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Abstract: Artificial intelligence, a computer-based concept that tries to mimic human thinking, is
slowly becoming part of the endoscopy lab. It has developed considerably since the first attempt
at developing an automated medical diagnostic tool, today being adopted in almost all medical
fields, digestive endoscopy included. The detection rate of preneoplastic lesions (i.e., polyps) during
colonoscopy may be increased with artificial intelligence assistance. It has also proven useful in
detecting signs of ulcerative colitis activity. In upper digestive endoscopy, deep learning models
may prove to be useful in the diagnosis and management of upper digestive tract diseases, such as
gastroesophageal reflux disease, Barrett’s esophagus, and gastric cancer. As is the case with all new
medical devices, there are challenges in the implementation in daily medical practice. The regulatory,
economic, organizational culture, and language barriers between humans and machines are a few
of them. Even so, many devices have been approved for use by their respective regulators. Future
studies are currently striving to develop deep learning models that can replicate a growing amount
of human brain activity. In conclusion, artificial intelligence may become an indispensable tool in
digestive endoscopy.

Keywords: artificial intelligence; digestive endoscopy; computer-aided diagnosis; computer-aided
detection; deep learning

1. Introduction

Artificial intelligence (AI) is a computer model created to mimic human behavior [1]. In
various medical fields, this technology has made its presence felt, in many cases improving
diagnosis, treatment, and disease follow-up procedures.

The first attempt to automate medical diagnosis and treatment recommendations was
the well-known MYCIN study [2,3]. It was a backward chaining expert system that used
AI to identify bacteria and recommend antibiotics (hence the name, MYCIN).

In the early years of AI, many classic methods were employed, from rule-based
systems to neural networks, statistical methods, signal and image processing, some of
them using fuzzy, probability, possibility, or chaos theories. These were mainly off-line
due to time-consuming computing. The big step was made in the last decade when the
diversification of machine learning and deep learning structures was sustained by the
development of new devices using parallel computing and multi-core graphics processing
units (GPUs) [4].

Today we use real-time tools to assist various medical procedures that researchers
have struggled to develop for over half a century.

Devices such as the NVIDIA Jetson microsystems series, NVIDIA GPU boards, etc.,
are making a difference in the field of real-time medical applications.
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2. Artificial Intelligence in Colonoscopy

GLOBOCAN, the online database that provides statistical information on 36 types of
cancer in 185 countries, was updated in 2020 by the International Agency for Research on
Cancer (IARC) [5]. The research estimated over 19 million new cases, all cancers, both sexes,
and all ages. Breast cancer was the most commonly diagnosed cancer (11.7% of all cases),
followed by lung (11.4%), colorectal (CRC, 10%), prostate (7.3%), stomach (5.6%), liver
(4.7%), cervix uteri, (3.1%), esophagus (3.1%) cancers and other cancers for the remaining
42.9% [6]. The mortality data showed that lung cancer was still the leading cause of cancer
death (18%), followed by CRC (9.4%), liver (8.3%), stomach (7.7%), breast (6.9%), esophagus
(5.5%), pancreas (4.7%) and prostate (3.8%) cancers. Almost 10 million cancer deaths
occurred in 2020 [6].

CRC is a major public health problem. According to GLOBOCAN 2020 estimates, CRC
is still the third most commonly diagnosed cancer and the second leading cause of cancer
death, being responsible for over 900,000 deaths worldwide in 2020 [6,7]. More concerning
is the fact that recent studies found that the pattern of CRC incidence is changing, noting
a rise in early-onset cases, especially in high-income countries. Although a direct cause
has not been found, the most likely culprit would be early-age exposure to large bowel
carcinogens [8].

The diagnosis and management of many diseases have improved because of the
technological advancements in the healthcare industry and easier access to large medical
databases for research. Integrating new technologies into clinical practice may be a key
factor. CRC diagnosis still relies on colonoscopy despite significant advances in the field.
This investigation is considered essential in reducing CRC incidence and mortality [9].
Early detection is becoming increasingly important for both the medical community and
the public. Many CRC screening programs have been launched since 2007. Fifteen of
28 European countries underwent population-based CRC screenings in 2019 [10].

A screening program is considered successful when an early CRC diagnosis is made,
and precancerous lesions are diagnosed and treated. At the same time, such a program may
be subject to multiple limitations. The increased number of procedures per endoscopist
might be correlated with the increased adenoma miss rate, especially for diminutive polyps
(≤5 mm). Moreover, during a busy work schedule, operator fatigue is associated with
poorer colonoscopy performance. This may negatively affect the polyp detection rate,
resulting in a low adenoma detection rate (ADR) [11]. In order to objectively assess the
colonoscopy performance, criteria such as preprocedural colon preparation rate, cecal
intubation rate, correct identification and management of lesions, and correct postproce-
dural follow-ups have to be considered [12]. It appears that technological advancement,
including AI, might be a solution to these limitations.

The use of AI for colonoscopy has been studied over the last decade. Numerous papers
highlight the benefits of implementing such an application in current medical practice [13].
According to current European Society of Gastrointestinal Endoscopy (ESGE) guidelines,
all polyps larger than 5 mm need to be removed and sent for histopathology analysis to
maximize screening effectiveness. The same thing should be applied to all diminutive
polyps (<5 mm) with adenomatous structures. Diminutive polyps located in the rectum
and the sigmoid characterized as hyperplastic by a high confidence optical diagnosis tool
can be “left in situ” or “resect and discard” [14,15]. Most digestive endoscopists resect
polyps and send them to histopathology because optical diagnosis tools are only available
in expert medical institutions. Costs may increase, and physicians may become fatigued as
a result. Technology development, including AI integration, may reduce this setback in the
long run.

In endoscopy, AI has introduced two concepts: computer-assisted detection (CADe)
and computer-assisted diagnosis (CADx). With CADe, the AI model acts as a “second
pair of eyes” for the colonoscopist [16]. The capacity of identifying polyps may help to
increase the investigator’s ADR, especially for diminutive polyps. This technology is espe-
cially useful for beginner colonoscopists, which may achieve results similar to experts in
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colonoscopy [17,18]. This eliminates the need for immediate endoscopic reassessment and
therefore reduces healthcare costs [19]. A meta-analysis published in 2021 highlighted the
advantages of using CADe compared to other colonoscopy methods such as high-definition
white-light endoscopy, chromoendoscopy (dye-based or Narrow Band Imaging [NBI]), or
add-on devices (i.e., systems that increase mucosal visualization, such as full-spectrum
endoscopy (FUSE or G-EYE balloon endoscopy). This study showed that CADe is superior
to high-definition white-light colonoscopy (an increase in ADR by 7.5%). Furthermore,
both chromoendoscopy and increased mucosal visualization systems achieved better ADR
(4.4% and 4.1%, respectively) compared to high-definition white-light colonoscopy. Cross-
comparison of CADe with chromoendoscopy and increased mucosal visualization systems
showed higher ADR with CADe (OR 1.45 [95% CI 1.14–1.85]; moderate certainty of the
evidence, and OR 1.54 [95% CI 1.22–1.94]; low certainty of the evidence, respectively) [20].

A CADx system is used to classify a lesion based on several morphological parameters
(surface, vascular patterns, shape, size, location), thus generating probability scores for
malignancy or non-malignancy [21]. A paper published in 2021 [22] showed that CADx
using white light colonoscopy has a sensitivity of 95.5% and a specificity of 84.4%, resulting
in an accuracy of 93.2%. CADx using blue light colonoscopy showed slightly superior
results: sensitivity 96.3%, specificity 88.7%, and accuracy 94.7%. These data highlight
the ability of CADx systems to diagnose the polyp type and thus help with the correct
management. Moreover, it may enable one to decide whether to resect a lesion and send
it to pathology, resect and discard, or even leave it in place and monitor it over time [14].
More studies are necessary before such an approach may be recommended.

NBI (Narrow Band Imaging)-CADx attracted the most attention from the research
community. Numerous studies highlighted the potential benefits of these two technologies
working together. In 2018 Chen et al. developed an NBI—AI system capable of differen-
tiating polyps with a sensitivity of 96.3%, specificity of 78.1%, and accuracy of 91% [23].
Zachariah et al. published a paper in 2020 where they wrote about the development of their
NBI-CADx system based on convolutional neural networks. The AI model managed to
exceed the ASGE PIVI (American Society of Gastrointestinal Endoscopy Preservation and
Incorporation of Valuable endoscopic Innovations) standard for both “resect and discard”
and “diagnose and leave” strategies. This AI system achieved an accuracy of 94% with
NBI, being able to correctly classify diminutive polyps, irrelevant of the endoscopists’
experience [24]. In 2020 Song et al. developed a CADx model for predicting colorectal
polyp histology on NBI pictures. In the study, they included both trainees and NBI ex-
pert endoscopists. The AI system proved to have higher diagnostic accuracy than the
trainees (81–82% vs. 63.8–71.8%) and similar results compared to expert endoscopists. This
study concluded that the CADx-NBI system could be an important tool for improving the
trainees’ diagnostic accuracy [25]. Similarly, Jin et al. showed that their AI system for NBI
achieves high accuracy in distinguishing adenomas from hyperplastic polyps. Moreover,
the trainees achieved a near-expert level of accuracy without needing to undergo extensive
training [26].

Chromoendoscopy has not been so appealing for AI development. In this case, the
pit pattern classification is dependent on the depth of color. This means the more dye is
sprayed, the better the quality. Because it is difficult to obtain a uniform image quality,
the CADx system may have a hard time learning these patterns [27]. However, an old
study led by Takemura et al. in 2010 achieved an accuracy of 98.5% with their CADx model
associated with chromoendoscopy [28].

Endocytoscopy is a novel in vivo imaging technique capable of offering a microscopic-
like view of the mucosa in real time. Due to the large quantity of information extracted by
this technique (i.e., cellular and microvascular patterns), the integration of an AI system
in endocytoscopy seems to be an ideal connection. Furthermore, because endocytoscopy
provides mostly focused, fixed-size images, the CADx system has an easier job analyzing
the images [27]. Misawa et al. developed an NBI-CADx for endocytoscopy with a sensitivity,
specificity, and accuracy of 84.5%, 97.6%, and 90.0%, respectively. Moreover, they achieved
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a probability of diagnosis greater than 90%, which is the ASGE PIVI threshold for a “high-
confidence” diagnosis [29]. In 2020 Mori et al. published an article on the cost savings
in colonoscopy with CADx systems. They used their AI system with endocytoscopy on
207 patients with 240 diminutive rectosigmoid polyps. The AI correctly differentiated
neoplastic polyps with a sensitivity of 93.3%, specificity of 95.2%, and a negative predictive
value (NPV) of 95.2%. Having an NPV > 90%, which is the ASGE threshold, the research
team was confident in applying the strategy of diagnose-and-leave to all non-neoplastic
lesions. As a result, 105 polyps were removed, and 145 polyps were left in place. The study
estimated a reduction of the average colonoscopy cost and the annual reimbursement for
colonoscopy by 18.9% (US$ 149.2 million) in Japan and 10.9% (US$ 85.2 million) in the
United States, compared with the resect-all-polyps strategy [30]. Although the potential
cost reduction is impressive, endocytoscopy is not widely used in clinical practice.

A colorectal cancer screening program is effective if the colonoscopy quality indicators
are met. Currently, these indicators are subject to intentional or unintentional manipula-
tion. They include pre-procedural indicators (i.e., the rate of adequate bowel preparation,
the time interval for colonoscopy, the indication for colonoscopy), procedure indicators
(i.e., cecal intubation rate, ADR, withdrawal time, polyp detection rate, management of
pathology and complications, patient experience) and post-procedural indicators (appro-
priate post-polypectomy surveillance) [12]. Using AI together with other computerized
management systems, these parameters may be objectively assessed and may provide
a procedure quality score. This might be the next step towards achieving higher health-
care performance.

Inflammatory bowel disease (IBD) has also been a focus of AI development in colonosc-
opy [31]. Several studies were aimed to assess the value of AI during colonoscopy in ulcer-
ative colitis (UC) due to its convenient location in the colon. Studies by Ozaw et al. [32]
and Stidham et al. [33] highlighted the benefits of AI in distinguishing active disease from
remission during standard colonoscopy. Another study conducted by Bossuyt et al. [34]
used a red density score which correlated mucosal redness with the severity of the inflam-
mation. The results were biopsy-confirmed and were consistent with Robart’s histological
index [35], the Mayo endoscopic score, and the Ulcerative Colitis Endoscopic Index of
Severity (UCEIS) [36].

In Crohn’s Disease (CD), given the various locations of the lesions, video capsule en-
doscopy (VCE) has been the target for research when trying to implement an AI system [31].
Klang et al. [37] and Barash et al. [38] developed a CAD system capable of detecting ul-
cerations during VCE and concluded that AI might prove beneficial in CD diagnosis and
monitoring. Another interesting study conducted by Ding et al. [39] concluded that the use
of AI reduces the reading time of VCE from an average of 96.6 min to 5.9 min.

3. Artificial Intelligence in Upper Digestive Endoscopy

The majority of AI research appears to be focused on improving lower digestive
endoscopy examinations, but there is a growing interest in upper digestive endoscopy
(UDE) as well. Applying AI to diseases such as gastroesophageal reflux disease (GERD),
Barrett’s esophagus (BE), and gastric cancer may have great healthcare benefits if newer
technologies are implemented.

GERD is a fairly common disease with symptoms ranging from occasional chest
discomfort to severe heartburn and regurgitation. In 2021 Wang, C.-C. et al. [40] proposed
a deep learning model, named GERD-VGGNet, that managed to identify and classify
GERD according to Los Angeles classification both in conventional and in NBI endoscopy.
According to the study, their AI model resulted in an accuracy of 87.9%, which was
significantly higher than the results of the trainees (75.0% and 65.6%). These results prove
that AI may be beneficial for the recognition of GERD disease. However, more research in
this field is needed [40].

Barrett’s esophagus is usually the outcome of long-lasting untreated GERD. Because it
is a pre-malignant lesion, research has been conducted, and guidelines have been developed
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for its detection, diagnosis, and follow-up [41]. Numerous recent studies demonstrated
that AI might be the missing link for the optimal management of this disease. In 2020,
Hashimoto R et al. [42] developed a convolutional neural network (CNN) algorithm de-
signed to differentiate between dysplastic and non-dysplastic lesions in BE. It detected
early neoplasia with 95.4% accuracy [42]. Further, in 2019, de Groof et al. [43] developed a
CADe system capable of identifying neoplasia in patients with BE. Data have demonstrated
that their system yielded better results than those of non-expert endoscopists [43]. Thus, AI
may prove to be extremely beneficial to beginner endoscopists. Detecting early neoplasia
in BE is a top priority, and AI research may add significant benefits in the future.

Similar to colorectal cancer, gastric cancer is still a major healthcare problem with a
poor prognosis if left undiagnosed and untreated [44]. Upper digestive endoscopy (UDE)
is the most important procedure to evaluate and diagnose gastric cancer and take biopsy
samples. During UDE, novice endoscopists may not be able to correctly assess the entire
mucosa. The unseen areas are called blind spots and may hide potential neoplastic lesions.
A capable AI system may overcome this impediment and possibly enhance the quality of
UDE. In a 2021 study, Wu L et al. [45] developed an AI model named ENDOANGEL. They
showed that the number of blind spots per endoscopist was significantly reduced when
using the AI model. This technology could detect gastric neoplasia with an accuracy of
84.7% [45].

4. Challenges in Implementing AI Systems in Healthcare

Regulations regarding safety, efficacy, and transparency must be approved before
AI technology can be used in clinical settings [46]. It is equally important to consider
the potential negative patient outcomes. These steps, although they may take time, are
absolutely necessary for implementation [46].

AI systems require ongoing maintenance, large data incorporation, software updates,
and hardware repairs. All of these activities require human resources and funding support.
The economic burden may be significant. To decide if purchasing an AI system is advanta-
geous for patient care, it is necessary to carefully balance investment and benefits. Data
regarding AI technology implementation costs are scarce at present [47].

Integrating AI technology into existing systems, such as electronic health record
databases, is an important issue. Adapting an AI model to a variety of clinical situations
and gaining benefits at an organizational level can be challenging. Creating an AI model
that is compatible with a large number of healthcare systems while still being relevant on
an individual basis is not an easy task [48].

A further challenge is creating a good communication channel between the AI model
and physicians. Essentially, this means translating digital information into the usual
medical language in order to aid in diagnosis and treatment. The 2021 study by Fonollà
R et al. [49] highlighted the possibility of creating an AI system that can overcome this
difficulty. They used a large database that included two units: one unit housed polyp
images and characteristics according to multiple classifications such as PARIS, NICE,
KUDO, and BASIC. The second unit contained medical statements of experts in endoscopy
that described the polyps. Common ground was established between the experts regarding
the range of accepted terminology when describing polyps. Fonollà R et al. managed to
create an AI system that automatically generates a textual polyp description based on the
BASIC classification [49]. A step forward has been made, but more research is needed for
improving collaboration between AI systems and physicians.

It is important to stress that in order to create an AI medical system, the most important
role is played by the medical experts providing the necessary knowledge in a specific field.
For instance, in the case of polyp detection during colonoscopy, it is necessary to gather a
large variety of saved video colonoscopies performed by top endoscopists. To incorporate
knowledge, medical experts must select colonoscopy frames that best represent different
types of polyps with different sizes and in different circumstances. Then they have to assist
in the important task of annotating colonoscopy frames so that the AI system is able to
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correctly learn how to detect polyps. The quality of the databases behind an AI system is of
paramount importance for the effectiveness of its operation and is given by the value of the
medical team that assisted in its development.

5. AI Systems Currently Approved for Use in Gastroenterology

Despite numerous difficulties, many AI systems have been validated and approved
for use in medical practice. Healthcare corporations, together with their academic partners,
were able to develop, test, and evaluate the results of incorporating such devices in clinical
practice. Some of the currently available are Endo AID, Olympus Corp., Tokyo, Japan;
CAD EYE, Fujifilm Corp., Tokyo, Japan; Discovery, Pentax Corp., Tokyo, Japan; GI Genius,
Medtronic Corp., Dublin, Ireland; EndoBRAIN, Cybernet Corp., Tokyo, Japan (Table 1) [50].
The European Medicines Agency (EMA) and the Japanese Pharmaceuticals and Medical
Devices Agency (PMDA) approved the use of these AI systems during 2018–2020. A great
deal of interest has been expressed in developing and implementing these devices, as
shown by the rapid approvals from regulatory agencies [51].

Table 1. Currently approved colonoscopy computer-assisted tools for commercial use (adapted from
Taghiakbari et al., 2021).

Product Manufacturer Place of Approval
and Year

Computer
System Used

EndoBRAIN Cybernet System
Corp./Olympus Corp. Japan 2018 CADx

EndoBRAIN-EYE Cybernet System
Corp./Olympus Corp. Japan 2020 CADe

EndoBrain-PLUS Cybernet System
Corp./Olympus Corp. Japan 2020 CADx

EndoBrain-UC Cybernet System
Corp./Olympus Corp. Japan 2020 CADx

GI Genius Medtronic Corp. Europe 2019
CADeUnited States 2021

ENDO-AID Olympus Corp. Europe 2020 CADe

CAD EYE Fujifilm Corp. Europe 2020 CADe/
CADxJapan 2020

DISCOVERY Pentax Corp. Europe 2020 CADe

WISE VISION NEC Corp. Europe 2021
CADeJapan 2021

CADDIE Odin Vision Europe 2021 CADe

ME-APDS Magentiq Eye Europe 2021 CADe

EndoAngel Wuhan EndoAngel Medical
Technology Company China 2020 CADe

CADx—computer-assisted diagnosis. CADe—computer-assisted detection.

Although the United States FDA was a little more rigid when evaluating AI technology
in endoscopy compared with the EMA and the PMDA, on 12 April 2021, they approved
the first computer-aided polyp detection system represented by GI Genius, Medtronic
Corp [52].

In a multicenter randomized trial in 2020, Repici et al. used GI Genius from Medtronic
Corp. The aim of their study was to compare CADe colonoscopy to conventional colonoscopy.
Their primary outcome was ADR, and their secondary outcomes were adenoma detection
per colonoscopy, non-neoplastic resection rate, and withdrawal time. Using GI Genius,
they concluded that the ADR (54.8% vs. 40.4%) and adenomas per colonoscopy were
significantly higher in the CADe group compared to the control group. No significant
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difference was reported regarding withdrawal time or proportion of subjects with resection
of non-neoplastic lesions [16].

Olympus’s Endo-AID was presented to the public for the first time during the October
2020 United European Gastroenterology (UEG) Week [53]. The system promises excellent
improvement in polyp detection and the potential to reduce the strain on the endoscopist
by reducing the need for excessive eye movement. Chieh Sian Koo et al. published in
Endoscopy 2021 an article that demonstrated the performance for both CADe and CADx of
this AI system [54]. Even so, system improvements are still needed, as shown by a case
report published in Endoscopy 2022 by Lafeuille Pierre et al. In this report, the AI system
failed to correctly detect a 2.5 cm pseudo-depressed non-granular laterally spreading
tumor of the transverse colon, which the pathological examination suggested being an
adenocarcinoma [55].

Fujifilm’s CAD EYE was officially presented during the ESGE Connect 2020. In 2021,
Helmut Neumann et al. [56] used CAD EYE in combination with a linked color imaging
(LCI) technique on 240 polyps that covered the entire spectrum of adenomatous histology.
In their study, the AI system achieved a sensitivity of 100% without missing a single lesion.
They calculated a 0.001% false-positive frame rate. Above all, the AI system managed to
identify all 34 sessile serrated lesions (100%). They concluded that the setup used in their
study has the potential to significantly improve the quality of colonoscopy [56].

Cybernet Corp. developed multiple variations of their AI system called EndoBRAIN.
EndoBRAIN-EYE is a CADe system capable of detecting polyps and reducing the change of
missed adenomas. Masashi Misawa et al. [57] published their research in Gastrointestinal
Endoscopy (2021), where they highlighted the development and validation process of this
AI system. For the purpose of training the AI, they acquired a total of 1405 colonoscopy
videos from five medical centers. The AI achieved a sensitivity of 90.5% and a specificity
of 93.7% for frame-based analysis. They also showed the per-polyp sensitivity for all
polyps (98.0%), for diminutive polyps (98.3%), for protruded (98.5%) and for flat polyps
(97.0%) [57]. EndoBRAIN-PLUS is a CADx system designed to identify the type of lesion in
colonoscopy. In the development and validation study led by Yuichi Mori et al. in 2021 [58],
the AI system was tasked to identify three pathological class predictions (cancer, adenoma,
or non-neoplastic) for endocytoscopic images obtained at 520-fold magnification. They used
30 cancers, 15 adenomas, and 5 non-neoplastic lesions for the validation test. As a result,
the AI system identified the three pathological classes with an overall accuracy of 91.9%.
The system managed to differentiate cancer with a sensitivity of 91.8% and a specificity
of 97.3% [58]. In collaboration with Olympus Corp., Cybernet Corp. also developed a
CADx system dedicated to ulcerative colitis (UC) called EndoBRAIN-UC. This system
is based on their previous CADx tool used for differential diagnosis between neoplastic
and non-neoplastic polyps [58]. In the study published in Gastrointestinal Endoscopy in
2019, Yasuharu Maeda et al. [59] described the development and validation process of
this AI system. The study included a significant number of endocytoscopic images, and
the performance of the CADx was determined based on the histological activity of the
biopsy samples. The overall diagnostic sensitivity, specificity, and accuracy for predicting
persistent histological inflammation were 74%, 97%, and 91%, respectively [59]. The authors
considered the 74% sensitivity to be tolerable because, until then, histologic inflammation
was difficult to identify with endoscopy [59].

With more and more AI systems approved for clinical use, the opportunity for research
and improvement is impressive, with potential future innovations on the way.

6. Future Potential of AI in Digestive Endoscopy

Although AI is typically defined as a machine that replicates human behavior and
interactions, we are still far from that. A lot of research, time, and funding is invested into
developing an AI system capable of doing one basic human function (i.e., identifying a
polyp). While the human brain can accumulate a lot of information (i.e., polyp, normal
mucosa, normal vascular pattern, normal colon haustra, bowel movement, feces, water,
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endoscopic instruments, and so on), our brain can also sort that information, eliminating
what is non-essential (or what we consider to be “normal”) and focus on the important
aspects (i.e., the polyp). At this stage, the current AI systems mentioned in this review are
capable of achieving better results than a novice endoscopist but not better than an expert.
Hence, the development of a large database and interactive algorithms for AI training may
be a potential target for future studies.

Our group, which included colleagues from the Iasi Branch of the Institute of Computer
Science of the Romanian Academy, developed a new experimental deep learning system
using NVIDIA devices, specifically the Jetson Xavier NX, for real-time object and polyp
detection on video colonoscopy and also proposed a method for semantically identifying
different areas in colonoscopic frames [60–62] (Figures 1 and 2). The human brain can
comprehend each individual unit in an image and scrutinize and select it according to a
set of criteria while at the same time comprehending how it interacts with the rest of the
environment. If this can be achieved by an AI system, the possibilities may be endless.
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Although this study offers a significant amount of valuable current information on
artificial intelligence in digestive endoscopy, the may limitation is that it is not a systematic
review. This means that this study might be prone to subjective selection bias during the
literature searches.

7. Conclusions

As we approach the end of the first quarter of the 21st century, technology has become
an intrinsic part of our daily life. The same applies to the field of medicine, gastroenterology
included. AI models have achieved remarkable success in colonoscopy, with the potential
to improve digestive disease diagnosis, teaching for novice endoscopists, and even play an
important role in large CRC screening programs. In upper digestive endoscopy, AI devices
can assist endoscopists as a second pair of eyes, demonstrating an ability to estimate BE
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with potential neoplastic transformation, identify gastric cancer, and accurately assess
gastric blind spots.

Our belief is that AI might soon become an essential tool in the endoscopic lab as the
field of digestive endoscopy becomes more and more dependent on newer technology.
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