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Abstract

Background: Accurate inference of the evolutionary history of a tumor has important implications for
understanding and potentially treating the disease. While a number of methods have been proposed to reconstruct
the evolutionary history of a tumor from DNA sequencing data, it is not clear how aspects of the sequencing data and
tumor itself affect these reconstructions.

Methods: We investigate when and how well these histories can be reconstructed from multi-sample bulk
sequencing data when considering only single nucleotide variants (SNVs). Specifically, we examine the space of all
possible tumor phylogenies under the infinite sites assumption (ISA) using several approaches for enumerating
phylogenies consistent with the sequencing data.

Results: On noisy simulated data, we find that the ISA is often violated and that low coverage and high noise make it
more difficult to identify phylogenies. Additionally, we find that evolutionary trees with branching topologies are
easier to reconstruct accurately. We also apply our reconstruction methods to both chronic lymphocytic leukemia and
clear cell renal cell carcinoma datasets and confirm that ISA violations are common in practice, especially in
lower-coverage sequencing data. Nonetheless, we show that an ISA-based approach can be relaxed to produce
high-quality phylogenies.

Conclusions: Consideration of practical aspects of sequencing data such as coverage or the model of tumor
evolution (branching, linear, etc.) is essential to effectively using the output of tumor phylogeny inference methods.
Additionally, these factors should be considered in the development of new inference methods.
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Background
Cancer is caused by somatic mutations in a single founder
cell that lead to the unrestrained proliferation of the
descendants of that cell. According to the clonal theory of
cancer [1], descendants of the founder cell will continue
to acquire new somatic mutations that may drive disease
progression. Since different descendants acquire distinct
mutations, the history of a tumor can be described as a
type of phylogenetic tree. In these trees, vertices repre-
sent tumor cell populations, or clones, each with their
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own set of somatic mutations, and edges represent ances-
tral relationships between populations. Several different
models of tumor evolution have been proposed, includ-
ing linear, branching, neutral, and punctuated evolution
[2–4], describing different patterns of how and when new
tumor populations arise. As a result of these evolutionary
processes, a tumor itself may be a heterogeneous mix of
different tumor cell populations.

A number of recent studies have highlighted the preva-
lence of such intra-tumor heterogeneity [5–7] across many
different cancer types. Computational methods for ana-
lyzing intra-tumor heterogeneity, including characteriza-
tion of the populations in a particular tumor and how they
evolved, have important implications for understanding
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and, ultimately, treating the disease [8, 9]. For exam-
ple, cancer types that are typically detected late in the
tumor’s evolution, such as pancreatic cancer, often have
poor prognosis [10]. Intra-tumor heterogeneity may play
a key role in therapeutic failure in such instances if the
treatment only targets certain tumor cell populations [11].
Treatment strategies that take the evolutionary history
of a tumor into account by specifically targeting clonal
mutations (those present in every tumor cell) [12] or that
combine drugs based on a patient’s specific tumor evolu-
tionary history [13] have the potential to be more effec-
tive. However, for such approaches to be feasible, there is
an imperative need for better approaches to inferring and
analyzing the evolutionary history of a single tumor.

There has been an increased recent interest in compu-
tational methods that use noisy DNA sequencing data to
reconstruct the evolutionary history of a tumor in terms
of ancestral relationships between somatic mutations.
A number of recent approaches have focused on using
single-cell sequencing data to reconstruct tumor phyloge-
nies [14–16]. Ultimately, such methods have the promise
to provide improved resolution for such reconstructions.
However, currently single-cell sequencing still suffers
from both high error rates and high cost. While techno-
logical and methodological developments are beginning
to alleviate these issues, the majority of the currently
available data is still from bulk sequencing experiments.
Specifically, most large scale cancer studies such as The
Cancer Genome Atlas (TCGA) and the International Can-
cer Genome Consortium (ICGC) have made this type of
data widely available. Thus, there is still much to be gained
from methods that analyze bulk data, while single-cell
methods continue to mature. Therefore, we focus here on
the data from more economical bulk sequencing. How-
ever, there are still many challenges and sources of error
in this type of data. In bulk sequencing, collections of
potentially heterogeneous cells are sequenced together,
which obfuscates the coincidence of mutations. Sources of
error include the sequencing process, read alignment, and
variant calling algorithms. Thus, specialized methods are
required to robustly analyze noisy bulk sequencing data.

Many recent computational methods have been devel-
oped to infer tumor phylogenetic trees using multi-sample
bulk sequencing data. A large fraction of these meth-
ods consider only single nucleotide variants (SNVs) [17–
21] and use rules regarding the observed frequencies of
each such mutation to identify possible ancestral rela-
tionships. In particular, these methods use the infinite
sites assumption (ISA), which states that any locus in the
genome mutates at most once during the history of tumor,
a simplification that makes the underlying computational
problem more tractable. For example, AncesTree [17] con-
structs a graph called the ancestry graph using mutation
frequencies and then finds spanning trees of that graph

adhering to the ISA. However, increasing reports that the
ISA is often violated in cancer [22] have led to the develop-
ment of methods that relax the ISA in some contexts [16,
23]. Some methods also consider structural variants or
copy number aberrations [24–27] in addition to SNVs, but
this has proven challenging. Finally, several methods allow
for multiple tumor evolutionary trees consistent with a
given sequencing dataset by enumerating these trees [18,
26, 27]. Along these lines, a recent paper [28] observed
that multiple such trees typically exist in noise free simu-
lations. However, it is unclear how the conclusions from
that work are affected by the variety of sources of noise
present in bulk sequencing data and to what extent these
conclusions apply to real sequencing data. Finally, it is not
obvious how existing tumor phylogeny inference methods
are affected by the distinct tree topologies resulting from
different models of tumor evolution such as branching or
linear [2].

In this paper, we investigate several extensions to the
ancestry graph approach of [17], which relies on the ISA,
and quantify when and how well this approach can recon-
struct tumor evolutionary histories from multi-sample
bulk sequencing data. In particular, we focus on the per-
formance of this method when applied to noisy data.
Our specific methodological contributions include: (1) a
relaxation of the ancestry graph approach that makes it
more robust to noise; and (2) a method for simplifying
the ancestry graph that leads to reduced computational
costs. Furthermore, our contributions include extensive
analysis of the effects of coverage, noise, evolutionary tree
topology, and other parameters in reconstructing clonal
trees in simulated data. This analysis has numerous poten-
tial future implications for both experimental design and
algorithm development. Finally, we apply our methods to
cancer sequencing datasets from two studies [29, 30].

Methods
This section is organized as follows. We begin by outlining
the existing ancestry graph method [17] and then formal-
ize the new problem of using this method to enumerate
all tumor phylogenies consistent with a particular dataset.
We then describe a relaxation that improves the method’s
robustness to noise, and introduce a graph simplification
that reduces computational cost. Finally, we describe our
data simulation procedure and our tree evaluation metric.

Problem Formalization
Definitions
We use s to denote the number of samples sequenced
from a tumor and n to denote the number of mutations
observed across all samples. We label these mutations
1, . . . , n. The s × n variant allele frequency (VAF) matrix F
stores in entry Fij the fraction of reads from sample i con-
taining mutation j. A clonal tree T (or tumor phylogeny)
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is a rooted tree on n nodes with each node labeled by
a distinct mutation. Nodes may also be labeled with dis-
joint sets of mutations, with a corresponding decrease in
the number of nodes. Each node represents a tumor cell
population that contains all mutations along its root-node
path. The infinite sites assumption (ISA) guarantees that a
clonal tree is a perfect phylogeny where mutations evolve
without homoplasy. Because of this, we can also represent
the tree as an n×n clonal matrix B, in which B�j = 1 if cell
population � contains mutation j and 0 otherwise. Finally,
the s × n usage matrix U stores in Ui� the proportion of
cells in sample i that belong to population �.

The VAFFP and the Ancestry Graph
The authors of [17] formalized the Variant Allele Fre-
quency Factorization Problem (VAFFP), also called the
Perfect Phylogeny Mixture Problem in [28], as follows:

Given: A VAF matrix F.
Find: A usage matrix U and a clonal matrix B such that:

F = 1
2

UB. (1)

The 1/2 factor appears because we assume that all
mutations are heterozygous SNVs (implicitly assuming no
copy number aberrations). The VAFFP has been shown to
be NP-complete [17], but in practice, many datasets are
small enough that finding solutions is feasible.

The authors of [17] describe a method for solving the
VAFFP using the ancestry graph of F (see Fig. 1 for a
visual overview of this approach). In order to avoid con-
fusion, we will often refer to the ancestry graph as the
strict ancestry graph. The ancestry graph GF contains n
nodes, one labeled by each mutation. Additionally, GF
includes a directed edge from node j to node k if Fij ≥
Fik ∀i ∈ {1, . . . , s}. These edges encode the ancestry condi-
tion: under the ISA, an ancestral mutation must be more
frequent than a descendant mutation. The possible clonal
trees are exactly the set of directed spanning trees of GF
that adhere to the sum condition (2). Using C(j) to denote
the children of mutation j in a clonal tree T, the sum
condition requires that:

∑

k∈C(j)
Fik ≤ Fij ∀i ∈ {1, . . . , s}. (2)

That is, the sum of observed frequencies of sibling muta-
tions in a clonal tree cannot exceed the frequency of their
parent mutation in any sample.

Every spanning tree T of GF that adheres to the sum
condition corresponds to a VAFFP solution (see the right-
most part of Fig. 1 for examples). The clonal matrix B can
be constructed from T by tracing through each root-leaf
path in T. The matrix U can be efficiently computed using
the following equation from [17]:

Uij = 2
(

Fij −
∑

k∈C(j)
Fik

)
. (3)

The Enumeration Variant Allele Frequency Factorization
Problem (E-VAFFP)
Here, we define the focus of our work, the enumeration
version of the VAFFP.

Given: A VAF matrix F.
Find: The set T (GF) of all trees that span the ancestry

graph GF and adhere to the sum condition.
We say that an E-VAFFP solution exists or that F admits

an E-VAFFP solution when T (GF) �= ∅. In this paper, we
explore the relationship between T (GF) and the under-
lying tumor evolutionary tree, and present several relax-
ations and extensions to the E-VAFFP.

Finding and Counting E-VAFFP Solutions
In order to solve the E-VAFFP, we employ a modified ver-
sion of the Gabow-Myers algorithm [31]. Specifically, this
algorithm uses a structured depth-first search in order to
recursively construct all spanning trees of the graph. It is
straightforward to modify this approach to avoid execu-
tion branches that violate the sum condition, as has been
done previously by [19, 26, 28]. Additionally, we note that
the number of such spanning trees of GF is the product
of its non-root in-degrees [28, 32]. This provides an upper
bound on |T (GF)|.

Fig. 1 Overview of the clonal tree inference process. From left to right: multiple samples are taken from a heterogeneous tumor, either from
different anatomical sites or different times; the samples are sequenced, the resulting reads are aligned to a reference genome, and variants are
called; the VAF matrix is built from the reference and variant read counts; we build an ancestry graph from the VAF matrix; each ancestry graph
spanning tree that adheres to the sum condition is a candidate clonal tree, two of which are shown. Notice that the second tree could be
discounted if we were aware of mutation co-occurrence, because the dark blue and green mutations always appear together in the tumor
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Relaxing the E-VAFFP
Approximate Ancestry Graph
Real DNA sequencing data is often quite noisy, but the E-
VAFFP assumes that F is measured exactly. In real data,
GF often has no spanning trees. To handle less idealized
data, we use a method based on the probabilistic approach
from [17]. This approach defines the approximate ances-
try graph of F : a complete n-node directed graph with
nodes labeled by mutations and edges (j, k) weighted by
the probability that mutation j is ancestral to mutation k
given their observed frequencies. To calculate this prob-
ability, we model reads as being drawn from a binomial
distribution with a flat prior on the proportion parame-
ter. Thus, we model the resulting posterior distribution for
the VAF of mutation j in sample i with observed variant
and reference read counts vij and rij, respectively, with the
beta-distributed random variable Xij ∼ Beta(vij+1, rij+1),
as done in [17]. If Xij ≥ Xik , then this provides evidence
that mutation j is ancestral to mutation k. The overall
probability that j is ancestral to k is defined based on the
sample with the weakest evidence:

Pr[ j ancestral to k] := min
i

Pr[ Xij ≥ Xik] (4)

The probabilities on the right hand side of (4) can be
calculated from the read counts that generate F using
the approach described in [33], as both of the random
variables Xij and Xik are beta-distributed.

Just as we did in the strict ancestry graph, we can also
use the Gabow-Myers algorithm [31] to enumerate all
spanning trees of the approximate ancestry graph whose
observed frequencies satisfy the sum condition. In this
context, we refer to such trees as valid spanning trees.
Once these are computed, we can then select the most
probable (i.e. max weight) tree. Alternatively, if the graph
has too many spanning trees to fully enumerate, we can
use the algorithm of [34] to list weighted spanning trees in
descending weight order until we find one satisfying the
sum condition. Unlike Gabow-Myers, this algorithm is not
easy to modify to include the sum condition. Using this
method, we can potentially find the most probable clonal
tree without the need to enumerate every tree. However,
this approach may be significantly slower when no valid
spanning trees exist as the method is forced to explore
the entire space of spanning trees rather than just those
satisfying the sum condition.

Note that the approximate ancestry graph does not
yield more E-VAFFP solutions than the strict ancestry
graph. Any tree that violates the sum condition in the
strict graph will necessarily violate it in the approximate
graph, because the sum condition only depends on the
VAF matrix F. Additionally, any approximate graph span-
ning tree not present in the strict graph must violate the

ancestry condition (and thus the sum condition), since it
includes an edge not present in the strict graph.

Nonetheless, the approximate ancestry graph still pro-
vides two key benefits. First, it orders solutions by like-
lihood, and second, it allows us to explore novel tree
topologies not present in the strict graph if we also weaken
the sum condition.

Relaxed Sum Condition
Adding leniency to the sum condition allows the identifi-
cation of possible clonal trees rendered invalid by noise.
For a small error threshold ε, we can relax the sum condi-
tion to require that:

∑

k∈C(j)
Fik ≤ Fij + ε ∀i ∈ {1, . . . , s} (5)

We then can identify the smallest ε resulting in one valid
spanning tree. In other words, we find the spanning tree
with the smallest maximal sum condition violation. We
note that [19] also relaxes the sum condition in this way,
but does not use it in conjunction with an approximate
ancestry graph.

Pruning Transitive Edges
The number of spanning trees of an n-node DAG grows
exponentially with n when the average in-degree is held
constant. Even with only 20 mutations, the number of
spanning trees of GF can exceed 1017, making clonal
tree inference extremely slow. We therefore explore the
removal of transitive edges from the ancestry graph as a
means of reducing the spanning trees present in the graph
while maintaining core ancestral relationships (see Fig. 2).
This approach may be especially useful if the underlying
tumor has a branching rather than a linear topology.

For a directed acyclic graph G, we say that an edge
(u, v) ∈ G is k-transitive if there is a path from u to v of
length k (see Fig. 2b). Additionally, we define an edge to be

Fig. 2 Example of partial transitive reduction. a An ancestry graph GF .
b The transitive edges in GF . The red edges are 3-transitive and the
blue edges are 2-transitive. c The 3-PTR of GF . d The transitive
reduction of GF ; equivalently, the 2-PTR of GF
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≥ k-transitive if it is i-transitive for some i ≥ k. By remov-
ing all ≥ k-transitive edges from G for a chosen k, we
can reduce the number of spanning trees while maintain-
ing the general structure of G. We call the graph resulting
from removing all ≥ k-transitive edges the k partial tran-
sitive reduction (k-PTR) of G. Note that the 2-PTR is the
standard transitive reduction [35] of a graph (see Fig. 2d).
To construct the k-PTR of G, we first find the transitive
reduction R of G using Hsu’s algorithm [36]. Then, we can
easily identify if (u, v) is ≥ k-transitive by checking the
path length from u to v in R. We can do this efficiently by
pre-computing the all-pairs shortest path matrix of R with
n breadth-first searches.

Simulating Noisy VAF Data
We use simulated data to assess our methods. Our data
simulation process consists of four steps: (1) randomly
generate an evolutionary tree topology, (2) choose the cel-
lular frequencies, (3) determine the mutation frequencies,
and (4) draw variant reads from a binomial distribution,
allowing direct computation of F.

Given the number of mutations n, the number of sam-
ples s, and the average sequencing coverage c, we first
generate a random tumor phylogeny T, referred to as the
underlying tree for the simulation, and an s×n VAF matrix
consistent with T. For simplicity, each clone acquires
exactly one new somatic mutation, so we also call n the
number of clones. We construct T iteratively by adding
each mutation as the child of a random node already in
T. From T, we compute the clonal matrix B described
in a previous section. We then generate the cellular fre-
quencies of the n clones. Clone i is assigned frequency
ui such that

∑
i ui = 1. To pick u1, . . . , un, we sample

uniformly from all possible frequency values using the
standard simplex method from [37].

We then calculate the tumor’s mutation frequencies.
Using the row vectors 	f and 	u to store mutation and
cellular frequencies, respectively, we find 	f using (1):

	f = 1
2

	uB (6)

Finally, we simulate reads taken from the s samples.
For simplicity, we assume the tumor is completely mixed,
so that the expected cellular composition of each sample
matches that of the tumor. For each sample i and for each
mutation j, we simulate rij ∼ Poisson(c) reads, where c is
the mean coverage. We then draw the number of variant
reads vij of mutation j in sample i from a binomial distri-
bution: vij ∼ Binom(rij, fj). The s × n VAF matrix F then
contains entries Fij = vij/rij.

Additionally, we simulate sampling and sequencing
noise by adding overdispersion to the binomial distribu-
tion. We replace fj with a beta-distributed random variable

with mean fj. The beta distribution parameters α and β

are chosen to be:

α = (1 − ρ)

ρ
fj β = (1 − ρ)

ρ
(1 − fj)

where ρ ∈ (0, 1) is the overdispersion parameter. This
results in a beta distribution with mean fj and with vari-
ance proportional to ρ. We simulate sequencing data with
less noise by setting ρ closer to 0 and more noise by set-
ting ρ closer to 1. The case when ρ = 0 corresponds to no
overdispersion.

Evaluation of Reconstructed Trees
To quantify the quality of the clonal trees we enumerate,
we use the mean ancestor-descendant (A-D) distance [38]
between trees in T (GF) and the underlying tree T. Note
that standard phylogenetic distance measures, including
Robinson-Foulds [39], do not apply to clonal trees since
they contain internal node labels. To quantify the useful
information gained from our solutions, we measure how
much more similar trees in T (GF) are to the underly-
ing tree than an equal number of random trees. Formally,
with AD(S) denoting mean A-D distance between trees
in the set S and the underlying tree, we define the A-D
improvement to be

AD(random) − AD(T (GF))

AD(random)
. (7)

A-D improvement measures the proportional decrease in
incorrect ancestral relationships relative to the random
baseline. For example, an A-D improvement of 0 means
that trees in T (GF) are no better than random, while an A-
D improvement of 1 means that T (GF) = {T}, the correct
tree.

Results
We investigated strict and approximate E-VAFFP solu-
tions both in simulated noisy data and in two real datasets
of 3 chronic lymphocytic leukemia (CLL) patients from
[29] and 7 clear cell renal cell carcinoma (ccRCC) patients
from [30]. We also separately evaluated the usefulness of
pruning transitive edges from the strict ancestry graph.

Evaluation of E-VAFFP Solutions on Simulated Data
We first present findings on the existence and quality of
E-VAFFP solutions in simulated noisy DNA sequencing
data. We begin by describing how parameters affect the
likelihood of finding compatible trees and then address
how similar those inferred trees are to the underlying tree.
Lastly, we examine how the topology of the underlying
tree affects T (GF).

E-VAFFP Solution Existence
In simulated data, we found that there are typically no E-
VAFFP solutions due to sum condition violations. With
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more clones, more samples, lower coverage, and higher
noise, the probability of finding a solution decreases fur-
ther. We generated 10000 simulated datasets and ran
the ancestry graph method for each parameter value (n
between 3 and 12, s between 1 and 15, coverage between
50× and 200×, and ρ between 0 and 0.09). We then com-
puted the proportion of trials with at least one E-VAFFP
solution, which we call solvable trials. We tested each
parameter individually, with default values of n = 10,
s = 5, 60× coverage, and ρ = 0.

With all parameters at their default settings, the pro-
portion of solvable trials was only 14%. Increasing the
coverage caused a dramatic increase in this fraction, up to
47% at 200× coverage. On the other hand, higher overdis-
persion had a strong negative effect on solvable trials, with
89 of the 10000 trials solvable at ρ = 0.09. High sam-
ple count had an equivalently strong negative impact, with
only 103 trials exhibiting an E-VAFFP solution at s = 15.
Corroborating these findings, we also found that E-VAFFP
solutions rarely exist in lower-coverage real data, which
we discuss in a later section.

E-VAFFP Solution Quality
We found that when using default parameters, the trees
in T (GF) showed a mean A-D improvement of 0.64. This
corresponds to a retention of 64% of ancestral patterns in
the data missed by the random baseline. Increasing the
number of clones n makes valid solutions more rare and
further decreases the quality of solutions when they do
appear. Conversely, increasing the number of samples s
shows an improvement in the similarity of trees T (GF) to
the underlying tree as shown in Fig. 3. The trends we see
here for noisy data correspond to those reported by [28]
on error-free data.

When we conditioned on the existences of solutions, we
counter-intuitively found that higher noise improves solu-
tion quality (see Fig. 3). For instance, high coverage slightly
decreased A-D improvement, from 0.65 at 50× to 0.61 at
200×. In the rare case that solutions existed, trials with

more overdispersion also resulted in better-quality trees,
with an A-D improvement of 0.64 at ρ = 0 and 0.72 at
ρ = 0.09. These findings suggest that spanning trees more
similar to the underlying tree are less likely to be rendered
invalid by noise. Therefore, noise preferentially disqual-
ifies bad trees from T (GF), resulting in a higher mean
A-D improvement. Importantly, the decrease in solution
existence is so dramatic that it swamps these modest qual-
ity gains, making phylogeny inference worse in high-noise
data. For example, the total number of correctly inferred
ancestral relationships in all trials does actually decrease
as we add more overdispersion, since so few trials are
solvable at high ρ.

Effects of Underlying Tree Topology on E-VAFFP Solutions
The topology of a tumor’s underlying evolutionary tree
can have a strong effect on the accuracy of reconstruction
methods. Trees that are wider (more leaves) and shallower
(lower tree height) than average randomly generated trees
are said to have a branching topology. We find that the
features of a branching topology are more likely to result
in E-VAFFP solutions and have improved solution qual-
ity (see Fig. 4). We also performed these analyses using
two additional measures of tree topology, single child frac-
tion and mean subtree height. Similarly, we found that
trees that have a low single child fraction and a low mean
subtree height (both features of branching trees) also are
more likely to yield E-VAFFP solutions and have improved
solution quality (see Additional file 1).

The reason why E-VAFFP solutions perform better on
branching trees is not immediately obvious. One possi-
ble explanation relates to the effect of simulated noise on
the resulting ancestry graph. If a descendant mutation and
its ancestor have very similar mutation frequencies, then
even a small amount of noise could reverse the order of the
observed frequencies, violating the ancestry condition. In
a totally linear tree, it is possible that each pair of con-
nected vertices has similar frequencies in some sample.
Thus, every edge in the ancestry graph has the potential

Fig. 3 Parameter effects on E-VAFFP solution quality. An A-D improvement of 0 signifies that trees in T (GF) are no better than random, while an
improvement close to 1 signifies that T (GF) are nearly identical to the underlying evolutionary tree. Note that solution quality is measured only
when solutions exist, which may be rare
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Fig. 4 Effects of tree topology on E-VAFFP solution existence and quality. The top row shows the effects of underlying tree height and leaf count on
the fraction of trials with any compatible trees. The bottom row shows the effects of these tree metrics on solution quality. Shallow, wide trees yield
better reconstructions

to be reversed by noise. In contrast, in a totally branch-
ing tree, since all children vertices must adhere to the sum
condition, only one child can have a frequency very similar
to its parent. Thus, fewer edges in the ancestry graph are
likely to be prone to noise. Hence, trees that exhibit more
branching may appear more robust under the E-VAFFP
than linear trees.

Evaluation of Approximate Solutions on Simulated Data
Just as with strict E-VAFFP solutions, we examined the
quality of solutions derived from the approximate ances-
try graph. We also determined the viability of relaxing the
sum condition and investigated the validity of the edge
weighting function used to construct the approximate
graph.

Approximate Solution Existence
Even when the error threshold ε is small, the relaxed sum
condition (5) results in a significant increase in the pro-
portion of solvable trials. We let ε range from 0 and 0.05,
since real data indicated that sum condition overflows are
typically small in practice (Table 2). As we increased ε

in this range, we observed a proportional increase in the
fraction of solvable trials from 14% to 64%. However, there
was also a significant increase in the mean number of trees
in T (GF) from 2000 to 69000, which dramatically slows
down inference. Thus, there is a trade off between the
probability of finding a valid tree and computational cost
of enumerating these trees.

Approximate Solution Quality
The approximate ancestry graph method is founded on
the assumption that the weighting function in Eq. 4 accu-
rately represents the probability that the corresponding
edge exists in the underlying evolutionary tree. If this is
the case, the total weight of a solution tree should be a
measure of its quality, and the max-weight tree should be
the most similar to the underlying tree. We verified this
by comparing the ranks of approximate ancestry graph
spanning trees to their the mean A-D distance from the
underlying tree. We say that the max-weight valid span-
ning tree has rank 1 and that the ith highest weight valid
tree has rank i. We selected the 1104/10000 trials with at
least 100 valid spanning trees and sorted the top 100 trees
in descending weight order. Then, we aggregated statistics
for each tree rank across trials. As expected, we found that
high-weight trees are in fact more similar to the underly-
ing tree than lower weight trees (Fig. 5). Specifically, we
find that the average rank 1 tree has 6.9% smaller A-D dis-
tance to the underlying tree than the average rank 25 tree.
This effect begins to level off as rank increases: the aver-
age rank 25 tree has just 3.4% smaller A-D distance to the
underlying tree than the average rank 100 tree.

We also examined the effects of parameters on the qual-
ity of approximate solutions. Solution quality responds in
the same way to changes in sample count, coverage, and
overdispersion in the approximate ancestry graph as in the
strict ancestry graph. However, we found an intriguing dif-
ference in the response to number of clones n. Choosing
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Fig. 5 Relationship between approximate ancestry graph tree rank
and solution tree quality. High-weight trees are more similar to the
underlying tree than low-weight trees, although the trend levels off
rapidly

the max-weight valid spanning tree of the approximate
graph provides noticeably better solutions than the strict
approach for small n. However, the approximate method
drops off more sharply in quality as n grows, with the
crossover point at n = 6 (see Fig. 6). We suspect this is
due to inherent bias in high-weight approximate spanning
trees, since they become worse than randomly sampled
strict spanning trees (as measured by A-D improvement)
as n grows. We investigate this phenomenon in depth in
the following section. We also found that relaxing the sum
condition caused a gradual linear decrease in the approx-
imate solution quality, from an A-D improvement of 0.54
at ε = 0 to 0.51 at ε = 0.05 when the number of clones is

Fig. 6 Difference in relationship between n and A-D improvement
with strict and approximate ancestry graph methods. As the number
of clones increases, both methods worsen, but the approximate
ancestry graph does so more rapidly

n = 10. The negative effect on quality of relaxing the sum
condition lessens when there are fewer clones, and the
relaxed sum condition may even improve mean solution
quality when n < 6 (see Additional file 3).

Tree Rank in the Approximate Ancestry Graph
As we saw in Fig. 6, the quality of solutions derived from
the approximate ancestry graph falls off more quickly than
the strict E-VAFFP enumeration method as the number
of clones increases. We believe this is due to systematic
bias in high-weight spanning trees. This bias may arise
because edges in the approximate graph are weighted by
the probability that one clone is ancestral to another, but
that edges in fact represent parental rather than ances-
tral relationships. As such, the root node is likely to have
high-weight edges to every other node, even though its
probability of being their direct parent may not be as high.
This would result in high-weight spanning trees that tend
to be shallow and wide.

To assess this conjecture, we gathered data on the rela-
tionship between spanning tree rank in the approximate
graph and the four topology metrics from the previous
section (height, leaf count, single child fraction, and mean
subtree height). We found a strong and consistent trend
that high-weight trees do in fact tend to be shallower and
wider than lower weight trees (Fig. 7). This effect is most
pronounced at low ranks, with average heights of 2.65 at
rank 1, 2.88 at rank 25, and 3.00 at rank 100. Moreover,
the average underlying tree yielding at least 100 solutions
has height 3.09. This shows that high-weight spanning
trees are biased towards branching topologies. We found
the same trend using leaf count, mean subtree height, and
single child fraction. Despite this bias, the max-weight
tree is still, on average, the best choice available among
approximate ancestry graph spanning trees, as seen in the
previous section.

Evaluation of Transitive Edge Pruning
We found that partial transitive reduction (PTR) success-
fully reduces the size of T (GF) while preserving solution
quality. We first compared the solution quality and exis-
tence that result from applying PTRs to the standard
ancestry graph method. Next, we counted the average
and maximum number of ancestry graph spanning trees
as a measure of performance improvement due to PTR
(Fig. 8). Our default parameters were unchanged from the
previous experiment.

The 2-PTR (i.e. the canonical transitive reduction) was
too extreme to be useful, as it decreased the fraction
of solvable trials to 3%. Moreover, 2-PTR also decreased
solution quality as measured by mean A-D improvement
from 0.64 in the standard ancestry graph to 0.57 (Fig. 8).

On the other hand, higher-order PTR (6+) had almost
no effect, as ≥ 6-transitive edge are exceedingly rare in
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Fig. 7 Relationships between approximate ancestry graph tree rank and solution tree topology. The dashed lines show the average values for
underlying trees yielding at least 100 spanning trees. On average, high-weight solutions are wider and shallower than lower height solutions.
Additionally, they are significantly wider and shallower than the underlying evolutionary trees

ancestry graphs with 10 nodes. However, 4- and 5-PTR
showed more promise. Neither had a noticeable impact
on the proportion of solvable trials, but they reduced the
maximum spanning tree count by 43% and 62%, respec-
tively. At the same time, both 4- and 5-PTR decreased
the mean A-D improvement by less than 0.01. The 3-PTR
had a correspondingly stronger impact on these quanti-
ties, decreasing the mean and maximum spanning tree
counts by factors of 7.7 and 9.6 relative to the standard
ancestry graph. The proportion of solvable trials shrank by
two percentage points with 3-PTR, while the mean A-D
improvement was 0.02 worse.

To summarize, we were able to reduce the number of
edges in 10-node ancestry graphs without harming solu-
tion quality and existence using 3-, 4-, and 5-PTR. Fewer
edges results in fewer spanning trees, and thus lower
runtime, less memory usage, and the potential to handle
more clones. Picking different partial transitive reductions
allows us to control the trade-off between these benefits
and better solutions. With a different number of nodes, we
would have to pick a different PTR to achieve the desired
balance.

Topology Effects of PTR
Removing highly transitive edges from the ancestry graph
disproportionately removes wide spanning trees from
T (GF) (Fig. 9). We considered 2-, 3-, 4-, and 5-PTR across

10000 trials of 10-node ancestry graphs. In particular,
we only report results across trials in which solutions
existed after pruning transitive edges (267, 1183, 1360, and
1409/10000 for 2-, 3-, 4-, and 5-PTR, respectively). We
found that 2-PTR (the most extreme reduction) results in
valid trees with 0.80 fewer leaves on average, while 3-PTR
reduces the mean number of leaves by 0.33. In contrast,
the mean height of solution trees only seems to be sig-
nificantly affected by 2-PTR, which increased the mean
height of trees by 0.25. For 3- and higher-order PTR, the
mean height of trees was affected by less than 0.06. Sin-
gle child fraction and mean subtree height both display
similar trends to leaf count (see Additional file 1).

Real Data
We evaluated the strict and approximate ancestry graph
methods using a chronic lymphocytic leukemia (CLL)
dataset [29] and a clear cell renal cell carcinoma (ccRCC)
dataset [30]. For the CLL data, we examined VAFs from
100000× coverage targeted deep sequencing and from
40× coverage whole genome sequencing (WGS). The
ccRCC dataset used amplicon sequencing, with over 400×
average coverage [30]. An overview of the two datasets can
be found in Table 1. For both datasets, we used the approx-
imate and strict ancestry graph approaches to enumerate
candidate clonal trees. When the standard sum condition
yielded no solutions, we instead applied the relaxed sum

Fig. 8 Effect of partial transitive reduction on the number and quality of solutions. ‘None’ represents the unpruned ancestry graph
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Fig. 9 Effect of partial transitive reduction on topological features of T (GF). PTR disproportionately removes wide trees, causing the mean leaf
count to decrease with more extreme pruning. The effect on tree height is less clear, although 2-PTR clearly removes shallow trees. The dashed line
shows the mean value for underlying trees

condition (5), picking the smallest ε that resulted in at
least one ancestry graph spanning tree. In the CLL data,
we clustered mutations by observed frequency across all
samples using k-means, and manually chose the number
of clusters. For the ccRCC dataset, we instead used the
clusters found by LICHeE, which uses mutation occur-
rence to enhance VAF-based clustering [19]. We note
that we could have chosen to use a different method for
mutation clustering (e.g. PyClone [40]) for this analysis.
However, we choose the clusters produced by LICHeE
as this allowed a direct comparison of our reconstructed
trees with those reported in the LICHeE paper, which also
analyzed this dataset. Furthermore, we note that PyClone
is designed for more deeply sequenced mutations than we
had available here. For both datasets, these clusters rep-
resent hypothesized clones in the tumor. To remove sites
that may have undergone copy number aberrations, we
ignored all mutations with a VAF above 0.5.

Rarity of Strict Solutions
Of the 11 patients we analyzed, only the 100000× cov-
erage targeted sequencing data for CLL006 and CLL077
admitted E-VAFFP solutions. In all other cases, we had
to use the approximate ancestry graph and relax the sum
condition in order to find likely clonal trees. This pattern
agrees with the finding in simulated data that E-VAFFP
solutions are rare and reinforces the importance of cover-
age in solution existence.

For the datasets in which an E-VAFFP solution existed,
we observed one compatible tree in the CLL077 data (with
four clones) and two trees in the CLL006 data (with five
clones). For comparison, in simulated data, 19% of the n =
4 solvable trials had one tree and 12% of the n = 5 solvable
trials had two trees.

WGS and Targeted Sequencing Agreement in CLL Data
The trees identified from both WGS and deep sequencing
data for all three CLL patients were toplogically identi-
cal, regardless of whether we had inferred them using

the strict or approximate methods. All minor labeling
differences were the result of mutations that were fil-
tered or simply absent in one of the datasets or that
were differently clustered because of noise in the WGS
data. Figure 10 displays the variant frequencies in patient
CLL077, which showcases high WGS data noise. See
Fig. 11 for the trees inferred from the deep and WGS
CLL077 data.

Furthermore, setting aside any mutations filtered out
because of possible copy number aberrations, the CLL
trees we found agree entirely with the trees identified
by two other inference methods, CITUP [18] and Phy-
loSub [20]. Moreover, our CLL077 tree displays the two
major branches inferred by AncesTree [17]. Most signif-
icantly, our CLL003 tree, which we generated with the

Table 1 Dataset Summary

Patient Samples Mutations Clones |T (GF)|
CLL003 (D) 5 15/20 4 0

CLL003 (W) 5 13/30 4 0

CLL006 (D) 5 5/10 5 2

CLL006 (W) 5 6/16 5 0

CLL077 (D) 5 12/16 4 1

CLL077 (W) 5 16/20 4 0

EV003 8 33/49 8 0

EV005 7 58/75 8 0

EV006 9 57/72 7 0

EV007 8 48/60 10 0

RK26 11 58/62 12 0

RMH002 5 44/51 8 0

RMH008 8 69/77 10 0

Mutation counts are displayed after/before filtering out mutations with VAF above
0.5. Mutations in CLL patients were clustered by VAF using k-means to identify
clones, while we used clusters from [19] for the ccRCC patients. (D) indicates deep
sequencing data and (W) indicates WGS data
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Fig. 10 Variant allele frequencies over five samples for patient CLL077. The left panel shows VAFs from targeted deep sequencing and the right
panel shows VAFs from whole genome sequencing [29]. The colors of arcs indicate which mutations were clustered together using k-means

approximate ancestry graph and the relaxed sum condi-
tion, precisely matches the trees found by PhyloSub and
CITUP.

It is worth emphasizing that when we relaxed the sum
condition in the CLL006 and CLL077 WGS data, we
recovered the same trees that had obeyed the sum condi-
tion in the deep sequencing data. Noise in the WGS data
introduced sum condition violations of 0.101 and 0.048
in the CLL006 and CLL077 data, respectively. This is evi-
dence that our sum condition relaxation, in concert with
the approximate ancestry graph, allows us to successfully
infer likely trees despite noise rendering the sum condi-
tion unsatisfiable. It is also worth mentioning that the CLL
trees had few clusters, only 4 or 5. This places us within
the regime we found in simulated data where the approxi-
mate method performs better than the strict method (see
Fig. 6).

Approximate Solutions in ccRCC Data
As noted earlier, none of the eight ccRCC patients’ data
admitted strict E-VAFFP solutions. However, relaxing the
sum condition and using the approximate ancestry graph
nonetheless allows us to find candidate clonal trees. We
selected the smallest sum condition relaxation ε that
resulted in a single valid tree. In the case that several trees
were found with the same sum condition relaxation, we
picked the one with the highest weight in the approximate
ancestry graph.

The trees we found in this way for patients EV003,
EV005, EV006, EV007, RMH002, RMH008, and RK26 dis-
play strong agreement with those found by LICHeE [19].
See Table 2 for the tolerance ε needed to find these trees
and for notes on their agreement with LICHeE (the trees
themselves can be found in Additional file 2). We did not
compare our results on RMH004 to those reported by

Fig. 11 Clonal trees identified for patient CLL077. The left panel shows the tree derived from deep sequencing and the right panel shows the tree
from WGS data. These trees were the max-weight spanning trees of the respective approximate ancestry graphs. Edge weights are the probability of
the relationship and color labels correspond to clusters in Fig. 10. The movement of OCA2 to the root is due to different clustering as a result of
noise (see Fig. 10). DDX1, ZFHX4, and ZNF566 were not represented in the deep sequencing data, while GPR158 was filtered out in the deep
sequencing data due to VAF over 0.5. The WGS tree required a sum condition relaxation of ε = 0.048
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Table 2 ccRCC tree comparison with LICHeE

Patient ε Notes

EV003 0.037 Exact match.

EV005 0.046 One node different.

EV006 0.078 Exact match.

EV007 0.042 Exact match.

RK26 0.028 One node different.

RMH002 0.086 Exact match.

RMH008 0.027 Exact match.

The second column shows the sum condition relaxation required. The third column
notes the degree of similarity between our inferred tree and that of LICHeE

LICHeE due to an apparently malformed data file used to
create those results. The sum condition overflows in the
ccRCC data were relatively small (the largest ε required
was 0.086) but consistently present across patients. How-
ever, it is difficult to determine whether these overflows
are due to legitimate ISA violations, such as the occur-
rence of convergent mutations, or simply due to noise in
the measured VAFs.

Discussion
In simulated data, we confirmed that high noise decreases
the probability of strict clonal tree existence. However, in
the rare case that trees can be identified in high-noise
data, they tend to be better than the more common trees
found from low-noise data. This shows that trees simi-
lar to the underlying tree are more robust to noise than
dissimilar trees. Additionally, we found that the topology
of the underlying tree has a strong impact on the qual-
ity and ease of phylogeny inference. While our analysis
here focuses on the ancestry graph approach introduced
in [17], the sum condition that underlies that method
(which results from the ISA) is shared by a number of
other approaches, such as [18–20] and others. Therefore,
our conclusions here may likely apply to other methods—
including new phylogenetic inference methods continuing
to be developed. Thus, we claim that patterns of tumor
evolution (linear, branching, etc.) should be more explic-
itly considered when developing and applying inference
methods. This may become increasingly important as
large-scale studies look across patients to identify com-
mon patterns of evolution within and across cancer types.

Meanwhile, we showed that the approximate ances-
try graph method provides better trees than the strict
approach when there are few clones and worse trees when
there are many clones. This is likely connected to the rela-
tionship we found between tree rank and topology, with
high-weight trees likely to be wide and shallow. More-
over, the approximate graph produces trees significantly
skewed in this direction.

We also found several results that bear on the validity
and applicability of the ISA. Despite the fact that our sim-
ulated data procedure adhered to the ISA, the majority of
resulting VAF data broke the sum condition due to the
noise added to the simulation. We found the same kind
of violations in the ccRCC and 400× coverage CLL data
(with the notable exception of the ultra-high 100000×
coverage CLL data). However, we still found clonal trees
in agreement with existing literature using only small sum
condition overflows ε, no higher than 0.09. This indicates
that some violations of strict frequency assumptions are to
be expected even if the ISA largely holds in practice. These
findings encourage the exploration of methods that relax
the ISA, although it is not clear that we should abandon it
entirely.

We hope that our analysis here will be useful to those
analyzing and interpreting real tumor phylogenies con-
structed using methods that rely on the ISA. Several
unanswered questions remain. For instance, we observed
that higher coverage decreased the average number of cor-
rectly reported ancestral relationships. We are curious to
know if this trend continues with more extreme coverages
and to understand why this occurs. Future work should
also address the impact of noise, tree topology, and other
parameters on methods that relax the ISA or that consider
mutations more complex than SNVs, such as copy number
aberrations. Furthermore, our data simulation procedure
did not include complex effects such as regional tumor
heterogeneity or distinguish between driver and passen-
ger mutations. These other factors could effect phylogeny
inference and merit additional investigation. Finally, while
we focused on methods applicable to multi-sample bulk
sequencing data, the analysis of these issues with regard
to long-read and single-cell sequencing data will need fur-
ther attention as these technologies become increasingly
feasible, since both show promise in improving phylogeny
inference [28].

Conclusions
We explored the inference of tumor evolutionary history
from SNV frequency data obtained from multi-sample
bulk sequencing using the ancestry graph method of [17].
This method is founded on the infinite sites assump-
tion (ISA) and further simplifies the problem by ignoring
copy number aberrations. Our contributions here include
introduction and exploration of two methods of loosen-
ing the strict ISA assumption that allowed phylogenies to
be found even in non-idealized data. We evaluated the
effects of parameters, noise, and evolutionary tree topol-
ogy on the existence and quality of candidate clonal trees.
We found that these factors can significantly influence
phylogeny inference, often in non-obvious ways (e.g. the
counterintuitive effects of high coverage and high noise
on solution quality). Methodically, we defined the partial
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transitive reduction of a graph and showed that it can
be used to simplify the ancestry graph while on average
preserving spanning trees similar to the underlying evo-
lutionary tree. We applied these methods to real cancer
datasets, confirming our findings in simulated data about
the existence of strict solutions and the viability of the
approximate approach.

Tumor phylogeny inference has the potential to yield
insight into how tumors develop and potentially to inform
personalized cancer treatment [8, 9], which will become
increasingly viable as sequencing methods continue to
improve and become cheaper. As such, it is important
not only to develop new and more accurate inference
methods, but also to understand how those methods
are impacted by the data they take as input. However,
this issue has not been thoroughly explored in the exist-
ing literature [28]. Our work here addresses this over-
sight explicitly and has numerous potential implications.
Our findings on the effects of controllable factors like
sequencing coverage and number of sequenced samples
can help inform practical decisions in real-world phy-
logeny inference experiments. For instance, we found that
higher coverage does not necessarily improve the quality
of inferred trees. Additionally, our results on uncontrol-
lable factors like tumor evolution patterns and clone count
can assist in interpreting trees reconstructed using ISA-
based approaches such as [17–20]. Finally, our results
provide strong motivation for additional work in explor-
ing the performance of inference methods under different
situations, since we showed that factors like tumor evolu-
tion pattern and noise levels exert significant pressure on
inference results.
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