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Abstract. Many types of mutant and genetically engineered strains have been produced in various animal species. Their
numbers have dramatically increased in recent years, with new strains being rapidly produced using genome editing
techniques. In the rat, it has been difficult to produce knockout and knock-in strains because the establishment of stem
cells has been insufficient. However, a large number of knockout and knock-in strains can currently be produced using
genome editing techniques, including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN),
and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system.
Microinjection technique has also contributed widely to the production of various kinds of genome edited animal strains. A
novel electroporation method, the “Technique for Animal Knockout system by Electroporation (TAKE)” method, is a simple
and highly efficient tool that has accelerated the production of new strains. Gamete preservation is extremely useful for
maintaining large numbers of these valuable strains as genetic resources in the long term. These reproductive technologies,
including microinjection, TAKE method, and gamete preservation, strongly support biomedical research and the bio-resource
banking of animal models. In this review, we introduce the latest reproductive technologies used for the production of
genetically engineered animals, especially rats, using genome editing techniques and the efficient maintenance of valuable
strains as genetic resources. These technologies can also be applied to other laboratory animals, including mice, and domestic

and wild animal species.
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he rat is an important animal for understanding the mechanisms of
human diseases [1, 2]. Spontaneous mutant and transgenic strains
have been used as models of human diseases in various biomedical
research fields [3, 4]. Although knockout and knock-in rat strains
are also required as animal models, it has been extremely difficult
to produce these strains because no high-quality rat embryonic stem
(ES) cells [5, 6] or induced pluripotent stem (iPS) cells [7, 8] have
been established. Transposon-mediated mutagenesis [9, 10] and
N-ethyl-N-nitrosourea (ENU) mutagenesis [11, 12] have been used as
alternative protocols for the random production of knockout strains.
Developing genome editing techniques overcame this serious
problem. Genetically engineered strains can be rapidly produced by
the direct introduction of engineered endonucleases into embryos
with a requirement for neither ES cells nor iPS cells. Genome editing
techniques, including zinc-finger nuclease (ZFN), transcription
activator-like effector nuclease (TALEN), and the clustered regularly
interspaced short palindromic repeats (CRISPR) and CRISPR-
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associated protein 9 (Cas9) system, are powerful tools for the
generation of genetically engineered rats [13—16]. At present, a
large number of knockout and knock-in rat strains produced by
genome editing techniques are used worldwide [17].

The use of the genome editing techniques to produce genetically
engineered strains has triggered an explosive increase in the numbers
of animal populations available for biomedical research. Although
breeding by natural mating is the optimal method for the maintenance
of these strains, genetic contamination by mispaired mating and
infection by pathogenic microorganisms can cause the extinction of
valuable strains. Furthermore, the lack of breeding space as a result
of the increased number of strains and the decline in fertility caused
by inbreeding inhibit the reproduction of subsequent generations.
Reproductive technologies, including gamete preservation and artificial
fertilization methods using preserved gametes, are important tools in
regulating animal breeding conditions. Although several reproductive
technologies have been established and are used routinely on rats,
these methods must be developed further to accommodate the rapid
advances in genome editing techniques. In this review, we introduce
the latest reproductive technologies for the production of genetically
engineered rats based on genome editing techniques and the efficient
maintenance of valuable strains. These technologies can also be
applied to other laboratory animals, including mice, and domestic
and wild animal species.
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Production of Genome Edited Rats Using the
Conventional Microinjection Method

In general, genetically engineered rats, such as transgenic strains,
are produced by the microinjection of endonucleases into pronuclear-
stage embryos. Fortunately, the same microinjection method can
be used to produce genome edited rats. In brief, engineered ZFN,
TALEN, or CRISPR-Cas9 systems, which encode the target genes,
are introduced into the pronuclei or cytoplasm of embryos with
a thin glass pipette installed in the holder of a micromanipulator
[18-20]. The first genome edited rats were generated by microinjecting
self-transcribing mRNAs of ZFN that targeted the immunoglobulin
M (IgM) and Rab38 genes in the pronuclei of embryos [13]. The
rat strain in which the interleukin-2 receptor subunit gamma chain
(112rg) gene was knocked out (X-SCID) [21], and the strain in which
the //2rg and Prkdc genes are both knocked out, were then both
generated [22], and these strains have since been widely used in
biomedical research [23, 24].

Immediately after the successful production of knockout rat strains
with ZFN in 2009, a new genome editing tool, called TALEN, was
reported [25, 26]. TALEN was immediately used as an alternative
tool for genome editing in rats and other species [14]. We success-
fully produced knockout rats that targeted the albino (7yr) gene
by microinjecting TALEN mRNA into the pronuclei of embryos,
although the initial TALEN only had a low activity in the embryos
[27]. However, their activity was significantly increased by the
co-injection of exonuclease 1 (Exo/) with the TALEN mRNA [27].
Sakuma et al. [28] also constructed TALEN with periodically patterned
repeat variants harboring non-repeat-variable di-residue (non-RVD)
variations (Platinum TALEN). Platinum TALEN showed a higher
activity than conventional TALEN after its introduction into embryos,
and all offspring obtained from these microinjected embryos showed
the mutation of the targeted //2rg gene [28].

After the ZFN and TALEN technologies became standard methods
for producing knockout rat strains, another technology, the CRISPR-
Cas9 system, was developed [29, 30]. The successful production of
genome editing rat strains using CRISPR-Cas9 was immediately
reported [15, 16]. We also successfully produced a knockout strain
that targeted the 7y gene by microinjecting both Cas9 mRNA and
guide RNA (gRNA) into the pronuclei of embryos [31]. Targeted
knock-in strains could also be generated by introducing single-stranded
oligodeoxynucleotides (ssODN) together with the Cas9 mRNA and
gRNA into embryos [32]. CRISPR-Cas9 is now the most popular
genome editing tool for the production of knockout and knock-in
rats and other animal strains, because the Cas9 endonuclease can
be used regardless of the targeted gene, and gRNA is a custom-
ized construct that can be designed using online web applications.
Importantly, the CRISPR-Cas9 system shows high target specificity
in the embryos [31].

The F344/Stm rat strain is recommended as a suitable animal
for the production of genome edited rat strains, because it has been
optimized to collect a sufficient number of pronuclear-stage embryos,
although it is an inbred strain [33]. Furthermore, the whole genome
sequence [34] and the bacterial artificial chromosome end sequences
[35] of this strain have been analyzed. Fortunately, all endonucleases,
including Cas9 mRNA, Cas9 nuclease protein, and custom-designed

gRNA, can be purchased commercially and are highly active in
embryos [36, 37]. This ease of preparation for the production of
genome editing animals strongly promotes their use in biomedical
research. Although microinjection is now the gold standard method
routinely used for the production of genome edited animals, it requires
a micromanipulator and sophisticated technical skills to prevent cell
damage. Furthermore, microinjection is not convenient when many
cells must be assessed simultaneously, because the endonucleases
must be injected into the embryos one by one. For easy preparation,
it is important to develop a fully automatic micromanipulator and
another system for introducing endonucleases into embryos.

Electroporation Method for the Introduction of
Endonucleases into Intact Embryos

The electroporation method can introduce nucleases into living
cultured cells. However, this method cannot be used to introduce
nucleases into animal embryos because the strong electric pulses
of conventional electroporation protocols damage the embryos.
Weakening the zona pellucida by treatment with Tyrode’s acid
solution before electroporation increases the chance of introduction
of endonucleases [38, 39]. However, this may affect subsequent
embryonic development because its function is important in in vivo
development [40, 41].

We developed a new electroporation device, NEPA21 (Nepa Gene,
Chiba, Japan), that reduces the damage to embryos by using a three-
step electrical pulse system (Fig. 1a) [42]. In brief, pronuclear-stage
embryos are placed in a line between metal plates in a glass chamber,
filled with phosphate-buffered saline (PBS) or Opti-MEM (Thermo
Fisher Scientific Inc., MA, USA), that contains the endonucleases
(Fig. 1b and c). Three-step electrical pulses are then discharged into
the embryos. The first pulse, the poring pulse, make micro-holes in
the zona pellucida and oolemma of the embryos. The second pulse,
the transfer pulse, transfers the endonucleases into the cytoplasm of
the embryos. The third pulse, the polarity-changed transfer pulse,
increases the opportunity of introducing the endonucleases into
the embryos [43]. It should be noted that intact embryos with no
weakening of the zona pellucida can be used for electroporation.

To examine the optimal electrical pulse conditions to introduce
endonucleases into the embryos with this new system, we firstly
introduced 3-kDa of tetramethylrhodamine-labeled dextran into
intact rat pronuclear-stage embryos, because it can be easily and
rapidly visualized and is nontoxic to embryos. The poring pulse
was set to the following: voltage, 225 V; pulse width, 0.5, 1.5, or
2.5 msec; pulse interval, 50 msec; and number of pulses, + 4. The
transfer pulse was set to the following: voltage, 20 V; pulse width,
50 msec; pulse interval, 50 msec; and number of pulses, + 5. In this
study, most embryos survived after electroporation, and dextran was
introduced into the whole cytoplasms of all embryos at all pulse
width settings for the poring pulse [42]. The results of this study
are revolutionary, in that the new three-step electrical pulse system,
NEPA21, can efficiently introduce high level of materials into intact
embryos without any treatments that weaken the zona pellucida.
Furthermore, the damage to the embryos by the electrical pulses is
extremely low, ensuring a high survival rate among the embryos after
electroporation. This new electroporation method was designated
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Fig. 1.

(a) Super electroporator NEPA21. (b) Petri dish with platinum plate electrodes. (¢) Pronuclear-stage embryos were placed in a line between metal

plates in a glass chamber filled with a buffer that conducted the endonucleases.

Table 1. Development of rat embryos introduced to ZFN and TALEN mRNA by microinjection or electroporation

MRNA Methods Pulse width ~ No. of e@bwos No. (%) of 2-cell No. (%) of No. (%) of offspring
(ms) examined embryos offspring with mutation
ZFN Microinjection - 93 41 (44) 9 (10) 3(33)
Electroporation 0.5 61 58 (95) 19 (31) 7(37)
1.5 63 57 (91) 15 (24) 11(73)
2.5 66 16 (24) 4 (6) 3(75)
TALEN Microinjection - 52 20 (39) 6(12) 6 (100)
Electroporation 1.5 57 55(97) 25 (44) 1(4)
2.5 57 56 (98) 17 (30) 3(18)

Targeted gene: //2rg gene [42, 43].

the “Technique for Animal Knockout system by Electroporation
(TAKE)” method [42].

Introduction of ZFN and TALEN mRNAs into Intact
Embryos using the TAKE Method

We next introduced ZFN and TALEN mRNAs into intact rat
embryos using the TAKE method. In this experiment, the mRNAs
were self-transcribed from plasmid vector encoding ZFN and TALEN
that targeted the //2rg gene. The ZFN and TALEN mRNAs were
suspended in PBS at 40 pg/ml. Up to 50 pronuclear-stage embryos
were placed in a line between the metal plates in a glass chamber
that was filled with PBS containing the mRNAs. The embryos were
then electroporated with the same electrical conditions used to
introduce tetramethylrhodamine-labeled dextran into embryos. The
electroporated embryos that developed to the two-cell stage in vitro
were transferred into the oviducts of pseudopregnant female rats.

Our results showed that 10% or 12% of the embryos microinjected
with 10 pg/ml ZFN or TALEN mRNAs as a control developed
into offspring, and that 33% or 100% of these offspring had an
edited //2rg locus, respectively. In contrast, 24% of the embryos that
were electroporated with ZFN mRNA with a pulse width of 1.5 ms
developed into offspring, and 73% of these offspring had an edited
112rg locus. In embryos that were electroporated with the TALEN
mRNA at a pulse width of 2.5 msec, 30% developed into offspring
and 18% of these had an edited //2rg locus (Table 1). Surprisingly,

more than 90% of embryos survived after electroporation. These
results demonstrated that our electrical settings minimized the dam-
age to the embryos. The germline transmission of the edited //2rg
gene was also confirmed in the next generation [42, 43]. Thus, the
TAKE method was established as an easy and efficient method of
introducing endonucleases into animal embryos.

Introduction of Cas9 mRNA/nuclease Protein, gRNA,
and ssODN into Intact Embryos with the TAKE Method

The development of the CRISPR-Cas9 system has had a great
impact on our research into the production of genome edited
animals. A method that could be used to quickly and completely
produce genome edited animals, including rats, using this system
was required. Although conventional microinjection is a reliable
method that provides adequate results, the equipment preparation
and requirement of sophisticated technical skills have hindered the
progress of research. The successful production of genome edited
rat strains with the TAKE method using the CRISPR-Cas9 system
has become an urgent task.

At present, the CRISPR-Cas9 system has become most popular
genome editing tool. It has a high target specificity, and allows the
simpler and more rapid production of genome edited animals than
ZFN and TALEN. In our first trial, a plasmid expressing human
Cas9 (hCas9; ID #41815, Addgene, MA, USA) was modified by the
addition of the T7 promoter and DNA encoding SV40 nuclear localiza-
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Table 2. Development of rat embryos introduced to Cas9 mRNA, gRNA and ssODN by electroporation

Cas9 mRNA gRNA ssODN No. of embryos  No. (%) of embryos  No. (%) of males ~ No. (%) of knockout  No. (%) of knock-in
(pg/ml) (pg/ml) (pg/ml) examined developed to 2-cells offspring offspring offspring
400 600 300 60 45 (75) 24 (53) 21 (88) 8(33)
200 200 200 50 49 (98) 19 (39) 737 1(5)
100 100 100 89 88 (99) 41 (47) 16 (39) 1(2)

Targeted gene: //2rg gene [43, 44].

tion signals at the N-terminal of hCas9 to increase its activity after
introduction into the embryo. The mRNA was then self-transcribed
from the modified hCas9 plasmid. The same electrical pulse settings
(poring pulse: voltage, 225 V; pulse width, 2.5 msec; pulse interval,
50 msec; number of pulses, + 4; transfer pulse: voltage, 20 V; pulse
width, 50 msec; pulse interval, 50 msec; number of pulses, £ 5)
that were used to introduce the ZFN and TALEN mRNAs into the
embryos were used to introduce the Cas9 mRNA and gRNA that
targeted the //2rg gene in the intact rat pronuclear-stage embryos.
Of the embryos electroporated with 400 pg/ml Cas9 mRNA and
600 pg/ml gRNA, 53% developed into offspring, and 88% of these
offspring had an edited //2rg locus. The production of knock-in rats
(33%) by co-introducing 300 pg/ml ssODN with Cas9 mRNA and
gRNA was also successful (Table 2). The germline transmission of the
edited //2rg gene was also confirmed in the next generation [43, 44].

The TAKE method was further improved as a widely used method
for producing genome edited rats with various engineered endonucle-
ases, including ZFNs, TALENs, and CRISPR-Cas9 systems. Similar
electroporation methods have been reported based on the protocol of
the TAKE method [45, 46], and the TAKE method is now used as a
highly reproducible method worldwide [47-49]. Cas9 mRNA, Cas9
nuclease protein, and custom-designed gRNAs can now be purchased
commercially. All these endonucleases can be electroporated into
embryos, and display high levels of activity (Tables 1-3) [42-44].
Therefore, the rapid and complete production of genome editing
animals is now possible without molecular biological preparations,
such as the self-transcription of mRNA from a plasmid vector.

TAKE is a revolutionary method that can introduce endonucleases
into 100 intact embryos within 5 min without sophisticated technical
skills such as conventional microinjection, and shows a high mutation
efficiency in the generated offspring. As a further advantage, the same
electrical pulse settings as we used in rat embryos can be applied
to genome editing in mouse embryos [43, 44]. It is expected that
the TAKE method will promote biomedical sciences by generating
various genomically altered animal species.

Maintenance of Rat Strains as Genetic Resources
Using Reproductive Technologies

Genome editing techniques have dramatically increased the number
of new rat strains. Breeding by natural mating is ideal for maintaining
the populations of these strains. However, the lack of breeding
space that has arisen with the increased number of strains and the
decline in fertility caused by inbreeding inhibit the reproduction of
subsequent generations. Therefore, reproductive technologies, such
as gamete preservation and artificial fertilization techniques, have

Table 3. Development of rat embryos co-introduced to Cas9 nuclease
protein and gRNA by microinjection or electroporation

o o No. (%) of
Methods No. of er.nb:iyos 5 N?I' (A’]):’Of N(I;(A).) of knockout
examine: -cellembryos  offspring s
Microinjection 40 19 (48) 13 (68) 10 (77)
Electroporation 25 25 (100) 17 (68) 17 (100)

Targeted gene: 7yr gene. Cas9 protein and gRNA (Integrated DNA
Technologies, TA, USA) were used [43].

been developed to overcome these problems.

Gamete preservation is a useful tool for reducing breeding space
and preventing the genetic contamination of resources by mispaired
mating. Rat embryos have mainly been frozen using a slow freezing
or two-step freezing methods [50-52], and a vitrification method has
been also investigated [5S3—-56]. We now vitrify rat embryos using
a solution containing 10% propylene glycol, 30% ethylene glycol,
20% Percoll, and 0.3 M sucrose, and the frozen embryos are rapidly
thawed in 0.3 M sucrose warmed to 37°C [33, 57]. The vitrification
of embryos has a high recovery efficiency after thawing in both
the two-cell and more developed embryo stages [58]. However,
the survival rates of unfertilized oocytes and pronuclear-stage
embryos vitrified with this method are low. The rate of subsequent
developmental to offspring was significantly increased when the
vitrified pronuclear-stage embryos were transferred to pseudopregnant
females after development to the two-cell stage in vitro [33]. Frozen
unfertilized oocytes and pronuclear-stage embryos are useful entities
for producing genome editing strains.

Sperm preservation is another gamete preservation technique,
which allow the simple preparation of males and the use of smaller
breeding spaces. Furthermore, the genetic traits of genome edit-
ing strains can be transmitted by only preserving sperm. Sperm
preservation is a simple, space-saving, and cost-effective method for
the maintenance of genetically modified strains, including genome
edited strains. Offspring were obtained from sperm that were frozen
in a solution containing 8% lactose, 0.7% Equex STM, and 23% egg
yolk [59]. However, rat sperm are known to be extremely sensitive
to physical damage, and the tolerance of sperm to freezing differs
greatly between rat strains [60]. Therefore, freezing rat sperm has
been studied to develop a routine protocol. Effective fertilization
protocols using frozen sperm have been developed in various animal
species [61]. It is anticipated that sperm freezing and fertilization
techniques using frozen rat sperm will be improved to accommodate
these strain variations.
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Intracytoplasmic Sperm Injection (ICSI)

In vitro fertilization is a useful method for simply generating large
numbers of embryos. However, it is essential that sperm with good
motility are used to fertilize oocytes in vitro. It is often impossible to
collect sperm with good motility from all rat strains and individuals.
Intracytoplasmic sperm injection (ICSI) has been used as a powerful
fertilization tool in various animals, including humans [62]. This
technique involves direct injection into an oocyte of a spermatozoon
that has been drawn into a thin glass pipette installed in the holder
of a micromanipulator.

The ICSI technique has dramatically increased the fertility
potential of sperm in vitro. Oocytes can be fertilized by ICSI even
when the sperm are immotile [63] or immature [64]. Uehara and
Yanagimachi [65, 66] first reported successful ICSI in mammals
that demonstrated the formation of normal pronuclei in oocytes
after the microinjection of hamster sperm. Since their study was
published, the offspring of various mammals have been produced
with ICSI [67, 68]. Interestingly, the successful results for mouse
ICSI were reported by Kimura and Yanagimachi in 1995 [69] after
the publication of human ICSI in 1992 [70], because the oolemma
of the mouse oocyte is easily broken during sperm injection with
the conventional sharp glass pipette used for human ICSI. The piezo
pulse-driven micromanipulator unit overcame the vulnerability of
the mouse oocyte to damage from physical stress, and significantly
improved the survival of oocytes after the injection of sperm [69].

Although the piezo pulse-driven micromanipulator was also used
for rat ICSI, another technical problem arose. The rat sperm head
has a unique structure [61], and oocytes are extremely sensitive to
damage during sperm injection with a glass pipette [71]. No oocytes
survived after sperm injection using a glass pipette with a diameter
sufficiently wide to allow the complete aspiration of the sperm head.
Survival is significantly increased by hanging a single sperm head
on the tip of a narrow diameter glass pipette [72]. Offspring were
also successfully generated with frozen immature [73] and mature
sperm [74] using this improved rat ICSI technique.

Simple Gamete Preservation by Freeze-drying Sperm

It is difficult to store the sperm of all rat strains so that they retain
their motility and can be used for artificial insemination and in vitro
fertilization. However, sperm motility is no longer required when
oocytes are fertilized by the ICSI technique. Offspring can be generated
from oocytes that are fertilized by immotile sperm frozen without
cryoprotectants [74—76]. The sperm of a large number of strains must
be stored efficiently to save maintenance costs and space; sperm
preservation by freeze-drying is an attractive and ultimate method for
simple gamete preservation (Fig. 2) [77]. Unfortunately, freeze-dried
sperm cannot penetrate the zona pellucida and oolemma of oocytes
because their motility is lost during freeze-drying. However, sperm
nuclei are strongly protected from damage during freeze-drying [78]
by chelating agents, such as EDTA [79] or EGTA [76], in a slightly
alkaline solution [80], and oocytes fertilized with these sperm by
ICSI develop into normal offspring [74, 81].

The successful freeze-drying of sperm has already been reported
in various animal species, including mice and endangered animals

Fig.2. (a) Freeze-drying machine and (b) freeze-dried sperm in glass

ampoules.

Table 4. Development of rat oocytes fertilized with freeze-dried sperm
stored at 4°C for various time periods

No. of embryos  No. (%) of embryos  No. (%) of
Storage term transferrszil (im)planted i oﬁ"s(priilg
14 days 36 11 (31) 5(14)
6 months 18 11 (61) 3(17)
1 year 19 8 (42) 3 (16)
5 years 92 18 (20) 10 (11)

Rat: Crlj:WI [84, 87].

[82]. The advantage of freeze-drying sperm is that the sperm can
be stored long-term in a simple solution (Tris and EDTA or EGTA)
without cryoprotectants in a refrigerator (4°C) (Table 4) [83-85].
Furthermore, short-term storage [86] and worldwide transportation
at ambient temperatures [87] are also possible. A similar simple
sperm preservation method using evaporation has been investigated
in the mouse [88]. Conventional gamete preservation requires a
continuous supply of liquid nitrogen and the mechanical maintenance
of equipment for long-term preservation. Unfortunately, valuable
sperm samples that are stored in liquid nitrogen may be lost if the
liquid nitrogen supply is compromised, especially during natural
disasters, such as earthquakes and typhoons [89]. It is not realistic
to fully prepare a facility in which samples can be safely stored in
each laboratory. The freeze-drying and evaporation methods of sperm
preservation are simple, safe, and cost-effective for the maintenance
of valuable rat strains in the long term. At present, the freeze-drying
of sperm has also been used to maintain the genetic diversity of
endangered wild animal species [90].
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Conclusions

The quality and quantity of rat research has been dramatically im-

proved by the development of genome editing techniques. Genetically
engineered rats with changes to uniquely targeted genes can already
be rapidly produced. Advances in reproductive technologies have
also been made in parallel with the development of gene targeting
technologies. However, these require further development to become
stable routine technologies. Few researchers are highly skilled in
rat reproductive technologies, although we have held a technical
workshop and released technical protocols [19, 20, 43, 87] to dis-
seminate these animal reproductive techniques globally. However,
these reproductive technologies are still inadequate for application
to some experimental animals. We anticipated the development and
popularization of reproductive technologies that can produce and
maintain new valuable strains in various animal species.
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