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Background: Emerging evidence suggests structural and functional disruptions of the
thalamus in schizophrenia, but whether thalamus abnormalities are able to be used
for disease identification and prediction of early treatment response in schizophrenia
remains to be determined. This study aims at developing and validating a method
of disease identification and prediction of treatment response by multi-dimensional
thalamic features derived from magnetic resonance imaging in schizophrenia patients
using radiomics approaches.

Methods: A total of 390 subjects, including patients with schizophrenia and healthy
controls, participated in this study, among which 109 out of 191 patients had
clinical characteristics of early outcome (61 responders and 48 non-responders).
Thalamus-based radiomics features were extracted and selected. The diagnostic
and predictive capacity of multi-dimensional thalamic features was evaluated using
radiomics approach.

Results: Using radiomics features, the classifier accurately discriminated patients from
healthy controls, with an accuracy of 68%. The features were further confirmed in
prediction and random forest of treatment response, with an accuracy of 75%.

Conclusion: Our study demonstrates a radiomics approach by multiple thalamic
features to identify schizophrenia and predict early treatment response. Thalamus-
based classification could be promising to apply in schizophrenia definition and
treatment selection.
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INTRODUCTION

Driven by the need for precision medicine, a quest for accurate
diagnosis and treatment was recently noted in the management
of schizophrenia. A variety of abnormalities in the thalamus is
associated with this disorder, including reduced volume (Pergola
et al., 2015; Brugger and Howes, 2017; Dietsche et al., 2017;
Dorph-Petersen and Lewis, 2017) and disrupted structural and
functional connections to the cortices (Pergola et al., 2015;
Giraldo-Chica and Woodward, 2017; Murray and Anticevic,
2017), as well as increased perfusion (Scheef et al., 2010;
Zhu et al., 2015) and weaker correlation between glucose
metabolism and dopaminergic state (Mitelman et al., 2019).
Copious neuroimaging studies suggest thalamic association with
schizophrenia, ranging from region to network level.

Task-state studies have found increased blood oxygenation
level-dependent response to retrieval in the thalamus among
schizophrenia patients (Stolz et al., 2012). Meanwhile, resting-
state functional connectivity studies have reported thalamic
abnormal connectivity with the bilateral cerebellum, anterior
cingulate cortex, and multiple sensory-motor regions (Ferri
et al., 2018). Effective connectivity by means of dynamic causal
modeling revealed a deficit sensitivity of auditory cortex to
its thalamic afferents in schizophrenia (Li et al., 2017). In
addition, disrupted coactivation within resting-state networks
analysis has been observed in the thalamus (Cui et al.,
2017a). Both functional and structural imaging findings support
dysconnectivity of the thalamus and cerebellum (Liu et al.,
2011). As the neuroanatomical and neurochemical theories
implicated in the pathophysiology of schizophrenia, the notion
of emphasizing psychopathological processes mediated by the
thalamus (Parnaudeau et al., 2018) should also be paralleled
by identifying patients and predicting treatment response via
multi-dimensional thalamic features.

A number of studies indicate that magnetic resonance
imaging (MRI) techniques have provided insights into the
classification and prediction in schizophrenia. MRI combined
with machine learning technique represents a promising
approach to distinguish patients with schizophrenia from healthy
population, and responders from non-responders (de Filippis
et al., 2019; Wang et al., 2019). In general, previous studies
have related to the classification of schizophrenia using resting-
state functional MRI (Anderson et al., 2010; Shen et al., 2010;
Anderson and Cohen, 2013; Skatun et al., 2017; Cui et al.,
2018; Huang et al., 2019; Zeng et al., 2018), structural MRI
(Liang et al., 2018; Mikolas et al., 2018; Cui et al., 2019b; Liu
et al., 2020), or their combination (Cui et al., 2021a). More
importantly, classification approaches are able to aid subtyping
symptoms of schizophrenia (Dwyer et al., 2018) and trans-
diagnostic discrimination between schizophrenia and bipolar
disorder (Arribas et al., 2010; Schnack et al., 2014; Rashid
et al., 2016). In particular, MRI may be able to predict the
response of treatments in schizophrenia, including structural
(Fung et al., 2014; Hutcheson et al., 2014; Molina et al., 2014;
Morch-Johnsen et al., 2015; Premkumar et al., 2015; Altamura
et al., 2017; Dusi et al., 2017; Francis et al., 2018) and functional
(Hadley et al., 2014; Kraguljac et al., 2016a,b; Sarpal et al., 2016;

Doucet et al., 2018; Shafritz et al., 2018; Cui et al., 2019a) MRI (see
Cui et al., for review; Cui et al., 2019a). These studies involved
MRI features such as gray matter or white matter volume,
cortical thickness, morphology of gyrus, and brain activation
and connectivity with time of outcome assessment arranging
from 6 weeks to 3 years. The structural MRI findings have
shown a linkage between clinical improvements and higher gray
matter volume [e.g., bilateral caudate (Hutcheson et al., 2014),
bilateral lentiform and striatum (Fung et al., 2014), orbitofrontal
cortex (Premkumar et al., 2015), and total brain (Altamura
et al., 2017)], thinner right prefrontal (Molina et al., 2014) and
thicker left caudal middle frontal cortical thickness (Francis
et al., 2018), and rightward orbitofrontal cortex (Premkumar
et al., 2015). In contrast, poor response has been linked to
thinner left orbitofrontal cortex and left anterior cingulate cortex
(Morch-Johnsen et al., 2015), and decreased right dorsolateral
prefrontal cortex white matter volume (Dusi et al., 2017).
Several functional MRI studies have reported greater activation
in the anterior cingulate cortex in a simple response conflict
task (Shafritz et al., 2018), and increased regional activity in
the left postcentral gyrus/inferior parietal lobule (Cui et al.,
2019a) and distinctive striatal functional connectivity (Sarpal
et al., 2016) for responders. Hippocampal connectivity (Kraguljac
et al., 2016b), connectivity within the dorsal attention network
(Kraguljac et al., 2016a), and connectivity between ventral
tegmental area/midbrain and the dorsal anterior cingulate cortex
(Hadley et al., 2014) have been found to positively correlate to
changes in symptoms. However, these potential predictors are
inordinately heterogeneous and, to our knowledge, much earlier
prediction of treatment response has not been identified.

Emerging evidence suggests structural and functional
disruptions of the thalamus in schizophrenia, but whether
thalamus abnormalities are able to be used for classification and
prediction in schizophrenia remains to be determined. Thalamic
features with successful level prediction of electroconvulsive
therapy (ECT) response have been identified by radiomics (Xi
et al., 2020). An opinion article in this journal illustrates the
application of MRI and radiomics/machine learning methods
to the study of schizophrenia (see Cui et al. for review; Cui
et al., 2021b). Therefore, we aimed to validate a method of
classification for schizophrenia and prediction of treatment
response by multi-dimensional thalamic features derived from
structural MRI using radiomics approaches. Relying on the
thalamic association with schizophrenia, we hypothesized that
thalamus-based classification and prediction could play a role in
individualized diagnosis and treatment of schizophrenia as an
objective and useful tool in this study.

MATERIALS AND METHODS

This study was approved by the Institutional Ethics Committee,
First Affiliated Hospital (Xijing Hospital) of the Fourth Military
Medical University. All participants (or their parents for those
under age of 18 years) gave written informed consent after a full
description of the aims and design of the study. Table 1 provides
further details on the two patient and control populations.
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Participants
The inclusion and exclusion criteria are shown in previous
studies (Cui et al., 2018, 2019a,b). The first dataset included 100
patients with schizophrenia patients and 92 healthy controls. The
structural clinical interview for Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-
TR) was used, and consensus diagnoses were made using all the
available information. The second dataset included 91 patients
and 107 healthy controls, and DSM, Fifth Edition (DSM-5)
was used. Each patient was assessed by using the Positive and
Negative Syndrome Scale (PANSS) at the time of imaging (Cui
et al., 2018, 2019a,b).

Data were collected from May 2011 to December 2013
(dataset 1) and from April 2015 to December 2017 (dataset
2) in the Department of Psychiatry, Xijing Hospital,
respectively, including inpatients undergoing their first or
single hospitalization and outpatients seeking help. Inclusion
criteria for patients are as follows: (1) they were assessed by
two senior clinical psychiatrists, and consensus diagnosis of
schizophrenia was made; (2) PANSS score was not less than
60 at the time of imaging; (3) all subjects were right handed,
and their biological parents were of the Han Chinese ethnic
group. Two groups of healthy controls without any reported
psychotic syndrome (as assessed by psychiatrists) were recruited
by advertisement from the local community.

Exclusion criteria for patients included the following:
(1) presence of another psychiatric disorder; (2) history of
repetitive transcranial magnetic or current stimulation, or
a history of behavioral treatment; (3) history of clinically
significant neurological, neurosurgical, or medical illnesses;
(4) substance abuse within the prior 30 days or substance
dependence within the prior 6 months; and (5) pregnancy

or any other MRI contraindications, e.g., cardiac pacemakers
and other metallic implants. Exclusion criteria for healthy
controls included the following: (1) presence of any psychotic
syndrome; (2) history of receiving antipsychotics, repetitive
transcranial magnetic stimulation, transcranial current
stimulation, or behavioral treatment; (3) history of clinically
significant neurological, neurosurgical, or medical illnesses;
(4) substance abuse within the prior 30 days or substance
dependence within the prior 6 months; and (5) pregnancy
or MRI contraindications, e.g., cardiac pacemakers and other
metallic implants.

A total of 109 patients (67 from the first dataset; 42 from
the second dataset) had clinical data of early treatment
response. The majority of patients received second-
generation antipsychotics, and the minority of patients
received first-generation antipsychotics. Treatment response
at discharging was assessed using percentage change of
PANSS score: PANSS percentage change = (total score1 −

total score0) × 100 ÷ (total score0 − 30). Responders were
defined as 30% reduction in PANSS total scores previously used
(Cui et al., 2019a).

Image Acquisition
High-resolution structural imaging was acquired on a Siemens
3.0 T Magnetom Trio Tim MR scanner (the first dataset) or
General Electric (GE) Discovery MR750 3.0 T scanner (the
second dataset) using protocols described elsewhere (Xi et al.,
2016; Cui et al., 2017a,b). All the imaging data were collected
in the Department of Radiology, Xijing Hospital. A custom-
built head coil cushion and earplugs were used to minimize
head motion and dampen scanner noise. During data acquisition,
subjects were asked to remain alert with eyes closed and keep

TABLE 1 | Clinical and demographical data.

Characteristics Patients (n = 191) Healthy controls
(n = 199)

P-values Responders
(n = 61)

Non-responders
(n = 48)

P-values

Age (years) 25 ± 7 29 ± 9 <0.001 24 ± 6 27 ± 8 0.036

Gender (M/F) 107/84 109/90 0.804 40/21 26/22 0.226

Education level (years) 12 ± 3 14 ± 4 <0.001 12 ± 2 13 ± 3 0.579

Duration of illness (months) 19 ± 26 – – 17 ± 21 21 ± 31 0.368

PANSS score at baseline

Total score 90 ± 17 – – 90 ± 20 89 ± 14 0.774

Positive score 23 ± 6 – – 23 ± 7 23 ± 7 0.847

Negative score 21 ± 8 – – 21 ± 8 22 ± 8 0.548

General score 46 ± 9 – – 46 ± 10 45 ± 7 0.329

PANSS score at discharging

Total score – – – 60 ± 15 80 ± 12 <0.001

Positive score – – – 14 ± 5 20 ± 5 <0.001

Negative score – – – 14 ± 6 20 ± 7 <0.001

General score – – – 32 ± 8 40 ± 6 <0.001

Changes in PANSS score (%) – – – 51 ± 16 16 ± 11 <0.001

Stay in hospital (days) – – – 17 ± 5 15 ± 5 0.115

Antipsychotic dose (mg/day)a – – – 10 ± 4 10 ± 4 0.388

Data are means ± standard deviations.
aDefined Daily Dose (DDD).
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their head still. Participants in dataset 1 underwent scanning
using a 3.0-T Siemens Magnetom Trio Tim scanner and an eight-
channel phased array head coil (Siemens, Germany). Participants
in dataset 2 underwent scans on a GE Discovery MR750 3.0-T
scanner and an eight-channel phased array head coil (Milwaukee,
WI, United States). Detailed parameters of high-resolution T1-
weighted anatomical data are listed in Table 2. As performed
previously (Cui et al., 2018), steps for the following analysis are
shown in Figure 1.

Imaging Data Preprocessing and
Extracting Thalamus
T1-weighted image processing was performed using the
FreeSurfer image analysis suite (version 6.0.0)1. Data
preprocessing was to register the original high-resolution
structural image of each subject to standard template, and
project it back to each subject to extract thalamus tissue.
The preprocessing process is the standard process of the
FreeSurfer toolkit.

Briefly, preprocessing was performed with the following steps:
(i) skull stripping, (ii) normalization to a standard anatomical
template (Talairach and Tournoux, 1988), (iii) correction for
bias-field inhomogeneity, (iv) segmentation of subcortical white
matter and deep gray matter volumetric structures (Fischl et al.,
2002, 2004), (v) gray–white matter boundary tessellation and a
series of deformation procedures that consist of surface inflation
(Dale et al., 1999), and (vi) registration to a spherical atlas
(Fischl et al., 1999) and parcellation of the cerebral cortex into
units based on the gyral and sulcal structures (Fischl et al.,
2004). In line with previous studies using the radiomics features
from the bilateral structures in mental disorders (Chaddad
et al., 2017; Park et al., 2020), we considered the bilateral
thalami as regions of interest. In addition, the workflow of
extracting thalamus was as follows: (i) the T1 images after
preprocessing were matched to Anatomical Automatic Labeling
(AAL) cortical and subcortical 1 mm × 1 mm × 1 mm
atlas, and got the transformation matrix; (ii) use the inverse
matrix of the transformation matrix to register AAL to
individual space. After preprocessing, each subject’s thalamus
was registered to the standard space with consistent resolution.

1http://surfer.nmr.mgh.harvard.edu/

TABLE 2 | Scanning parameters of T1-weighted imaging.

The first dataset The second dataset

Scanner Siemens GE

TR (ms) 2530 8.2

TE (ms) 3.5 3.2

Flip angle (◦) 7 12

FOV (mm2) 256 × 256 256 × 256

Matrix 256 × 256 256 × 256

Slice thickness (mm) 1 1

Section gap (mm) 0 0

Number of slices 192 196

In this study, we did not perform interpolation in image
processing2.

Radiomics Features
The following analysis is based on the guidelines in radiomics
(Lambin et al., 2017; Vallieres et al., 2018). Each image feature
calculation formula is provided in the Supplementary Material,
and they were based on the image biomarker standardization
initiative3. Four types of radiomics features were used to quantify
thalamic characteristics (Aerts et al., 2014): (i) first-order features,
(ii) second-order features, (iii) texture features, and (iv) wavelet
features, which have been used in previous studies (Gong et al.,
2020; Xi et al., 2020). The first group quantified thalamus
intensity characteristics using first-order statistics, calculated
from the histogram of all thalamus voxel intensity values (14
radiomic features: energy, entropy, kurtosis, maximum, mean,
mean absolute deviation, median, minimum, range, root mean
square, skewness, standard deviation, uniformity, and variance).
Group 2 consists of features based on the shape of the thalamus
(eight radiomics features: compactness 1 and 2, maximum
3D diameter, spherical disproportion, sphericity, surface area,
surface-to-volume ratio, and volume). Group 3 consists of textual
features that are able to quantify intra-thalamus heterogeneity
differences in the texture that is observable within the thalamus
volume. These features are calculated in all three-dimensional
directions within the thalamus volume, taking the spatial location
of each voxel compared with the surrounding voxels into
account. In this research, texture features describing patterns
or the spatial distribution of voxel intensities were calculated
from, respectively, gray level co-occurrence (GLCM) and gray
level run-length (GLRLM) texture matrices. Texture matrices
were determined considering 26 connected voxels. Group 4
wavelet transform effectively decouples textural information by
decomposing the original image in low and high frequencies.
Here, the first- and second-order features and textural features
of eight directions (the original images were decomposed
into eight directions) were calculated. All feature algorithms
were implemented in Matlab 2016a (MathWorks, Natick, MA,
United States). In the process of feature extraction, we performed
the discretization and used 2 mm × 2 mm × 2 mm as
voxels to extract the imaging features of the thalamus and
take the mean value.

Feature Selection, Classification Model,
and Efficacy Prediction
Ten-fold cross-validation (CV) was used to assess the reliability
of the classification model (Figure 1). Briefly, 390 subjects (190
patients) were randomly separated into 10 groups. Each time, one
group in turn was used as a test group and the other nine groups
were used as training group.

A total of 4019 radiomics features were selected as initial
features. After that, we used a 10-fold CV-based Least Absolute
Shrinkage and Selection Operator (CV-LASSO) method to
further select features. Briefly, subjects in the training group

2https://ibsi.readthedocs.io/en/latest/
3https://arxiv.org/abs/1612.07003

Frontiers in Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 682777

http://surfer.nmr.mgh.harvard.edu/
https://ibsi.readthedocs.io/en/latest/
https://arxiv.org/abs/1612.07003
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-682777 June 29, 2021 Time: 18:32 # 5

Cui et al. Thalamus-Based Radiomics in Schizophrenia

FIGURE 1 | Workflow for analysis in classification of patients and healthy controls. In the upper panel, all of the participants were randomly divided into 10 groups,
nine for training and one for testing. The lower panel summarizes radiomics steps. The radiomics features were extracted using CV-LASSO in the training group
and validated in the testing group using random forest.

were again randomly separated into 10 groups. Each time, one
group in turn was excluded from the dataset, and the LASSO
(Sauerbrei et al., 2007) method with mean of square error (MSE)
as the cost function was used on the remaining nine groups to
narrow down the initial features into the most important features
according to the MSE + 1SE criteria (Sauerbrei et al., 2007).
This step was repeated 10 times, which resulted in 10 different
groups of selected features. Finally, the edges that were included
in the selected feature group at least N times (i.e., occurring
N times) were selected as LASSO features for further analysis.
Next, the random forest (RF) method was used to construct
the classification model based on LASSO features in training
group. The accuracy, sensitivity, specificity, and recall indices
of the constructed model were calculated using testing group.
Considering any confound factors due to data from two scanners,
the differences of features selected between participants in the two
datasets were compared.

All these steps above were repeated 10 times. As for the
setting of P0, N, and the number of trees t in RF, we used
grid-search method to find them. These parameters were set
at a group of specific values when the accuracy index of the
constructed classification model achieved the maximum. The P0
was set from 0.01 to 0.1 with a step of 0.01. The N was set

from 1 to 10 with a step of 1. The t was set from 5 to 100
with a step of 5.

To avoid the random group effect, we repeated the 10-
fold CV 100 times. For each time, a new random group was
split. The mean ± standard deviation of each index across
the 1000 testing groups (10 × 100) was used to assess the
performance and stability of the constructed model. Finally,
1000 times permutation test (group label permutation) was
performed to check if our results were significantly different
from random labels.

Validation
Finally, we used another machine learning method, support
vector machine, to estimate the status of each participant
(schizophrenia or control; responder or non-responder) via
intra- and inter-dataset CV (Cui et al., 2018).

RESULTS

Clinical Characteristics
Table 1 shows the full description of demographic and clinical
characteristics of patients and healthy controls. No significant
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difference was found in gender between patients and healthy
controls. For patients, there was statistical difference in being
younger (P < 0.001) and having a lower education level
(P < 0.001).

Feature Selection
The RF was performed for the high-resolution T1-weighted
imaging. In this study, 4019 radiomics features were
extracted (Figure 2 and see the Supplementary Material),
resulting in 12 features for identifying patients (“W1.Mid,”
“W1.SRE_8,” “W2.LRHGLE_8,” “W3.Min,” “W4.Co_Corr_12,”
“W4.Co_Var_13,” “W5.Co_Corr_11,” “W5.RLN_9,”
“W6.Co_Corr_2,” “W6.Co_Corr_7,” “W7.IMC1_9,” and
“W9.Co_Corr_12”) and four features for predicting treatment
response (“W1.LRE_9,” “W3.Min,” “W6.Co_Corr_7,” and
“W6.Co_Var_7”). For the selected features, we performed
comparison between subjects on two scanners, e.g.,
patients/healthy controls on Siemens scanner and GE scanner,
and no significant difference was found between two scanners by
t-tests.

Classification Performance
Figure 3 and Table 3 show the classification performance. Using
12 features, the RF classifier accurately discriminated patients

from healthy controls on the basis of the receiver operating
characteristic (ROC) curve, with an accuracy of 68%. Four
features were further confirmed in the prediction of treatment
response, with an accuracy of 75%. The DeLong test suggested
that the model of the area under curve (AUC) of the ROC
analysis for response prediction was superior to that for diagnosis
(P = 0.015).

Validation
Combining radiomics and support vector machine method,
thalamic features had an accuracy arranging from 63 to 71% for
classification with intra- and inter-dataset CVs (Table 4).

DISCUSSION

Using radiomics approach and RF, we explored whether
multi-dimensional thalamic features define patients with
schizophrenia/patients who responded to treatment in this
study, resulting in an accuracy of 68% for distinguishing patients
with schizophrenia from healthy population and an accuracy of
75% for prediction of early treatment response. Furthermore,
support vector machine method revealed similar results through
intra- and inter-dataset CV. Our findings might help to facilitate
objective diagnosis and treatment selection based on quantitative

FIGURE 2 | Extraction of radiomics features. Four groups of radiomics features include first-order features, second-order features, texture features, and wavelet
features. A total of 4019 features were extracted.
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FIGURE 3 | Classification performance. In the upper panel, ROC analyses
showed an AUC of 0.7155 for predicting early treatment response. In the
lower panel, ROC analyses showed an AUC of 0.6413 for identifying
patients with schizophrenia.

and specific thalamic signature, reflecting its pathophysiology
underlying schizophrenia (Tomaszewski and Gillies, 2021).

With the exception of showing conventional features of the
thalamus, we also provide newly developed high-throughput
features on structural imaging. Findings from imaging and
postmortem studies of whole thalamus volume and other
structural measures are mixed in schizophrenia and may
be influenced by methods, disease state, and the fact that
the thalamus is an exceptionally heterogeneous structure.
Convergent findings based on multimodality MRI provide
support for these neural substrates mediated by the thalamus in
schizophrenia (Huang et al., 2015; Xi et al., 2016), suggesting that
thalamic abnormalities are implicated in the pathophysiology
of this mental disorder. Detecting schizophrenia based on
functional connectome is driven by a distributed bilateral

network including the thalamus and temporal regions (Lei et al.,
2019). As for predicting treatment response, higher baseline
glutamate/creatine in the thalamus was seen in non-responders
on aripiprazole monotherapy at week 6 and on naturalistic
antipsychotic treatment at week 26 compared with healthy
controls (Bojesen et al., 2019). Extending previous findings,
this evidence is the fundamental basis for disease definition
and treatment selection by means of thalamic features using
radiomics approach.

Neuroimaging findings have not been used for psychotic
disorders clinically, because they are “not sufficiently sensitive or
specific for reliable diagnosis in individual patients” (Lieberman
and First, 2018). Therefore, from the perspective of methodology,
via the quickly developed radiomics strategy, the diagnostic
performance of multi-dimensional thalamic features is proved
liable for identifying individual patients with schizophrenia and
predicting early treatment response. The accuracy varied from
82.1 to 87.09% in two previous similar studies by radiomic
features from the bilateral hippocampal subfields (Park et al.,
2020) and whole brain functional connectivity (Cui et al.,
2018). We obtained an accuracy of 68% using the high-
throughput thalamic features, in comparison to the diagnostic
performance with an accuracy of 78.3% by resting-state networks
features (Skatun et al., 2017) and 73.0–81.3% by resting-state
connectivity (Mikolas et al., 2016; Huang et al., 2019). Radiomics
is considered as the bridge between medical imaging and
personalized medicine, and promising to play a central role in the
context of psychiatry.

For the cutoff of less than 25% PANSS/Brief Psychiatric Rating
Scale (BPRS) reduction, the overall non-response is 43%, and for
the cutoff of less than 50% reduction, it is 66.5% (Samara et al.,
2019). In line with the finding from randomized controlled trials
that the response was assessed at 4–6 weeks, 48 out of 109 (44%)
were non-responders for less than 30% PANSS reduction assessed
at 2–3 weeks (15–17 days) in this study. Moreover, the olanzapine
equivalent was 10 ± 4 mg/day for both responders and non-
responders. Our results demonstrate a radiomics approach by
multiple thalamic features to predict early treatment response
with an accuracy of 75%, an increased level relative to diagnosis.
In addition to MRI, genetic evidence indicates schizophrenia
polygenic risk score as a predictor of response to antipsychotics
in patients with first-episode psychosis (Zhang et al., 2019).
An analysis combining neuroimaging and genetics is needed to
facilitate the prediction of antipsychotic efficacy in the future.
Moreover, radiomics risk modeling combined with time-to-
event analysis will contribute to clarifying treatment response
(Leger et al., 2017).

An issue of this study that needs to be pointed out is
the absence of validation in an independent cohort. Validation
could help to confirm the discriminating capacity from different
scanners and sites with heterogeneity. A previous study
combined independent data of KaSP (Karolinska Schizophrenia
Project) and HUBIN (Human Brain Informatics) (Skatun et al.,
2017), supporting generalizability across heterogeneous samples.
Features across MRI scanners with no difference suggest the
repeatability (Cui et al., 2018, 2021a). In the next step, the
combination of data from different scanners could consolidate
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TABLE 3 | Classification performance.

Accuracy Sensitivity Specificity AUC Features

Diagnosis (191 patients and
199 controls)

0.68 ± 0.04 0.60 ± 0.31 0.61 ± 0.30 0.64 ± 0.23 “W1.Mid”; “W1.SRE_8”; “W2.LRHGLE_8”; “W3.Min”;
“W4.Co_Corr_12”; “W4.Co_Var_13”; “W5.Co_Corr_11”; “W5.RLN_9”;
“W6.Co_Corr_2”; “W6.Co_Corr_7”; “W7.IMC1_9”; “W9.Co_Corr_12”

Prediction (61 responders and
48 non-responders)

0.75 ± 0.08 0.65 ± 0.25 0.80 ± 0.23 0.72 ± 0.12 “W1.LRE_9”; “W3.Min”; “W6.Co_Corr_7”; “W6.Co_Var_7”

AUC, area under the curve; “W1”–“W9”, Wavelet features; “_1”–“_13”, direction of each feature; Mid, middle; SRE, short run emphasis; LRHGLE, long-run high gray-level
emphasis; Min, minimum; Co_Corr, correlation; RLN, run length non-uniformity; IMC, informational measure of correlation; LRE, long-run emphasis; Var, variance.

TABLE 4 | Classification performance using intra- and inter-dataset cross-validation.

Accuracy Sensitivity Specificity Features

Intra-dataset cross-validation (80% dataset 1 and dataset 2 for training and the other 20% for testing)

Diagnosis (17 features) 68.37% 71.15% 70.62% W1.Mid; W1.Min; W1.Mid; W2.RMS; W2.Surface; W2.SVR; W2.Volume;
W2.SRE_8; W2.Homo2_13; W3.Min; W4.Co_Corr_12; W4.Co_Var_13;
W5.Co_Corr_11; W5.RLN_9; W6.Co_Corr_2; W6.Co_Corr_7; W7.IMC1_9

Prediction (7 features) 71.01% 72.53% 71.69% W1.SRLGLE_1; W1.Compactness1; W2.Energy; W2.MAD; W3.Min;
W6.Cluster_Shade_mean; W8.Cluster_Shade_8

Inter-dataset cross-validation (dataset 1 training, dataset 2 testing)

Diagnosis (12 features) 65.19% 63.21% 68.55% W1.Mid; W1.SRE_8; W1.Min; W2.RMS; W2.Surface; W2.Homo2_13; W3.Min;
W4.Co_Corr_12; W5.Co_Corr_11; W5.RLN_9; W6.Co_Corr_2; W9.SRHGLE_5

Prediction (5 features) 68.36% 65.75% 69.73% W1.LRE_9; W1.HGLRE_3; W2.Energy_GLCM_3; W7.Max_GLCM_1;
W8.AutoCorr_2

Inter-dataset cross-validation (dataset 2 training, dataset 1 testing)

Diagnosis (10 features) 63.88% 67.56% 66.46% W1.LGLRE_11; W1.SRE_6; W2.Sum_var_mean; W2.SRLGLE_6;
W4.Dissimilarity_1; W5.Dissimilarity_mean; W5.SRLGLE_4; W7.Diff_entropy_13;
W7.Homo2_13; W9.IMC1_mean

Prediction (4 features) 65.21% 69.02% 64.35% W1.Min; W2.Uniformity; W8.Energy_GLCM_1; W9.LRHGLE_mean

“W1”–“W9”, Wavelet features; “_1”–“_13”, direction of each feature; AutoCorr, autocorrelation; Co_Corr, correlation; GLCM, gray-level co-occurrence matrix; Homo,
homogeneity; IMC, informational measure of correlation; LGLRE, low gray-level run emphasis; LRE, long-run emphasis; LRHGLE, long-run high gray-level emphasis;
MAD, median absolute deviation; Max, maximum; Mid, middle; Min, minimum; RLN, run length non-uniformity; RMS, root mean square; SRE, short-run emphasis;
SRHGLE, short-run high gray-level emphasis; SRLGLE, short-run low gray-level emphasis; Var, variance.

and promote the generalizability of MRI findings in clinical
practice. As DSM-5 stated (American Psychiatric Association,
2013), “The peak age at onset for the first psychotic episode
is in the early- to mid-20s for males and in the late-20s
for females.” Our sample included patients with a wide age
range, so potential confounders of brain development could
not be excluded. A mixed group of high school students and
young adults in the study reflects the clinical heterogeneity
of schizophrenia. Besides, because of a very small number of
patients with relatively long medical history and no precise
boundary between short and long duration of illness, we were
unable to perform meaningful subgroup analyses, which may
introduce an effect on the results owing to the design of a
naturalistic study. Finally, connectomics defined by MRI and
genomics in neuropathology gain ground on brain disorder
(Jiang et al., 2020); hence, trans-omics is promising to shape a
refined diagnosis and prediction in schizophrenia. No “one fits
all” omics approach exists in this field (Shiri et al., 2020). It
depends on the study design.

Our study demonstrates a radiomics approach by multiple
thalamic features to diagnose schizophrenia and predict early
treatment response with a comparable accuracy. Combining
novel machine learning models, radiomics studies try to break

the boundary and tend to explore transdiagnostic characteristics
of mental disorders (Cui et al., 2021b), transforming the
guidance of diagnosis and treatment selection for mental
disorders in the future.
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