue ultrastructure, which is related 
to the regulation of signaling pathways, including the endo-
cytosis signaling pathway, longevity regulation pathway, and 
RNA transport.[66]

3.3. Synaptic morphology, function, and plasticity

Hypoxia exposure inhibits the expression of developmen-
tal proteins in hippocampal neurons, including the hypoxia- 
related molecules fibronectin 1 and filament protein C, ultimately 
leading to neuronal damage.[67] The expression of synaptic 
plasticity proteins in hippocampal CA1 neurons was signifi-
cantly decreased, the number of synapses in the neurons was 
reduced, and the synaptic gap was unclear. With the extension 
of intermittent hypoxia time, synaptic damage becomes more 
serious.[68] Hypoxia leads to an abnormal increase in glutamate 
levels, shortening of neurites, imbalance in internal homeosta-
sis, and memory impairment.[69] The level of extracellular γ- 
aminobutyric acid (GABA) in hippocampal synaptosomes of 
rats exposed to hypoxia increased.[70]

High-altitude hypoxia exposure can reduce the myelin sheath 
content and decrease the thickness of the myelin sheath in the 
corpus callosum and DG area of the hippocampus in adult 
mice. Reoxygenation can return to normal within 2 months, 
and hypoxic reoxygenation does not affect axon content.[71] 
High-altitude hypoxia induces a decrease in the density of den-
dritic spines in hippocampal CA1 neurons in mice. After using 
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inhibitors, the morphological changes in dendritic spines in hip-
pocampal CA1 neurons were protected, and damaged learning 
and memory abilities were restored.[72] Butylphthalide pretreat-
ment can increase acetylcholine and acetylcholine activity and 
reduce the damage caused by acute hypobaric hypoxia on mem-
ory function in mice.[73] Inhibition of adenosine by hypoxia can 
lead to neuronal damage, behavioral changes in the hippocam-
pal CA1 area, and impaired memory.[74]

Chronic hypoxia affects myelination and motor coordination 
in adult mice.[75] Hypoxia for 30 min reduced excitatory post-
synaptic potential and synaptic transmission of evoked fields 
in the hippocampal CA1 region.[76] Reversible synaptic inhibi-
tion caused by hypoxia for 40 minutes was transformed into 
the irreversible disappearance of the synaptic potential through 
an NMDAR-dependent mechanism. This phenomenon occurs in 
the presence of plasma 1, and the presence of a transport inhibi-
tor cannot block the effect mediated by plasma 1, leading to the 
accumulation of unknown transporters, cell swelling, and fur-
ther damage to hippocampal neurons.[77] Short-term hypoxia can 
damage GABAergic neurons and reduce their inhibitory effects, 
which may be achieved through the PI3K signaling pathway.[78] 
Continuous hypoxia affects synaptic dendritic spine density in 
the hippocampal CA1 region of senescence accelerated mouse 
male mice and reduces synaptic plasticity. After treatment with 
dihydrotestosterone, the expression of the synaptic plasticity 
proteins in the hippocampus of mice increased.[79] Studies have 
found that ligustrazine hydrochloride has a protective effect on 
the learning and memory abilities of the brain under hypobaric 
hypoxia, and its mechanism may be related to an increase in the 
expression of forkhead box p2 in the hippocampus of rats.[80]

Chronic hypobaric hypoxia exposure inhibited the expres-
sion level of fillin in the hippocampal CA1 region of mice. It 
resulted in morphological changes in dendritic spines in the 
hippocampal CA1 region, including an increase in the length 
of dendritic spines and apical dendritic spines.[81] Chronic high- 
altitude hypoxia can damage the hippocampal neurons, promote 
apoptosis, affect oxidative stress, and free radical levels, and 
lead to cognitive dysfunction. One of these mechanisms involves 
increased glutamate and receptor-mediated excitotoxicity.[82]

Chronic intermittent hypoxia can damage cholinergic neu-
rons in the basal forebrain through endoplasmic reticulum 
stress, oxidative stress, and inflammatory reactions and cause 
cognitive dysfunction in mice. The basal forebrain cholinergic 
system can play a role in endoplasmic reticulum stress, oxida-
tive stress, and inflammatory reactions reduce damage to cho-
linergic neurons, and thus restore cognitive function in mice.[83] 
Severe chronic intermittent hypoxia results in an increase in the 
number of GABA neurons in the hippocampus of mice, and 
the number of GABA neurons in males was higher than that 
in females.[84] Chronic intermittent hypoxia inhibits the mTOR/
NF-κB signaling pathway, leading to decreased BDNF-mediated 
synaptic plasticity and cognitive impairment.[85] After intermit-
tent hypoxia and continuous hypoxia, the activity of carbachol 
in the DG region of the rat hippocampus decreases, which may 
be due to hypoxia inhibiting the activity of the G protein in the 
DG region and affecting the function of the hippocampus.[86]

Ischemic hypoxia leads to neurodegeneration by damaging 
the CA1 synaptic transmission and cell integrity.[87] Ischemic 
hypoxia inhibits the expression of glutamate and aspartic acid in 
the CA1 region of the hippocampus, leading to an increase in the 
number of damaged neurons.[88] Hypoxic ischemia inhibits the 
synaptic plasticity of hippocampal neurons, inhibits Pro BDNF 
to BDNF transformation, and leads to brain injury by down-
regulating the BDNF/TrkB pathway.[89] Convulsions induced by 
ischemia and hypoxia change the purinergic and neuroinflam-
matory components in an age-dependent manner in the devel-
oping mouse hippocampus.[90] Perinatal hypoxia affects synaptic 
plasticity and cognitive function and leads to long-term biolog-
ical dysplasia.[91] Perinatal ischemia and hypoxia can reduce the 
expression of hippocampal interneurons, such as somatostatin 

and neuropeptide Y, and affect brain development[92] and the 
release of GABA in the nerve endings of the hippocampal tissue 
and damage to the hippocampus.[28] Repeated hypercapnia and 
hypoxia increase the expression of the acetylcholine receptor 
subunit in the hippocampus, but the increase in the CA1 area 
was not obvious.[93]

3.4. Immunity and inflammation

High altitude and low-pressure hypoxia can increase the expres-
sion of adenosine A2A receptor and tumor necrosis factor-α 
(TNF-α) in rat hippocampal brain, leading to the accumulation 
of microglia, mediating the occurrence of neuroinflammation, 
and leading to acute spatial memory impairment in mice.[94] 
Hypobaric hypoxia causes significant damage to the hippocam-
pal CA1 region. Hypoxia activates astrocytes and microglia, 
increases pro-inflammatory factor levels, and induces neurode-
generation.[95] With the increase of hypoxia altitude and time, 
the PI3K/Akt/mTOR-HIF-1α signal pathway was gradually 
inhibited. Verbascoside can alleviate damage to hippocampal 
tissue and oxidative stress in vivo and has a certain protective 
effect on the cognitive function damage caused by hypoxia at 
high altitudes.[96] Hypoxic exposure can promote the expression 
of inflammatory factor TNFα in the hippocampus of mice and 
inhibit the expression of neuroprotective genes such as BDNF 
and CREB in the hippocampus; however, Genistein can reverse 
the situation.[97] Hypoxia induces an inflammatory reaction in 
HT22 cells. After treatment with dexmedetomidine, the level of 
MMP relatively increased. TNF-α expression level was relatively 
low, which inhibits the occurrence of inflammatory reaction.[98] 
After moderate hypoxia, the number of immunopositive neu-
rons in the dorsal hippocampus and abdomen increased, which 
may have been caused by the activation of intermediate neurons 
containing neuropeptide Y.[99]

Acute hypoxia can promote the activation of microglial type 
M1 and reduce the activation of microglial type M2, accompa-
nied by an increase in related pro-inflammatory cytokines and 
chemokines and a decrease in anti-inflammatory cytokines.[100] 
Acute hypobaric hypoxia exposure promotes hippocampal 
TLR-4, and Tongxinluo intervention can inhibit TLR4/Myeloid 
differentiation primary response protein 88/NF-κB. Activating 
the B signaling pathway can reduce the expression of the above 
inflammatory factors, reduce the inflammatory reaction in the 
hippocampus, and improve brain edema.[101]

Chronic intermittent hypoxia induces inflammation both in 
vivo and in vitro in mice, leading to inflammatory responses 
and neuronal apoptosis in the hippocampus. The SUMO-
specific protease reverse inflammatory responses.[102] Chronic 
intermittent hypoxia promotes the activation of microglia and 
expression of pro-inflammatory factors in the rat hippocampus, 
impairs the learning and memory abilities of rats, and affects 
cognitive function.[103] Chronic intermittent hypoxia via NF-κB-
mediated c-Jun N-terminal kinase signaling pathway promotes 
the expression of inflammatory factors in the hippocampus, 
which leads to severe oxidative stress in the hippocampus and 
impairs cognitive function.[104] Chronic intermittent hypoxia 
promotes the production of hippocampal TNFα and interleukin- 
1 β. Propofol significantly improved cognitive function in mice, 
possibly related to its inhibition of hippocampal inflammatory 
response.[105] Chronic intermittent hypoxia promotes the expres-
sion of inflammatory factors in the hippocampus, induces an 
oxidative stress response, and leads to depression-like behavior 
in rats.[106] Intermittent hypoxia promoted malat1 and NOD-, 
LRR- and pyrin domain-containing protein 3 (NLRP3) expres-
sion in hippocampal neurons, which was negatively correlated 
with the expression of mir-224-5p. MALAT1 can affect the 
expression of NLRP3 by regulating mir-224-5p, while up- 
regulating mir-224-5p can reduce the inflammatory activation 
of microglia and ultimately regulate NLRP3/IL-1 in the hippo-
campus.[107] IH-induced cognitive impairment is closely related 
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to oxidative stress injury in hippocampal neurons. Compared 
with the CA3 region, CA1 region is more vulnerable to oxidative 
stress. Edaravone can reduce hippocampal damage by clearing 
excess ROS to normalize the oxidative balance.[108] Intermittent 
hypoxia induces inflammatory factors P2X7 receptor(P2X7R) 
and TNFα in the rat hippocampus; when the concentration of 
P2X7R is increased and the expression of P2X7R is inhibited, 
the transformation from M1 to M2 type microglia is inhibited, 
and the expression level of pro-inflammatory factors in the hip-
pocampus is decreased.[109] Intermittent hypoxia promotes the 
expression of neuroinflammatory factors and inflammatory 
changes in microglia of the dorsal hippocampus by affecting 
cognitive function in mice.[110] Intermittent hypoxia promotes 
Peroxisome proliferator-activated receptor γ post-translational 
modification and can cause inflammation and neuronal apop-
tosis, leading to cognitive impairment.[111] Intermittent hypoxia 
leads to oxidative stress injury and cognitive impairment in 
mice; Peroxisome proliferator-activated receptor γ pioglitazone, 
an agonist, can improve oxidative stress injury and cognitive 
impairment caused by intermittent hypoxia.[112]

Hypercapnia can promote the activation of the NLRP3 
inflammasome in microglia activated by hypoxia and pro-il-1 
(Cut to IL-1), which can then induce the inflammatory reaction 
of the central nervous system, leading to the apoptosis of hippo-
campal neurons and aggravating the damage to cognitive func-
tion.[113] After hypoxic preconditioning, the expression of NF-kB 
and phosphorylated CREB increases in the dentate gyrus of rats, 
increasing immune reactivity and brain tolerance to hypoxia.[114] 
After hypoxia and reoxygenation, the expression of inflamma-
tory genes in the hippocampus increases.[115]

3.5. Oxidative stress, apoptosis, and autophagy

Hypoxia for 6h in HT22 mouse hippocampal cells promoted 
PGRN expression, leading to brain injury.[116] Hypoxia-
induced oxidative stress in the hippocampus promotes 
memory and cognitive impairments, leading to neurodegen-
eration.[117] Hypoxia increases lactate dehydrogenase (LDH) 
and intracellular calcium overload, reduces total superoxide 
dismutase activity, increases malondialdehyde levels, and pro-
motes oxidative stress and apoptosis.[118] The antioxidant sys-
tem in the brain was damaged, and the cells were apoptotic 
when rats were exposed to 7% oxygen for 6 hours. Compared 
to the cortex, apoptosis of hippocampal neurons is more obvi-
ous.[119] Hypoxia for 18 hours promotes the expression of 
HIF-1α, leading to loss of mitochondrial membrane potential, 
nerve cell rupture, and apoptosis.[120] Hypoxia inhibits BDNF 
expression and reduces the anti-apoptotic ability of hippocam-
pal neurons.[121] The learning and memory abilities of rats are 
impaired in natural high-altitude hypoxic environments. As 
mitochondrial damage in hippocampal neurons increases, neu-
ronal apoptosis increases and nerve regeneration decreases.[122] 
Hypoxia can also increase the unfolded protein response, pro-
mote apoptotic signal transduction, and increase tau phos-
phorylation, leading to cell dysfunction.[123] After treatment 
with melatonin, malondialdehyde expression and apoptosis in 
the hippocampus decreased.[122] Hypoxia promotes the com-
bination of HIF-1α and hypoxia response elements, impairs 
the hypoxia tolerance of NMR hippocampal neurons, and 
induces apoptosis of hippocampal neurons. Studies have found 
that after 8 h of hypoxia, the protein in hippocampal neurons 
increased, which may be caused by the increased expression 
of HIF-1α, further reducing the apoptosis of neurons caused 
by hypoxia.[123] Hypoxia enhances the migration of neural 
stem cells, causes cell death, and contributes to the survival 
of newborn cells in the hippocampus.[124] The damage caused 
by hypoxia to hippocampal neurogenesis and cell death can 
be reversed by melatonin, which may be through inhibition 
of the activation of hippocampal NF-κB.[125] The autophagic 

activity of the hippocampal neurons was relatively low. When 
rats are exposed to hypoxia, the protein level of autophagy 
markers in the hippocampus is low, which indicates the vul-
nerability of hippocampal CA1 neurons to some extent. In the 
hippocampus, the exposure to hypoxia resulted in a decreased 
autophagy marker, which was followed by activation of the 
autophagy-related gene expressions.[126]

Hypobaric hypoxia exposure promotes the expression of 
apoptotic proteins in the hippocampus, which may be related 
to the increased expression of c-Jun N-terminal kinase, and 
the depletion of keratin 18 may be a possible mechanism.[127] 
Hypobaric hypoxia promotes the leakage of LDH and the 
expression of apoptotic proteins, leading to oxidative stress, 
excitotoxicity of glutamate, and neurodegeneration.[128]

Chronic intermittent hypoxia promotes the apoptosis of hip-
pocampal neurons and affects the spatial learning and mem-
ory abilities of rats.[129] Intermittent hypoxia promotes the 
expression of superoxide dismutase in hippocampal neurons, 
leads to oxidative stress and apoptosis, causes spatial reference 
and working memory disorders in rats, and leads to cognitive 
impairment.[130] Intermittent hypoxia increases the expression of 
apoptotic proteins in the hippocampus and prolongs the escape 
latency in rats, suggesting that their learning and spatial mem-
ory abilities are impaired.[131] Intermittent hypoxia promotes 
autophagy in hippocampal neurons, resulting in chromatin con-
centration, cell fragmentation, and a reduced quantity of hippo-
campal neurons.[132]

After 6 hours of sublethal hypoxia, the synthesis of nitric 
oxide synthase increased, leading to cell necrosis in the hip-
pocampus and cortex.[133] Ischemia and hypoxia lead to 
developmental disorders of hippocampal neurons, character-
ized by hippocampal atrophy, decreased neuronal count, and 
increased cell apoptosis. Hypoxia ischemia injury leads to 
increased expression of key molecules regulating apoptosis in 
the hippocampal CA1 region, resulting in apoptosis of hip-
pocampal astrocytes and further leading to neuronal degen-
eration.[134] After moderate focal ischemia and hypoxia, many 
hippocampal neurons were damaged and atrophied. Light 
microscopy shows that dead neurons are similar to apoptotic 
neurons.[135] Hydrogen sulfide protects rat hippocampal neu-
rons from hypoxia-reoxygenation (H/R) injury by promoting 
RhoA phosphorylation of ser188 and reducing the leakage 
of LDH and neuron-specific enolase (NSE). After hypoxic 
reoxygenation, cell viability is damaged, resulting in the leak-
age of LDH and NSE.[136] Sodium cyanide induces chemical 
ischemia and hypoxia in hippocampal neurons by promoting 
the production of prostaglandin G/H synthase 2, resulting in 
increased hippocampal neuronal nuclear fragmentation and 
decreased cell viability. Hydroxygentine exerts neuroprotec-
tive effects by inhibiting the production of prostaglandin G/H 
synthase 2.[137] Hypoxic preconditioning can improve hypoxia 
tolerance, maintain the stability of hippocampal formation, 
and protect the hippocampus from hypoxic damage by acti-
vating endogenous antioxidant defense systems.[138] Hypoxic 
reoxygenation for 6 h induces oxidative stress in cells, leading 
to apoptosis, which is related to a decrease in miR-200 family 
expression.[139] Hypoxic reoxygenation can also damage the 
mitochondrial membrane potential in the hippocampus, result-
ing in increased ROS production and decreased antioxidant 
capacity.[140]

3.6. Mitochondria and metabolism

Hypoxia reduces the rate of mitochondrial oxygen consumption 
induced by ADP in the mouse hippocampus, whereas a ketogenic 
diet increases the rate of oxygen consumption and the expres-
sion of mitochondrial division and fusion proteins in the mouse 
hippocampus.[141] Under mild hypoxia, neurons may reduce 
apoptosis of hippocampal neurons by upregulating lactate 
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dehydrogenase A expression.[142] Hypoxia causes mitochondrial 
dysfunction, increased excitotoxicity, and neurodegeneration in 
rat hippocampal neurons, which may be related to the regula-
tion of mitochondrial biogenesis by ERK-nuclearfactor eryth-
roidderived 2-like 2.[143] Hypoxia combined with hypercapnia 
promotes the expression of proteins related to the permeability 
regulation of blood-brain barrier in the hippocampus, leading to 
the destruction of blood-brain barrier in SD rats.[144] Rhodiola 
rosea can resist hypoxic injury by inhibiting the opening of the 
mitochondrial membrane transport pore, preventing changes in 
mitochondrial membrane potential and the difference in Ca2+ 
concentration inside and outside the mitochondrial membrane, 
increasing the expression of Bcl-2, reducing the expression of 
Caspase3, and inhibiting neuronal apoptosis.[145] In addition, 
hypoxia can lead to reduced expression of glycolytic genes, such 
as glycerate kinase 1, in the hippocampal tissue, and its expres-
sion decreases with age.[2] Hypoxia leads to lipid peroxidation 
and DNA damage in the hippocampal neurons, and the molec-
ular chaperone heat shock protein 90 is involved in this patho-
logical process.[146] Severe hypoxia can promote hippocampal 
DNA fragmentation and reduce thiobarbituric acid-reactive 
substances, whereas hypoxic postconditioning can inhibit these 
phenomena and protect hippocampal neurons.[147] Under severe 
hypobaric hypoxia, the expression of glucose-6-phosphate 
dehydrogenase and the levels of NADPH and total glutathione 
in the rat hippocampus decreased. After post-treatment, the 
activity of glucose-6-phosphate dehydrogenase was restored, 
and the levels of NADPH and total glutathione increased slowly, 
reducing neuronal death of neurons.[148] Curcumin intervention 
can improve the decrease in dendritic spine density, synaptic 
damage, and learning and memory impairment of hippocam-
pal neurons induced by hypoxia by regulating phenylalanine 

metabolism, glucose metabolism, and bile acid synthesis in the 
hippocampus of hypoxia-exposed mice.[149]

Acute hypobaric hypoxia leads to an increase in lipid peroxide 
content and free radicals in hippocampal neurons.[150] Acute high 
altitude hypoxia affects the level of energy metabolism in rats, 
which shows that the mitochondrial membrane potential of hip-
pocampal neurons, mitochondrial respiratory chain complexes Ⅰ, 
Ⅲ and Ⅳ and ATPase activity are significantly decreased. After 
well point bloodletting, the above situation was improved, which 
may be related to the reduction of mitochondrial autophagy level 
mediated by PI3K-Akt-mTOR signaling pathway.[151]

Chronic hypoxia leads to the formation of immature den-
dritic cells by altering energy metabolism and neurotransmitter 
transmission in the hippocampus, which affects fear memory 
in the hippocampus.[152] Chronic hypobaric hypoxia exposure 
promotes the expression of aging proteins in the hippocampus, 
inhibits tau expression, and leads to a decline in learning and 
memory abilities in rats. Changes in the protein metabolism of 
the hippocampal mitochondrial morphology lead to lipofuscin 
accumulation, which further causes the degeneration of hippo-
campal CA3 neurons.[153]

Chronic intermittent hypoxia can lead to the damage of hip-
pocampal neurons in rats, resulting in the serum HIF-1α. NSE 
concentration increased; however, with the extension of hypoxia 
time, serum HIF-1α expression increased after the intervention 
of Dazhu Hongjingtian, and the damage of hippocampal neu-
rons was improved.[154] Chronic intermittent hypoxia results 
in a decrease in body weight and hippocampal weight in rats 
and metabolic changes in the hippocampal tissue, including a 
decrease in glutamate levels.[155] Studies have found that chronic 
intermittent hypobaric hypoxia can alleviate the decline in mito-
chondrial membrane potential and outflow of the mitochondrial 

Figure 2.  Impact of hypoxia on the hippocampus. Various types of hypoxia affect the morphology and function of the hippocampus to varying degrees, and 
ultimately affect the body.
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apoptosis promoter protein cytochrome c during cerebral isch-
emia.[156] Huperzine A alleviates chronic intermittent hypoxia- 
induced hippocampal neuronal apoptosis, oxidative stress, 
and synaptic plasticity damage by reducing iron deposition in 
mouse brains.[157] Intermittent hypoxia promotes the generation 
of oxygen free radicals, reduces the number of mitochondria, 
and affects the morphology and structure of the hippocampus 
in rats.[158] Intermittent hypoxia leads to the damage of mul-
tiple cognitive domains in the hippocampus, and the level of 
substance metabolism in the hippocampus increases, suggesting 
that the damage of cognitive domains may be related to the loss 
of hippocampal function.[159] Intermittent hypoxia affects the 
level of oxidative bases in hippocampal mitochondrial DNA 
(mtDNA) and the expression of key enzymes for mitochondrial 
base excision repair at the gene level and significantly reduces 
the contents of total mtDNA1 and mtDNA3.[160]

Hypoxic preconditioning changes the metabolic patterns 
in the serum and hippocampus of mice, and the metabo-
lism of glutathione, alanine, aspartate, and glutamate in the 
hippocampus changes significantly.[161] Hypoxia precondi-
tioning enhances the expression of Thioredoxin-2 in hippo-
campal mitochondria, which may be a reactive regulator of 
hypoxia.[162] Hypoxic preconditioning exerts neuroprotective 
effects by affecting energy metabolism in hippocampal cells 
through the mTOR/autophagy signaling pathway.[163] The 
main source of NADPH in the brain is the pentose phosphate 
pathway, which is involved in glucose metabolism. Studies 
have found that Timely supplementation with NADPH after 
ischemia or hypoxia can improve oxidative stress, apoptosis, 
and neuronal loss in the hippocampus.[164] Hypoxic reoxygen-
ation promotes the expression of apoptosis-inducing factor, 
mitochondrial division-related proteins and Rho a protein 1 
and damages hippocampal neurons.[165] Hypoxia treatment can 
promote lipopolysaccharide to increase the level of chemokine 
ligand 10 in the serum and hippocampus of mice, and its mech-
anism is related to NF-kB signaling pathway activation.[166]

4. Conclusions
Changes in oxygen concentration affect the hippocampal mor-
phology and structure. Morphological and functional changes 
in the hippocampus are affected by hypoxia type, hypoxia time, 
and oxygen concentration. Hypoxia affects hippocampal learn-
ing and memory ability, oxidative stress level, neuron develop-
ment, and metabolism (Fig. 2). Further intervention and the 
discovery of therapeutic targets will help stabilize hippocam-
pal function under hypoxia. It is expected that in the future, 
there will be more means to treat the consequences of abnormal 
changes in the hippocampus under hypoxic environments and 
develop an effective defense.
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