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Abstract: Samples of wheat and soil were collected in the Lihe watershed in East China, the migration
and accumulation processes of four common trace metals (Cu, Pb, Cd and Ni) in each part of the
wheat plant (root, stem, leaf and grain) were analyzed, and a mechanistic model was proposed to
simulate these processes based on wheat growth techniques. Model results show that Cu and Cd
migrate more easily with wheat grains, while most Pb and Ni accumulate in roots. Modeling results
were shown to be relatively good, with an error of 25.29% in value and 26.38% in fluctuation, and had
smaller dispersion degree than actual measurement results. Monte Carlo simulation results also
match quite well with actual measurement results, and modeling results are slightly smaller in the
simulation of Leaf-Cu, Grain-Cu and Leaf-Ni. Trace metal pollution risk in wheat is evaluated based
on this model; our results show that the northwest and northeast parts in the research area are not
suitable for growing wheat. In general, this model is relatively accurate, and can evaluate the wheat
pollution risk before seeding wheat, providing scientific references for the early selection of wheat
safety sowing areas.

Keywords: trace metals; wheat growth; pollution; risk evaluation; spatial analysis

1. Introduction

With the rapid development of global urbanization and industrialization, increasing amounts of
trace metals are being emitted into soils through agricultural, industrialization [1,2], and transportation
routes [3–5]. Previously, researchers analyzed 1200 rice soil samples in the United States, 63% of
which were contaminated with Pb, Cr, Cd, and Cu [6], and 472,000 hm2 of farmland in Japan was
contaminated with Cd [7]. The arctic is also heavily polluted with trace metals, especially river mouths
and ports [8]. In China, 19.4% of the arable lands were contaminated by 2014 [9]. Trace metals have
6 kinds of chemical fractionations in soil, in which water-soluble and exchangeable trace metals are
more easily absorbed by crop roots, from where they transfer to edible parts [10,11], and migrate
to the human body through food webs to endanger people’s health [12,13], especially children,
adult females and those living in the most severely-polluted regions [14–16]. Cr is carcinogenic,
even at low concentrations [17,18], while Zn and Cu can change the function of the human central
nervous system and disrupt the endocrine system [19].

Int. J. Environ. Res. Public Health 2018, 15, 2432; doi:10.3390/ijerph15112432 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-3108-5513
http://www.mdpi.com/1660-4601/15/11/2432?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph15112432
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2018, 15, 2432 2 of 16

The trace metal accumulation process in crops is complex, and easily impacted by different crop
species and growth stages, trace metal species and concentrations, soil properties (pH, SOM, CEC
and ORP), microorganisms, and atmospheric environments [20–22]. Soil trace metals enter wheat
roots by one of two ways: diffusion and plasmid flow (transpiration pulling force) [23]. They are
transported into wheat stems by symplast and apoplast pathways [24], and migrate to leaves and
grains through xylem. Meanwhile atmospheric trace metals can also enter leaves and grains by
metabolic and nonmetabolic pathways. Moreover, trace metals can also be transported from top to
bottom in phloem by stems and leaves [25,26]. In the previous studies about trace metal accumulation
in crops, the contamination factor (CF) [27], pollution load index (PLI) [28], and the ecological risk
index (RI) [29] have often been used to assess soil trace metal pollution, while bioconcentration
factor (BCF) is often used to compare crop absorption capacity for different trace metals [30], and the
translocation factor (TF) can show trace metal migration ability from crop roots to aboveground
parts [31]. Pollutant transport processes in soil-crop systems are complex and difficult to quantify.
In some studies, organic pollutant transport models have been proposed and used widely [32],
while models about trace metal accumulation are relatively rare. The simulation of trace metal
accumulation processes in a soil-crop system can be divided into two types: empirical and mechanistic
models. With empirical models, Tang established the correlation model between rice Cd and soil
Cd and pH in the field through multiple regression analysis [33]. Cheng analyzed the relationship
between trace metals in rice soil and DTPA (diethylene triamine pentaacetic acid) effective trace metals
in Zhejiang Province by using the regression equation [34]. Zhao discussed trace metal migration
in soil-rice systems of hybrid rice and late japonica rice, and established quantitative relationships
between the migration accumulation and biological effectiveness and the trace metal distribution
in soil, and soil physical and chemical properties [35]. With mechanistic models, Peng established
an urban soil trace metal accumulation model based on mass balance and Monte Carlo methods,
and simulated Cd accumulation in plants, and pointed out that Cd was mainly affected by the amount
of atmospheric deposition in urban soil [36]. Shi established trace metal migration models in soil-crop
systems based on wheat growth processes, and took trace metals in atmospheric precipitation into
account; this model was more accurate at modeling Cu, Pb, and Ni [37].

In previous simulations, soil properties and atmosphere deposition were usually considered;
however, these simulations ignored the crop growth process, even though it is vital for understanding
trace metal migration and accumulation processes [38]. Additionally, previous modeling results
were not applied to risk assessment, which is significant to display the practicability of the model.
We assume that trace metals migrate into wheat through soil and the atmosphere, and accumulate
as wheat grows. We aim to establish a mechanism model to simulate trace metal migration in wheat
based on the wheat growth process, and evaluate wheat trace metal pollution in the spatial aspect
based on this model.

In our study, wheat growth and nutrient uptake processes are modeled first; then, trace metal
migration will be modeled based on this process. In addition, the simulation accuracy will be assessed
by comparing actual measurement values with sample simulations and Monte Carlo simulations
separately. Finally, Wheat trace metal pollution risk will be shown on spatial distribution maps.
This model can reduce much of the complicated field work, and yields relatively accurate simulation
results; these results can not only provide scientific reference values for trace metal pollution
administration, prevention, and control, but can also help to plan the wheat safety zones.

2. Materials and Methods

2.1. Research Area

The research area of this paper is a small watershed of Lihe (including Dingshu Town and
Hufu Town) in Yixing City, Jiangsu Province (Figure 1). Yixing is located at 31◦07′–31◦37′ N,
119◦31′–120◦03′ E in the Taihu Basin of the Yangtze River Delta. Dingshu Town is located in the
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Yangtze River Delta economic development zone; it covers an area of 20,500 hm2, and is one of the two
largest main city zones in Yixing. Hufu Town is located in the junction of Jiangsu, Zhejiang, and Anhui
Provinces, and covers an area of 9318 hm2. Yixing has a prosperous economy, with an urbanization
rate of 64.75%, a per capita GDP of 118,000 yuan, and is usually in the forefront of similar counties
throughout China; but, at the same time, many types of industrial plants, including ceramics factories,
refractory materials plants, and chemical plants, are densely distributed in research area, and have
caused serious trace-metal pollution [39].

Figure 1. Location of study area.

2.2. Samples Collection and Test

Wheat planting areas were selected by firstly interpreting remote sensing images; sampling sites
were selected by a grid sampling method on wheat planting areas, and we added several sampling sites
in heavily polluted areas. We selected 52 sampling sites altogether. Thirty-two wheat samples were
mature among the 52 sampling sites; no wheat had been planted or harvested at the 20 remaining points.
A three-point-sampling method was used when collecting soil samples; at each site, we collected about
500 g soil samples (0–10 cm deep) and 10 wheat samples, and sealed them in sample bags. Each sample
point was recorded in detail and its GPS coordinates were noted. The distributions of samples are
shown in Figure 2.

Figure 2. Distribution of (a) soil samples, and (b) wheat samples.
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We washed out the soil from the wheat roots and separated wheat samples into roots, stems,
leaves, and grains. Later, wheat samples were stoved, weighed, and smashed, before being boiled in
mixed acid (HNO3-HClO4) and measured by ICP-MS. Meanwhile, we used a triacid-melting method
(HF-HNO3-HClO4) to boil and dissolve soil samples, and measured them by ICP-MS (Cd) and ICP-OES
(Cu, Pb, Ni). In addition, 10 soil comparison samples and 10 wheat comparison samples were added
in our experiment. Meanwhile, we added soil certified reference materials GBW07405 at each interval
of 2 soil samples, and added wheat certified reference materials GBW07602 at each interval of 2 wheat
samples. The accuracy of tests met the requirements laid out in the Chinese document, Technical
requirements of quality assurance and quality control for detailed investigation of agricultural soil pollution
status. In addition, we also added some blank samples in soil and wheat experiments to correct
measurement results.

2.3. Wheat Plants Absorb Trace Metals Model

2.3.1. Wheat Growth and Trace Metal Accumulation

Mi(t) =
Mi,max

1 + Mi,max−Mi,0
Mi,0

× e−Gi×t
(1)

dCi

dt
= rS−i·[CS(t) + Ct(t)]·Wi + rA−i·

CA(t)
Mi(t)

− ki·Ci(t) (2)

Wheat absorbs Cu, Pb, Cd, and Ni while growing; at the same time, these trace metals will also
produce toxic effects on wheat growth, which are very complex and not considered here. Additionally,
the research area is flat, and wheat species are homogenous, so terrain slope and wheat species are also
not considered. In Formula (1) [40], Mi is the mass of part i in wheat (kg); Mi,max and Mi,0 represent
the maximal mass (kg) and initial mass (kg) of part i, respectively; Gi is the growth coefficient; t is time
(d). In Formula (2), Ci is trace metal total contents (mg·kg−1); Cs is the water soluble concentration
(mg·L−1); and Ct is the exchangeable concentration (mg·L−1). In addition, rs−i and rA−i represent the
down-up (soil to wheat) and up-down (atmosphere to wheat) absorption rates, respectively; Wi is the
water content of part i in wheat (L·kg−1); CA is the trace metal content in the atmosphere (mg·m−3);
ki is the trace metal loss rate of part i in wheat (d−1); and the loss rate k is the total rate at which trace
metals migrate from each part to other parts of the wheat plant [32,40].

2.3.2. Trace Metal Absorption Rate in Wheat

The formula of each part of the plant’s trace metal absorption rate is shown in Table 1, and a trace
metals absorption overview is shown in Figure 3. In Formula (3) and (4) [32], ri−j is the absorption rate
at which part j absorbs trace metals from part i in wheat; in this process, we only consider down-up and
up-down migration rather than diffusion, and this process mainly includes rR−St, rSt−L, rSt−G, rL−St,
and rSt−R. In addition, rS−R is the roots’ absorption rate for soil trace metals, and its formula includes
two parts, because trace metals can enter wheat roots by plasmids flow and diffusion separately.

Wheat plants absorb trace metals not only from soil but also from near-surface atmospheric
deposition by leaves and grains. As is shown in formulas (5) and (6) [40], rA−L and rA−G

represent the trace metal absorption rates from the atmosphere in wheat leaves and grains separately.
Their calculations consist of two parts because the trace metals in the atmosphere can enter wheat
leaves and grains via metabolic and non-metabolic pathways.

ri−j =
Qj

Kiw ×Mj
(3)

rS−R =
(Q + AR × fc ×DR)

MS·KSW
(4)
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rA−L = AL × PL·(1− fP) + AL·vdep·fp (5)

rA−G = AG × PG·(1− fP) + AG·vdep·fp (6)

In these formulas, Qi is the flux of part j in wheat (L·d−1), Kiw is the partition coefficient between
part i and water (L·kg−1), and Mj is the weight of part j (kg). In addition, AR, AL, and AG represent
the surface area of roots, leaves, and grains (m2), respectively, Q is the flux in wheat roots (L·d−1),
fc is a volume conversation parameter (L·m−3), DR is the diffusion rate of elements in roots (m·d−1),
Ms is the weight of soil (kg), and KSW is the partitioning coefficient between soil and water (L·kg−1).
In addition, PL and PG represent the permeability of wheat leaves and grains (m·d−1), respectively; fP is
the adsorption rate of atmospheric particulate matter (-), and vdep is the deposition rate of atmospheric
particulate matter (m·d−1).

Table 1. Absorption rate formulas for trace metals in each part of wheat.

Item Root (R) Stem (St) Leaf (L) Grain (G)

rS−i rS−R rS−R rR−St rS−R rR−St rSt−L rS−R rR−St rSt−G
rA−i rA−L rL−St rSt−R rA−L rL−St rA−L rA−G

Figure 3. Absorption rate in wheat.

2.4. Parameters

The necessary data for modeling wheat absorption of trace metals include soil, atmosphere, wheat,
partitioning coefficient, etc. Among them, the soil trace metal concentration, trace metal deposition
flux, trace metal contents of each wheat part, and some other data are derived from experiments.
The parameters and data sources are listed in Table 2.

Table 2. Main parameters and sources.

Data Type Parameter Source

Soil data
Soil weight MS This study
Soil trace metal contents Cs, Ct This study

Atmosphere data
Trace metals contents in the atmosphere CA This study
Adsorption rate of atmospheric particles fp Rein, etc., 2011 [40]
Deposition velocity of particles vdep Rein, etc., 2011 [40]

Crop data

The initial mass of wheat each part Mi,0 This study
The maximum mass of wheat each part Mi,max This study
The water content of wheat each part Wi This study
The surface area of wheat each part Ai This study
The growth coefficient of wheat each part Gi Rein, etc., 2011 [40]

Partitioning coefficient

Soil-water KSw Fantke, etc., 2011 [32]; Hung, 1997 [41]
Atmosphere-water KAw Rein, etc., 2011 [40]
Root-water KRw Fantke, etc., 2011 [32]
Stem-water KStw Fantke, etc., 2011 [32]
Leaf-water KLw Fantke, etc., 2011 [32]
Grain-water KGw Fantke, etc., 2011 [32]
Flux Q Rein, etc., 2011 [40]; Hung, 1997 [41]

Other data
Volume conversion factor fc Fantke, etc., 2011 [32]
Diffusion rate DR Verma, 2006 [42]
The permeability of leaf and grain PL, PG Trapp, etc., 2007 [43]
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2.5. Accuracy Evaluation

There are two ways of evaluating the model’s accuracy: comparing modeling results with actual
measured results on value and fluctuation (discrete degrees), and comparing Monte Carlo simulation
results (10,000 times) with actual measured results.

2.5.1. Verification of the Modeling Results

In the value aspect, root mean square (RMS) is calculated to compare the model results and
measured results, and the value difference rate (VDR) is identified based on RMS to show their values’
differences. In the fluctuation aspect, coefficient of variance (CV) is calculated to show the different
discrete degrees between modeling and measured results on the whole, and the fluctuation difference
rate (FDR) is identified to show difference rates in terms of fluctuation.

Xrms =

√
∑N

i=1 X2
i

N
(7)

VDR =
|Xrms_mod − Xrms_mea|

Xrms_mea
(8)

CV =
STD
M

(9)

FDR =
|CVmod −CVmea|

CVmea
(10)

In these formulas, Xrms is the root mean square (RMS), Xi is trace metals contents, VDR represents
the accuracy extent on value aspect, Xrms_mod is the RMS of modeling value, and Xrms_mea is the RMS
of measurement value. CV is the coefficient of variance, STD is the standard deviation, M is the
arithmetic mean. FDR is the fluctuation difference rate, CVmod is modeling coefficient of variance,
while CVmea is measured.

2.5.2. Monte Carlo Verification

Monte Carlo simulation is a way to estimate the probability of something happening by many
repeated experiments [44]. Monte Carlo simulation is usually divided into two steps: find targeted
variables and determine their distribution characteristics and variation ranges, then generate numerous
values of targeted variables, and apply their random values to the target model.

In Monte Carlo simulations, the number of random values determines the accuracy of the
simulation. To make the comparison more intuitive, the Monte Carlo simulation’s probability density
curves and actual sample measurement results’ frequency distribution histogram will be drawn on the
same diagram, and the model’s accuracy will be evaluated by comparing its frequency distributions.

3. Results

3.1. Wheat Growth Process

Basing on the initial mass Mi,0, maximum mass Mi,max, and growth rate Gi of each wheat part
(Table 3), we can simulate the mass and flux change of each wheat part in the growing process (Figure 4).
The flux change considers both xylem transport (down-up) and phloem transport (up-down). It will
take approximately one week for the wheat plants to sprout, and then roots, stems, and leaves begin to
grow, while grains appear approximately 50 d after sowing.

In general, grains and stems grow faster, and roots and leaves grow slowly. At approximately
90 d, the mass of wheat roots, stems, and leaves begin to stabilize, and their growth rates become
slow; the grains’ masses begin to stabilize at approximately 110 d. In addition, phloem transport flux
is shown to be less than xylem transport flux by comparing each wheat part. In addition, the root
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transport flux is the biggest in the down-up process, the leaf and stem transport flux is higher in the
up-down process, and the grain transport flux is small in both processes.

Table 3. Initial mass, maximum mass and growth rate in each wheat part.

Item Mi,0 (kg) Mi,max (kg) Gi

Root (R) 0.0025 0.25 0.0075
Stem (St) 0.00125 0.45 0.08
Leaf (L) 0.00125 0.05 0.08

Grain (G) 0.0000056 0.56 0.14

Figure 4. Changes in mass and flux over time in the wheat growth process. (a) Mass; (b) Flux
(down-up); (c) Flux (up-down).

3.2. Trace Metal Accumulation Process

In the wheat growth process, the trace metal accumulation in roots, stems, leaves, and grains
exhibits large differences (Figure 5). (1) Roots: Soil trace metals enter wheat roots by diffusion and
transpiration pulling. Trace metals in wheat roots accumulate slowly during the initial growing
period, but with the growth of wheat, the accumulation rate increases constantly; (2) Stems: Small
amounts of trace metals are transported from roots to stems by symplast and apoplast transport, and
another portion is derived from the near-surface atmospheric deposition and up-down transport in
wheat. In the initial growth period, the levels of trace metals in stems continually increase, and the
accumulation rate slows down at approximately 120 d after sowing; then, the trace metals contents
gradually become stable and reach a maximum in the ripe period; (3) Leaves: Trace metals in the
leaves accumulate rapidly in the initial growth process, and at approximately 90 d after sowing,
the trace metal contents become stable and reach the maximum concentration; (4) Grains: Grains
appear approximately 50 d after sowing, and accumulate trace metals rapidly in the initial growth
period; the accumulation gradually slows down in the late growth period.

The simulation results show that different parts of wheat have different accumulation capacities
for trace metals, and all trace metal contents are highest in wheat roots, followed by the leaves, and
then by the stems and grains (Table 4). Each part of wheat has different accumulation capacities for
different trace metals, and the trace metal contents show an order of Pb, Cu > Ni > Cd in roots, stems,
and leaves, and Cu > Ni > Pb > Cd in grains.

In the research area, trace metals concentration in soil (Csoil) varies with the type of trace metals,
and different trace metals have different capacities to transfer from soil to wheat (BCFsw = Cwheat/Csoil)
or to grains (BCFsg = Cgrain/Csoil), and accumulate. Cu, Pb, and Ni have higher contents in soil,
while Cd migrates more easily to wheat; Cu and Cd accumulate more easily in grains than Pb and Ni
(Table 5).
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Figure 5. The accumulation process of Cu, Cd, Pb and Ni in wheat parts. (a) Root (b) Stem (c) Leaf
(d) Grain.

Table 4. The modeling results of trace metals contents in wheat/mg·kg−1.

Element Cu Cd Pb Ni

Root (R) 16.25 ± 6.76 0.72 ± 0.14 16.26 ± 8.42 9.14 ± 6.56
Stem (St) 3.55 ± 1.48 0.21 ± 0.04 1.44 ± 0.7 2.84 ± 2.04
Leaf (L) 6.07 ± 2.52 0.43 ± 0.08 7.31 ± 3.79 3.40 ± 2.44

Grain (G) 5.25 ± 2.18 0.1 ± 0.02 0.54 ± 0.28 0.82 ± 0.59

Table 5. Wheat absorption (BCFsw) and grain absorption (BCFsg) capacities for different trace metals.

Element Cu Cd Pb Ni

Csoil/mg·kg−1 22.1 0.6 36.3 28.9
BCFsw 1.41 2.43 0.7 0.56
BCFsg 0.24 0.17 0.01 0.03

3.3. Accuracy Evaluation

3.3.1. Verification of the Modeling Results

The RMS of actual measurement results and modeling results are shown in Figure 6. Four kinds
of trace metals contents all show an order of root > leaf > stem, grain, and modeling results are slightly
smaller than measured. Cu and Pb show better simulation results than Cd and Ni.
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Figure 6. Root mean squares (RMS) of measured values and modeling values, (a) the RMS of Cu,
(b) the RMS of Cu, (c) the RMS of Cu, (d) the RMS of Cu.

The value difference rate (VDR) was calculated based on RMS, and fluctuation difference rate was
calculated based on CV (Figure 7). Modeling results were shown to be relatively good, average value
difference rate is 25.29%, average fluctuation difference rate is 26.38%, and modeling results are slightly
stable in numerical distribution (CVmod = 0.5, CVmea = 0.63). Cu and Pb are all better simulated both
on value and fluctuation, while Cd has relatively poor simulation results.

Figure 7. (a) Value difference rates (VDR) and (b) Fluctuation difference rates (FDR) of the
modeling results.

3.3.2. Monte Carlo Verification

As the number of simulations given above is too low to assess the model’s accuracy accurately,
Monte Carlo simulation was used to assess the accuracy.

In research area, soil trace metal contents vary from sample to sample, and a large difference
between different soil samples exists. Meanwhile, atmosphere trace metal contents have smaller
differences, and it is difficult to determine their distribution. Therefore, soil trace metal content was
selected to be the test variable to verify the model’s accuracy. The logarithms of four kinds of measured
soil trace metals contents were first calculated; their p values are all greater than 0.05 (K-S normality
test), so they all obeyed normal distribution approximately, i.e., 10,000 random values (assume them x)
of soil trace metals contents were generated based on this normal distribution formula. We calculated
exp(x) to revert simulative values from normal distribution to previous actual distribution; these
reverted values are the X axis in Figure 8. These values were applied to our model, which was run
10,000 times. We then calculated the corresponding trace metals concentrations in wheat (Y axis).
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Figure 8. Comparison between Monte Carlo simulation and actual measurement results.

To make the comparison more intuitive, the Monte Carlo simulation and actual measurement
results were drawn on the same diagram (Figure 8), where the green bars are the frequency distribution
histogram of actual trace metal contents, while the red lines represent probability density curves of
Monte Carlo simulation. Overall, the Monte Carlo simulation results match pretty well with the actual
contents, and they have similar frequency distributions. Meanwhile, small deviations also exist for the
Leaf-Cu, Grain-Cu, and Leaf-Ni; Monte Carlo simulations were slightly smaller than actual contents.

3.4. Risk Evaluation of Wheat Trace Metal Pollution

This model is accurate and reliable, and can assess not only the trace metal pollution risk from
existing wheat, but also predict the pollution risk in areas where no wheat is grown, based on soil trace
metal contents. Evaluation results can assess not only existing wheat grain safety, but also provide
scientific advice for the planning of future wheat safety zones.

Wheat trace metal contents were simulated based on our model, and a spatial distribution
map was draw by kriging interpolation (Figure 9); the semi-variogram and prediction error of each
kriging interpolation map is shown in Supplementary Materials . Blue represents lower trace metal
concentrations, while red is higher. Thirty-two wheat samples prediction values were extracted
from the kriging interpolation map and compared with measured values, and the error ranges
(|prediction−measured|/measured) were calculated and divided into three ranges: <25%, 25%–50%
and >50%, and expressed in different colors.

In comparing these maps in the horizontal direction, we observed that Cu poses a high pollution
risk in the northeast and southwest, Cd’s high pollution risk zone is in the northwest, while Ni and
Pb both have higher pollution risks in the northeast. In the vertical direction, their concentrations all
follow a sequence of root > leaf > stem, grain. In addition, the simulation of Cu is relatively accurate,
while Pb and Ni have several inaccurate points in the central region, and the inaccurate points of Cd
are in the eastern region.
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Figure 9. Risk evaluation of trace metals pollution in wheat.

4. Discussion

Trace metal (Cu, Pb, Cd, and Ni) accumulation processes in soil-wheat systems were modeled
accurately in this study. This model is based on the growth process of wheat, and considers trace metal
migration processes in all wheat parts (root, stem, leaf, and grain). Modeling results are displayed in
space, and can provide scientific guidance for evaluating wheat trace metal pollution, and selecting
wheat safety sowing areas.

Modeling results show that different parts of wheat have different trace metal contents and
accumulation capacities. Four trace metals contents show an order of root > leaf > stem, grain.
The bioconcentration factors from soil to wheat (BCFsw) show an order of Cd > Cu > Pb > Ni, but
there is a different order from soil to grain (BCFsg): Cu > Cd > Ni > Pb, which is consistent with
previous studies [45]. Meanwhile, there are small differences of BCFsg in some studies; they show an
order of Cd > Cu > Ni > Pb [46,47] or Cd > Cu > Pb > Ni [48]. In general, our simulation results and
previous studies all show the order of Cu, Cd > Pb, Ni. Compared with wheat, rice has similar laws,
and previous studies have found that trace metal contents show the sequence of paddy soil > root >
straw > grain, which is same as our model results of wheat [49]. Cd migrates more easily to rice grains
than Pb, Cu, and Ni [50,51]. In addition, wheat is more likely to accumulate trace metals than corn;
corn leaves have higher trace metals contents than stems and roots [52], and the BCF of corn grain is
Cd > Cu > Pb [47]. In summary, Cd has the strongest migration capacity, and accumulates more easily
in grains in these crops, while Pb does not migrate effectively to grains; most of it accumulates in the
root. These different migration capacities may be due to internal and external factors. Internal factors:
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different trace metals chelation, compartmentalization, adsorption and translocation processes are
different in soil and crops, they are as components of a complex ‘firewall system’ which acts in limiting
trace metal translocation from the root to the shoot, and which reaches different equilibrium positions
depending on trace metals external concentration [53]. External factors: field management methods
will affect trace metal migration capacity; for example, Cd migrates more easily to wheat grains in
organic farms than conventional farms [54], sewage irrigation will improve the translocation of Cu
and Ni while decreasing Pb’s migration in wheat [55], and mulching may promote the accumulation
of Cd and Pb in vegetables [56].

To evaluate the model’s accuracy, modeling results and Monte Carlo simulation results are
compared with actual measurement sample results. Comparison results show that the modeling
results are relatively good, with an error of 25.29% in value and 26.38% in fluctuation. Modeling
results have a smaller dispersion degree than actual measurement results, and the model’s Monte
Carlo simulation results match pretty well with the actual measurement results. In general, Cu, Pb, and
Ni have better simulation results, and their mean modeling errors (VDR) are 7.89%, 21.67%, and 27.28%
separately, while Cd’s modeling error is 44.31%. Compared with other trace metals (Cu, Pb, and Ni),
the content of Cd is much smaller than those of the other metals, whether in soil or in wheat. In soil,
Cd’s content is almost all less than 1 mg/kg, while other trace metals are all present at greater than
10× that amount. That means soil that Cd is more susceptible to exogenous interference. Additionally,
Cd-rich irrigation water, and other pollution emissions will all affect the accuracy of the model to a
large extent. Therefore, more relevant factors should be considered in further improvement of this
model, such as the quality of irrigation water and field management methods.

Wheat trace metal pollution risk was evaluated based on this model. Meanwhile, spatial
distribution maps were created by kriging interpolation. Modeling results show that Cu poses a
high pollution risk in the northeast and southwest near lakes and some mining areas. Cd’s high
pollution risk zone is in the northwest, while Ni and Pb both pose a higher pollution risk in the
northeast near building lands. Building and mining areas make up a relatively high proportion (17.3%)
of the study area, and hundreds of ceramic enterprises exist there. Trace metal pollution is often more
serious around these areas, and the pollution caused by industrial emissions (water, gas and slags)
needs to be given more attention. In addition, the simulation of Cu is relatively accurate, while Cd has
relatively poor simulation, and many inaccurate points are distributed in the eastern region, because it
has many lakes. Meanwhile, wheat irrigation methods are different from the west region, and soil Cd
content is relatively low in this region. Therefore, Cd is more susceptible to other factors (irrigation,
field management) than other trace metals in this region.

Some soil trace metals transport inefficiently into grains, but cluster easily in roots. For example,
Pb and Ni are abundant in soil and roots, but only a small portion can be absorbed by wheat grains.
This indicates that wheat may be a better choice for phytoremediation of soil Pb and Ni than some
other native plants [57], and that wheat grains may still be suitable for human consumption even when
soil trace metal contents are high. It also shows that leaf trace metal contents are relatively high, and
that more attention should be paid when preparing fresh plant food for herbivores. This model is
relatively accurate in the simulation of Cu, Pb, and Ni, and we can judge whether the area is suitable
for planting wheat before sowing this basis, and provide scientific reference for selecting sowing areas.
We will also be able to choose crop species to be sown and the management to be adopted after the
improvement of the model.

The research area has a flat terrain, and many properties are approximately uniform, so this model
doesn’t contain many factors. But, in fact, many the literature has pointed out that parent materials,
soil properties (pH, SOM, etc.), terrain slop, plant species, temperature, the quality of irrigation water,
and field management methods all have complex influences for plants absorbing trace metals. In
further research, natural and human factors should be considered in the model. In nature, we should
find another wheat planting area where the natural environment has larger variability, the relevance
between each influential factor and wheat trace metals contents should be calculated, and high-relevant
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factors should be added to this model as tentative variables. In terms of human factors, population,
field management, polluting enterprises, and traffic pollution should also be considered to make this
model more accurate and more widely-applicable.

5. Conclusions

A mechanistic model was established to simulate trace metal migration in wheat. Cu, Pb, and Ni
have the best simulation results in this model, and Cu and Cd migrate more easily to grains, while Pb
and Ni tend to accumulate in roots.

We assumed that trace metals were absorbed constantly during the growth of wheat, and a model
was proposed based on the wheat growth process. The source of trace metals and the transport process
in wheat are all considered, and modeling results are displayed intuitively in space. Modeling results
are relatively good, with an error of 25.29% in value and 26.38% in fluctuation. The model’s Monte
Carlo simulation results also match pretty well with the actual measurement results. Cu, Pb, and Ni
have better simulation results, while Cd has a relatively poor simulation in the eastern region, because
soil Cd content is relatively low in this region, and is more susceptible to other factors (irrigation,
field management) than other trace metals.

Model results show that four trace metal contents show the order of root > leaf > stem,
grain in wheat, while the bioconcentration factors from soil to grain (BCFsg) show an order of
Cu > Cd > Ni > Pb. Model results are consistent with previous studies [45], despite slight differences
due to wheat species or study area, but all the BCF orders were Cu, Cd > Pb, Ni [46–48]. We found
that Pb and Ni are abundant in soil and roots, and only a small portion can be absorbed by wheat
grains. Therefore, it may be that this wheat variety can provide good phytoremediation for Pb and
Ni. Meanwhile, we can judge whether the area is suitable for planting wheat before sowing based on
this model.

In further study, more natural and human factors should be considered. Plant species should be
carefully considered and taken as a factor in our model. In the human aspect, the field management
method has an important effect on trace metal accumulation processes, and should be considered
in further studies. We should know where is safe for sowing, which crop is planted, and which
management method should be adopted based on our model. In addition, crop straw is directly used
as animal feedstuff, so we should also assess the risk of trace metal pollution in straw based on this
model, and provide a “safe straw area” for local farmers.

Supplementary Materials: The semi-variogram and prediction error of each kriging interpolation map (Figure 9)
are available online at http://www.mdpi.com/1660-4601/15/11/2432/s1.
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