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ABSTRACT

Objective: The study sought to determine whether machine learning can predict initial inpatient total daily dose

(TDD) of insulin from electronic health records more accurately than existing guideline-based dosing recom-

mendations.

Materials and Methods: Using electronic health records from a tertiary academic center between 2008 and

2020 of 16,848 inpatients receiving subcutaneous insulin who achieved target blood glucose control of 100-180

mg/dL on a calendar day, we trained an ensemble machine learning algorithm consisting of regularized regres-

sion, random forest, and gradient boosted tree models for 2-stage TDD prediction. We evaluated the ability to

predict patients requiring more than 6 units TDD and their point-value TDDs to achieve target glucose control.

Results: The method achieves an area under the receiver-operating characteristic curve of 0.85 (95% confidence

interval [CI], 0.84-0.87) and area under the precision-recall curve of 0.65 (95% CI, 0.64-0.67) for classifying

patients who require more than 6 units TDD. For patients requiring more than 6 units TDD, the mean absolute

percent error in dose prediction based on standard clinical calculators using patient weight is in the range of

136%-329%, while the regression model based on weight improves to 60% (95% CI, 57%-63%), and the full en-

semble model further improves to 51% (95% CI, 48%-54%).

Discussion: Owingto the narrow therapeutic window and wide individual variability, insulin dosing requires

adaptive and predictive approaches that can be supported through data-driven analytic tools.

Conclusions: Machine learning approaches based on readily available electronic medical records can discrimi-

nate which inpatients will require more than 6 units TDD and estimate individual doses more accurately than

standard guidelines and practices.
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INTRODUCTION

Background and Significance
Poorly controlled glucose is both common and dangerous in hospi-

talized patients, reflecting deficiencies in common standard practices

in insulin dosing. Hyperglycemia, defined as a blood glucose >140

mg/dL, occurs in 22% to 46% of non–critically ill hospitalized

patients,1 and can lead to serious complications, including infec-

tions, cardiovascular events, and increased overall mortality.2 The

increased odds of mortality among patients with a blood glucose

above 145 mg/dL is 1.3 to 3 times that of patients with normal glu-

cose (70-110 mg/dL), independent of illness severity.3

The treatment for hyperglycemia in inpatients is insulin, a hor-

mone essential to enabling cells to uptake glucose from the blood for

energy. However, insulin has a narrow therapeutic window when

given as a medication, and overtreatment can lead to dangerous hy-

poglycemia causing seizure, arrhythmia, or even death. As such, pre-

dicting an accurate insulin dose is critical for clinical outcomes. The

existing standard of care for estimating initial insulin dose predic-

tion is unfortunately highly variable, as it is typically driven mainly

by individual clinical judgment supplementing crude weight-based

clinical calculators, often leading to ineffective glucose control.4

Practice guidelines for inpatient insulin dosing primarily revolve

around weight-based clinical calculators that estimate the total daily

dose (TDD) of insulin required to be 0.4 to 0.6 units/kg among non-

elderly patients with good kidney function.5,6 This calculator results

in a range of dosing that can vary by 50%, requiring prescribers to

use variable clinical experience to adjust for factors such as age, sus-

pected insulin sensitivity, and renal function. Even in optimal condi-

tions, existing TDD guidelines are based on a dosing schema of

unclear provenance chosen in published studies7 that have not been

clinically validated. The current practice leads to significant dosing

heterogeneity even within the same patient’s hospitalization.8

For admitted patients, prescribing an initial insulin dose is often

challenging, as there is limited information available at this early

stage, whereas titration is often a simpler problem because a

patient’s insulin sensitivity can be estimated from their response to

previous insulin doses. Specialized glucose management services

have been established to help minimize both hyperglycemia and hy-

poglycemia in the inpatient setting. These consult services have im-

proved blood glucose control and cost savings.9,10 However, the

number of patients who need consults often exceeds the capacity of

these services.11 Decision support that assists in insulin dosing could

improve inpatient glycemic control at scale.

An alternate approach to formal consult services is a remote glu-

cose monitoring service in which a consulting endocrinologist pro-

vides teams with insulin dosing suggestions based on chart review,

without examining the patient, which has shown success in reducing

the proportion of patients with hyperglycemia and reducing hypo-

glycemic events.12 The success of such remote glucose control pro-

grams suggests that electronic health records may contain sufficient

information for prescribing insulin, and can be leveraged using auto-

mated machine learning methods.

Prior research in the use of machine learning for diabetes-related

problems has mostly focused on detecting adverse glycemic events

and predicting blood glucose and insulin bolus doses using continu-

ous glucose monitoring measurements in outpatients and has been

limited to short-term predictions under 60 minutes.13–23 Studies pre-

dicting insulin bolus doses have focused on titration, adjusting previ-

ous insulin doses and relying on manual physician calculation.13,20–

23 Although they showed promising results for outpatient type 1 dia-

betes management, these studies used either simulated data or evalu-

ation metrics focused on glycemic control and not direct assessment

of predicted insulin doses from patient data. These algorithms may

not apply to hospitalized patients who are more clinically unstable

than outpatients, and only have noncontinuous blood glucose

checks typically no more than 4 times per day. To our knowledge,

there have been no prior studies predicting actual insulin doses in

inpatients, although one study predicting what dose of insulin clini-

cians would order yielded an error of approximately 73%.24

Common machine learning methods used in prior diabetes-

related research include multivariate regression, support vector re-

gression, and deep learning,15,25–30 though no method has been con-

sistently shown to be superior.13 Instead of choosing a single

algorithm, an ensemble machine learning approach, such as the

SuperLearner that we apply here, uses a weighted combination of

multiple learning algorithms to achieve better predictive perfor-

mance than any single algorithm alone.31

OBJECTIVE

Our objective is to determine whether initial inpatient insulin

requirements could be more accurately predicted from readily avail-

able electronic health record data using machine learning methods

than existing weight-based guidelines. In stage I, we predicted

whether a patient will require more than 6 units of TDD, ie, “low”

vs “higher” insulin users, as a binary prediction. In stage II, for

patients who require more than 6 units of TDD, we predicted the

point-value TDD that the patients required to achieve good glucose

control.

MATERIALS AND METHODS

We present our results following the TRIPOD (Transparent Report-

ing of a multivariable prediction model for Individual Prognosis Or

Diagnosis) statement.32 Our study is approved by the institutional

review board of the Stanford University School of Medicine.

Data source and cohort
Using electronic health record data from a tertiary academic medical

center from 2008 to 2020, we retrospectively identified a cohort of

unique patients who achieved target “good” glucose control during

their most recent hospital encounters. Patients were considered to

have good control if they had at least 3 blood glucose measurements

by glucometer that were within the target range of 100 to 180 mg/

dL6,33 on a calendar day without any measurement outside this

range, consistent with inpatient diabetes management guidelines34

We excluded patients who were on total parenteral nutrition (TPN)

or peripheral parenteral nutrition (PPN), tube feeds, insulin pumps,

insulin infusions, or any rarely used insulin formulations (ordered

fewer than 25 times in all records). Because insulin dosing is tradi-

tionally weight based, we also excluded patients with missing

weights, about 2.4% of our original cohort. If patients had more

than 1 good day, we selected the first good day of their most recent

hospitalization.

Features
Included features were weight, height, age, sex, race, insurance sta-

tus (public vs private), creatinine, diet (nothing by mouth, carb-

controlled, other), counts of microbiology lab orders, and amount

of glucocorticoid use within the previous 48 hours. Hemoglobin
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A1c was classified into 4 categories: missing, <5.7, between 5.7 and

9, and >9 as normal, high, and panic high defined by our reference

clinical laboratory. The total amount of glucocorticoid was normal-

ized to glucocorticoid equivalents.35–37 Counts of major Interna-

tional Classification of Diseases codes by most general parent

category level were also included.38 For example, the International

Classification of Diseases code E11.9, type 2 diabetes without com-

plications, would be counted as simply category E: diagnoses for en-

docrine, nutritional, and metabolic diseases. Table 1 displays a

summary of demographics and selected key characteristics. Supple-

mentary Table 1 displays a list of included features.

Additionally, we included counts of relevant lab results in quan-

tiles to handle sparsity. We quantized lab value distributions into

decile bins, assigned values to the bins, and then counted the fre-

quencies of bin membership. This method naturally deals with miss-

ingness by yielding count vectors of zeros over all bins if a particular

numerical lab is not available. The included labs were albumin, al-

kaline phosphatase, alanine transaminase, aspartate aminotransfer-

ase, anion gap, total protein, total bilirubin, troponin, blood urea

nitrogen, calcium, potassium, sodium, lactate, blood gas, hemoglo-

bin, white blood cell count, platelet count, eosinophil, and absolute

neutrophil count. For blood glucose, we used the exact value of the

first available (admission) measurement and summary statistics of

all measurements (mean, median, minimum, maximum, SD, and to-

tal number of measurements) prior to prediction time. Although we

included patient history of basal insulin use as a feature, no insulin

doses the patients received during the present admission were in-

cluded to reflect the aim of predicting initial insulin dosing (as op-

posed to titration). We restricted the feature set to only include data

available before the days that patients achieved good glucose control

(prediction time).

Outcomes and 2-stage prediction framework
In the first stage of modeling, we undertook a binary prediction of

whether a patient received more than 6 units of TDD (“higher” in-

sulin users, positive class) or �6 units (“low” insulin users, negative

class). We chose this threshold based on our data distribution, as

about 75% of our cohort required a TDD of 6 units or below. Addi-

tionally, 6 units is the minimum dose that could be split into basal

and prandial insulin without an insulin pump. Therefore, maintain-

ing glycemic control for “low” insulin users could reasonably re-

quire little more than monitoring and sliding scale insulin, whereas

“higher” insulin users may require a basal-bolus regimen. Our base-

line model is a univariate logistic regression model with weight as

the predictor.

In the second stage of modeling, we aimed to predict the point-

value TDD in “higher” users. Among the “higher” insulin users, the

range of insulin needs varied broadly (Figure 1). We log transformed

TDD for modeling purposes, given the right skew of the outcome

variable. Our primary baseline model was a univariate regression model

with weight, approximating existing guidelines using weight as the pre-

dictor. A secondary baseline was the estimated TDD using a clinical cal-

culator often considered in clinical practice: TDD ¼ c * patient-weight

(kg), where c is a factor from 0.4 to 0.6.33

Statistical methods
We randomly split our data by patients into 80% for training and

20% for testing. For both of the prediction stages, we chose 3 super-

vised machine learning algorithms, including regularized regression,

random forest, and gradient boosted trees. We trained an ensemble

SuperLearner algorithm, a more generalized “regression” procedure,

to integrate these base algorithms to achieve higher performance

and stability, in which each base algorithm contributed a weight to

the ensemble algorithm.31 We used 10-fold cross-validation for

training with SuperLearner and tested on the independent test set.

Table 1. Summary of demographics and some important variables

in the full cohort

Mean SD Count Proportion

Age, y 63.8 14.4

Sex

Female 7497 44.5%

Male 9351 55.5%

Weight, kg 84.1 24.0

Height, cm 168.3 11.1

Race

Asian 2479 14.7%

Black 869 5.2%

Native American 71 0.4%

Pacific Islander 374 2.2%

White 9008 53.5%

Other 3562 21.1%

Unknown 485 2.9%

Insurance

Public 10 129 60.2%

Private 6709 39.8%

Diet

NPO 3323 19.7%

Carb controlled 3700 22.0%

Other 9825 58.3%

HbA1c, % 6.57 1.49

Creatinine, mg/dL 1.40 1.42

First glucose, mg/dL 148 62

History of basal insulin use

No 13 984 83.0%

Yes 2864 17.0%

HbA1c: hemoglobin A1c; NPO: nothing by mouth.

Figure 1. Plot of weight vs total daily dose with regression line and its confi-

dence interval.
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To evaluate our models for the 2 stages on the test set, we used

several different metrics. For the stage I binary prediction, we used

the area under the receiver-operating characteristic curve (AUROC)

and area under the precision-recall curve (AUPRC). The receiver op-

erating characteristics curve summarizes the trade-off between true

positive rate (sensitivity) and true negative rate (specificity) for a

predictive model using different probability thresholds. However,

using only AUROC can be misleading, especially in highly imbal-

anced data.39 In such cases, the AUPRC offers additional informa-

tion. The precision-recall curve distinguishes the trade-off between

the true positive rate (recall or sensitivity) and the positive predictive

value (precision). The positive predictive value (precision) is a more

informative measurement than the true negative rate (specificity) as

it is not overshadowed by the large number of true negatives (low in-

sulin users) and is much more sensitive to true positives. Higher val-

ues for AUROC and AUPRC indicate better model performance. An

AUROC of 0.5 indicates a random classifier, whereas an AUPRC

lowest value equals the fraction of positives.39

For the stage II point-value TDD prediction in “higher” insulin

users, we used the mean absolute error (MAE) and mean absolute

percent error (MAPE) as the 2 evaluation metrics for interpretabil-

ity. MAE reflects the average magnitude of error by comparing the

predicted vs observed values. MAPE is the magnitude of error nor-

malized over the observed values, reflecting how far the predictions

are off from the truth as a percentage. MAPE is similar in concept to

the mean absolute relative difference used to evaluate blood glucose

readings for continuous glucose monitors40; in both cases, errors at

low values are more clinically significant than the same absolute er-

ror at a high value. The lower the MAE and MAPE are, the better

the predictions are. Using bootstrap sampling, we obtained 95%

confidence intervals (CIs) to better compare different results within

each prediction stage. We also did a manual chart review of a sam-

ple of high error cases.

RESULTS

The final cohort had 16 868 unique patients and 87 features. Addi-

tionally, we created a subset of this cohort, excluding patients who

were in intensive care units (ICUs), yielding a non–critically ill co-

hort of 13 037 unique patients.

Stage I: Predicting low insulin need—binary prediction
For the baseline univariate logistic regression weight-based model,

the AUROC and AUPRC estimates were 0.57 (95% CI, 0.55-0.60)

and 0.29 (95% CI, 0.22-0.35), respectively. Our SuperLearner algo-

rithm achieved an AUROC of 0.85 (95% CI, 0.84-0.87) and an

AUPRC of 0.65 (95% CI, 0.64-0.67). All base algorithms contrib-

uted roughly equal weights to the ensemble SuperLearner model. As

it is clinically more dangerous to classify low insulin users (negative

class) as high insulin users (positive class), which may lead to hypo-

glycemia, a higher true negative rate (specificity) is more desirable.

The higher the specificity is, the lower the sensitivity (recall) is and

the higher the positive predictive value (precision) is. Choosing a rel-

atively high and conservative prediction probability threshold of 0.4

yielded 90% specificity with 56% sensitivity (recall) and a positive

predictive value of 64% that a patient will fall in the “higher” TDD

group. Figure 2 shows the stage I binary prediction’s calibration plot

of observed probability vs predicted probability of a patient requir-

ing more than 6 units of insulin.

Stage II: Point-value TDD prediction
After the initial stage I binary prediction, we followed with a stage II

point-value TDD prediction for “higher” insulin users who received

more than 6 units of TDD. The prediction task was challenging be-

cause the range of TDD was wide, the distribution of TDD was still

heavily right skewed, and the sample size was reduced to 3970

patients. On average, our data showed that it took about 2.2 days

(SD of 4.4 days) (Supplementary Figure 1) from admission for physi-

cians to titrate insulin to achieve good control, ie, blood glucose in

the range of 100 to 180 mg/dL.

Using the standard clinical TDD formula with c ¼ (0.4-0.6), the

MAE was 25.4 units (19.5-32.2 units) and the MAPE was 186%

(136%-329%). Here, 25.4 units and 186% were the errors for

c¼0.5. The lower bounds (19.5 units or 136%) and upper bounds

(32.2 units and 329%) correspond to c¼0.4 and c¼0.6. A larger

factor c yielded larger errors. For the baseline univariate linear re-

gression weight-based model, the estimates for MAE and MAPE

were 14 units (95% CI, 12.8-14.5) and 60% (95% CI, 57%-63%),

respectively. This baseline model yielded an intercept of 10.5 units,

and for every 1-kg increase in weight, TDD increases by about

0.66% (Figure 1).

Our ensemble model with full features improved the regression

with MAE of 12.2 units (95% CI, 11.0-13.2 units) and MAPE of

51% (95% CI, 48%-54%). The best base algorithm was lasso re-

gression, which contributed about 49% of the weight to the ensem-

ble model. Random forest and gradient boosted trees each

contributed about 35% and 16%, respectively. The lasso regression

alone had an MAE of 12.3 units (95% CI, 11.5-13.2 units) and

MAPE of 53% (95% CI, 51%-57%), comparable to the ensemble

model’s result but with substantially less computational complexity.

Table 2 summarizes the results from both prediction stages.

Figure 3 visualizes the observed values of TDD vs the predicted

values using 3 different approaches: TDD calculators, weight only,

and full feature machine learning models.

Non-ICU cohort
A manual review of labs for patients with high prediction errors

suggested that the acuity levels of these patients were high. We

Figure 2. Calibration plot for binary prediction of “low” vs “higher” insulin

users.
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hypothesized that repeating the predictions excluding critically ill

patients would decrease error. Excluding ICU patients from our

original cohort, we performed the same predictions to compare the

results with the full feature SuperLearner model. The stage I binary

prediction results improved slightly, with an AUROC of 0.86 (95%

CI, 0.85-0.88) and an AUPRC of 0.69 (95% CI, 0.67-0.71). Unex-

pectedly, for stage II point-value TDD prediction, the performance

decreased. The MAE was 13.0 units (95% CI, 11.6-14.5 units) and

the MAPE was 57% (95% CI, 51%-59%).

Variable importance
For variable importance, we looked at 2 measures produced by the

random forest model (Supplementary Figure 2). The first was per-

cent increase in node purity (%IncNodePurity), which measures the

increase in tree node homogeneity that results from splits of a given

variable, averaged over all the trees. A node is purer if there are

fewer splits. The second metric was the percent increase in mean

squared error (%IncMSE), which is calculated when a variable is

not included in the model. This metric is considered more robust

and informative because it uses out-of-bag samples in which values

of a variable are randomly permuted to compute prediction accu-

racy.41 The most important variable in both metrics was patient

weight (kg). Other important variables were the following: summary

statistics of all glucose measurements by glucometers, the first avail-

able blood glucose, counts of serum glucose measurements in dec-

iles, diet, hemoglobin A1c category, creatine, history of basal insulin

use, and the count of historical diagnosis codes E (endocrine related)

and Z (factors influencing health status).

DISCUSSION

Insulin has a very narrow therapeutic range,42 and the consequences

of overprescribing are more immediately critical than underprescrib-

ing. Though inadequate glycemic control is common in hospitalized

patients, we found that the amount of insulin required to achieve

good control was heavily skewed toward small doses. Thus, in stage

I we first predicted TDD insulin usage at a threshold of 6 units. A

benchmark weight-based-only classifier was not much better than

random (AUROC 0.57, AURPC 0.29), but when using the full set of

variables readily available in the electronic medical record data, we

demonstrate that a machine learning classification approach can

perform substantially better (AUROC 0.85, AUPRC 0.65). These

findings demonstrate the ability to discriminate between “low” insu-

lin users vs “higher” insulin users. Our stage I binary prediction

could be clinically useful when initiating insulin dose for hospital-

ized patients to immediately risk-stratify patients based on how

likely they are to need significant doses of insulin at all, potentially

shortening the insulin titration time to achieve good glucose control

while decreasing hypoglycemia risk.

Precise point-value TDD prediction is more relevant for the

“higher” insulin users. However, it is more challenging than the bi-

nary prediction, as there is a wide variability of patient responses to

insulin. Additionally, there is likely a range of TDDs with which

patients’ blood glucoses would stay in the range of good control,

though this is not knowable from retrospective data. For this task,

the generalized linear regression model did best compare to random

forest and gradient boosted trees. It is worth noting that the point-

Table 2. Results from 2-stage predictions

Stage I: Binary prediction for “low” vs “higher” insulin users AUROC (95% CI) AUPRC (95% CI)

Ensemble model with full features 0.85 (0.84-0.87) 0.65 (0.64-0.67)

Logistic regression with weight only 0.57 (0.55-0.60) 0.29 (0.22-0.35)

Stage II: Point-value TDD prediction among “higher” insulin users MAE (95% CI) MAPE (95% CI)

Ensemble model with full features 12 (11.0 -13.2) 51% (48%-54%)

Regression model with weight only 14 (12.8-14.5) 60% (57%-63%)

TDD ¼ 0.4 * patient-weight (kg) 20 136%

TDD ¼ 0.5 * patient-weight (kg) 25 186%

TDD ¼ 0.6 * patient-weight (kg) 32 329%

Performance metrics for stage I and stage II predictions. Full feature ensemble models included other features besides patient weight as described in the Materi-

als and Methods. For the MAE and MAPE, results were compared with the estimated TDD using clinical calculators defined by c*patient-weight, where c is a

constant of 0.4, 0.5, or 0.6. CIs were not included due to the deterministic nature of the calculation.

AUPRC: area under the precision-recall curve; AUROC: area under the receiver-operating characteristic curve; CI: confidence interval; MAE: mean absolute er-

ror; MAPE: mean absolute percent error; TDD: total daily dose.

Figure 3. Plot of observed vs predicted total daily dose for all 3 modeling

approaches.
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value TDD estimates from the standard clinical calculator per-

formed much worse than both univariate and multivariate machine

learning prediction models (Figure 3). In clinical practice, the

weight-based calculator is only a starting point to anchor clinical de-

cision making; our stage II point-value TDD predictor provides a

more accurate anchoring value. Additionally, from the univariate

weight-only regression model coefficients, we can interpret that for

patients who are classified as “higher” insulin users, their baseline

insulin dose is about 10 units, and an increase in 1 kg of patient

weight is associated with 0.66% increase in predicted TDD. Al-

though the weight-only regression model performed well, the full

feature model showed improved performance for TDD above ap-

proximately 30 units (Figure 3). Patient weight is the most impor-

tant predictor of TDD, more so than any other features, though

common TDD calculators do not accurately capture its

contribution.

Limitations of this study include that the TDD values were

heavily skewed so there was more heterogeneity and fewer data in

the higher range of prescribed insulin. Because we aimed to predict

the initial insulin dose, as this is the more pressing clinical need than

titration, we intentionally did not include any titration insulin doses

and their corresponding exact glucose values prior to prediction

time, limiting informative data for prediction. Moreover, erroneous,

missing, and unavailable data are common in electronic health re-

cord data. For example, details of patient diet intake and home

doses of diabetes medications, including insulin, are important for

TDD prediction but are not reliably available. We used features that

are most commonly available and applied quantization for labs to

handle major missingness. Even given extensive electronic health re-

cord data and robust machine learning methods, we found patient

insulin requirements to be highly variable, indicating that predicted

dosing recommendations would still need to provide a range of val-

ues for a clinician to consider. Finally, this is a retrospective observa-

tional study, and the algorithms were trained on a cohort of patients

who by definition were able to achieve good blood glucose control.

These approaches illustrate the capability to substantially esti-

mate better insulin dosing than existing standards of care. It is im-

portant to note that clinicians struggle with many of the same

missing data and patient variability issues in practice as well, and

here we offer a tool that will provide clinicians with a more accurate

estimate upon which to base their clinical decision making. We envi-

sion this work to be the foundation of an electronic health record–

integrated decision support tool at the time of initial subcutaneous

insulin ordering in patients with hyperglycemia like our cohort by

inclusion and exclusion criteria. First, the binary prediction could be

used to identify patients who could likely be monitored on sliding

scale insulin alone. For patients who are predicted to require

“higher” insulin doses, the second stage of prediction could suggest

an anchoring daily dose upon which to apply clinical reasoning, sim-

ilar to but more accurate than the current function of the clinical cal-

culator. Among the predicted “higher” insulin users, there are

potentially several visions for implementation, including targeting

patients for endocrinology consults or contrasting the predicted dose

with the estimated dose from current practice. With time and further

validation, clinicians may feel more confident in prescribing insulin

algorithmically while avoiding hypoglycemia, thus achieving glyce-

mic control faster and potentiating the benefits to patients and the

healthcare system.43

Our modeling framework will need prospective validation before

implementation to address covariate shifts and temporal changes.

Specifically, quantization of lab values will need to be recomputed

on an updated training dataset. A new test set that includes more re-

cent data could be necessary to assess model performance and the

decaying relevance of clinical data over time. Furthermore, although

we aimed to predict initial insulin dosing, more clinically meaningful

prospective evaluation metrics such as inpatient hypoglycemia and

hyperglycemia, or time to good control, could be used postimple-

mentation. It is also important to check the calibration of our model

based on race and evaluate performance differences among racial

groups if deployed in populations with significantly different demo-

graphics. Future prospective studies are necessary to assess how well

the algorithms may generalize to all inpatients requiring insulin, as

these populations may differ from the retrospective cohort used here.

CONCLUSION

A machine learning approach can predict higher vs low insulin

requirements among hospitalized patients with better discrimination

than standard weight-based methods. Prediction of initial daily insu-

lin dosing with an ensemble learning method is more accurate com-

pared with current practice recommendations. Challenges remain

due to the wide variability of patient response and narrow therapeu-

tic window of insulin, but more accurate initial point-value TDD es-

timation can provide an improved dosing anchor for clinical

decision making to improve inpatient glucose control.

FUNDING

This research was supported in part by National Institutes of Health/National

Library of Medicine via Award R56LM013365, the Gordon and Betty Moore

Foundation through Grant GBMF8040, and the Stanford Clinical Excellence

Research Center. MN and LK are supported by National Library of Medicine

training grant 5T15LM007033. IJ is supported by Diabetes, Endocrinology

and Metabolism Training Grant 5T32DK007217-45 (National Institutes of

Health, Bethesda, MD).

AUTHOR CONTRIBUTIONS

IJ and JHC conceived the study. IJ, LK, and MN queried the data. MN imple-

mented the algorithm, performed statistical analyses, and drafted the initial

manuscript. All authors contributed to the study and analysis design, critically

revising and reviewing the final manuscript.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American Medical Infor-

matics Association online.

ACKNOWLEDGMENTS

This research used data or services provided by STARR (STAnford medicine

Research data Repository), a clinical data warehouse containing live Epic

data from Stanford Health Care, the University Healthcare Alliance, and

Packard Children’s Health Alliance clinics and other auxiliary data from hos-

pital applications such as radiology PACS. The STARR platform is developed

and operated by the Stanford Medicine Research IT team and is made possi-

ble by Stanford School of Medicine Research Office. The content is solely the

responsibility of the authors and does not necessarily represent the official

views of the National Institutes of Health or Stanford Healthcare.

DATA AVAILABILITY STATEMENT

The electronic health records data underlying this article was provided by

STARR (STAnford medicine Research data Repository) (https://med.stanford.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 10 2217

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab139#supplementary-data
https://med.stanford.edu/starr-tools.html


edu/starr-tools.html). The data can be accessed for research purposes after Insti-

tutional Review Board approval via the Stanford Research Informatics Center.

CONFLICT OF INTEREST STATEMENT

IJ has consulted for January.AI and Anthem. JHC is co-founder of Reaction

Explorer LLC that develops and licenses organic chemistry education soft-

ware and has received paid consulting or speaker fees from the National Insti-

tute of Drug Abuse Clinical Trials Network, Tuolc Inc., Roche Inc., and

Younker Hyde MacFarlane PLLC.

REFERENCES

1. Umpierrez GE, Hellman R, Korytkowski MT, et al.; Endocrine Society.

Management of hyperglycemia in hospitalized patients in non-critical care

setting: an Endocrine Society clinical practice guideline. J Clin Endocrinol

Metab 2012; 97 (1): 16–38.

2. Umpierrez GE, Pasquel FJ. Management of inpatient hyperglycemia and

diabetes in older adults. Diabetes Care 2017; 40 (4): 509–17.

3. Falciglia M, Freyberg RW, Almenoff PL, et al. Hyperglycemia-related

mortality in critically ill patients varies with admission diagnosis. Crit

Care Med 2009; 37 (12): 3001–9.

4. Jankovic I, Chen J. 1235-P: Identifying trends in the management of inpa-

tient diabetes at a University Teaching Hospital, 2008-2018. Diabetes

2020; 69 (Supplement 1). doi:10.2337/db20-: 1235-P.

5. American Diabetes Association. 15. Diabetes care in the hospital: stand-

ards of medical care in diabetes—2020. Diabetes Care 2020; 43 (Supple-

ment 1): S193–S202.

6. Inzucchi S. Management of diabetes mellitus in hospitalized patients.

UpToDate. https://www.uptodate.com/contents/management-of-diabe-

tes-mellitus-in-hospitalized-patients?search¼Management%20of%20Di-

abetes%20Mellitus%20in%20Hospitalized%20Patients&sour-

ce¼search_result&selectedTitle¼1�150&usage_type¼default&display_

rank¼1. Accessed 3 December 2020.

7. Umpierrez GE, Smiley D, Zisman A, et al. Randomized study of basal-

bolus insulin therapy in the inpatient management of patients with type 2

diabetes (RABBIT 2 Trial). Diabetes Care 2007; 30 (9): 2181–6.

8. Kodner C, Anderson L, Pohlgeers K. Glucose management in hospitalized

patients. Am Fam Physician 2017; 96 (10): 648–54.

9. Mandel SR, Langan S, Mathioudakis NN, et al. Retrospective study of in-

patient diabetes management service, length of stay and 30-day readmis-

sion rate of patients with diabetes at a community hospital. J Community

Hosp Intern Med Perspect 2019; 9 (2): 64–73.

10. Pietras SM, Hanrahan P, Arnold LM, et al. State-of-the-art inpatient dia-

betes care: the evolution of an academic hospital. Endocr Pract 2010; 16

(3): 512–21.

11. Ross AJ, Anderson JE, Kodate N, Thompson K, et al. Inpatient diabetes

care: complexity, resilience and quality of care. Cogn Tech Work 2014; 16

(1): 91–102.

12. Rushakoff RJ, Sullivan MM, MacMaster HW, et al. Association between

a virtual glucose management service and glycemic control in hospitalized

adult patients: an observational study. Ann Intern Med 2017; 166 (9):

621–7.

13. Contreras I, Vehi J. Artificial intelligence for diabetes management and de-

cision support: literature review. J Med Internet Res 2018; 20 (5): e10775.

14. Vu L, Kefayati S, Id�e T, et al. Predicting nocturnal hypoglycemia from

continuous glucose monitoring data with extended prediction horizon.

AMIA Annu Symp Proc 2019; 2019: 874–82.

15. Zhu T, Li K, Chen J, et al. Dilated recurrent neural networks for glucose

forecasting in type 1 diabetes. J Healthc Inform Res 2020; 4 (3): 308–24.

16. Albers DJ, Levine M, Gluckman B, et al. Personalized glucose forecasting

for type 2 diabetes using data assimilation. PLoS Comput Biol 2017; 13

(4): e1005232.

17. Pesl P, Herrero P, Reddy M, et al. An advanced bolus calculator for type 1

diabetes: system architecture and usability results. IEEE J Biomed Health

Inform 2016; 20 (1): 11–7.

18. Sangi M, Win KT, Shirvani F, et al. Applying a novel combination of tech-

niques to develop a predictive model for diabetes complications. PloS One

2015; 10 (4): e0121569.

19. Dagliati A, Malovini A, Decata P, et al. Hierarchical Bayesian logistic Re-

gression to forecast metabolic control in type 2 DM patients. AMIA Annu

Symp Proc 2016; 2016: 470–9.

20. Cappon G, Marturano F, Vettoretti M, et al. In silico assessment of litera-

ture insulin bolus calculation methods accounting for glucose rate of

change. J Diabetes Sci Technol 2019; 13 (1): 103–10.

21. Cappon G, Vettoretti M, Marturano F, et al. A neural-network-based ap-

proach to personalize insulin bolus calculation using continuous glucose

monitoring. J Diabetes Sci Technol 2018; 12 (2): 265–72.

22. Noaro G, Cappon G, Vettoretti M, et al. Machine-learning based model

to improve insulin bolus calculation in type 1 diabetes therapy. IEEE

Trans Biomed Eng 2021; 68 (1): 247–55.

23. Guzman G�omez GE, Burbano Agredo LE, Mart�ınez V, et al. Application

of artificial intelligence techniques for the estimation of basal insulin in

patients with type I diabetes. Int J Endocrinol. 2020; 2020: 7326073.

doi:https://doi.org/10.1155/2020/7326073.

24. Liu X, Jankovic I, Chen JH. Predicting inpatient glucose levels and

insulin dosing by machine learning on electronic health records.

medRxiv, doi: 10.1101/2020.03.02.20029017, 5 Mar 2020, preprint:

not peer reviewed.

25. Li K, Daniels J, Liu C, et al. Convolutional recurrent neural net-

works for glucose prediction. IEEE J Biomed Health Inform 2020;

24 (2): 603–13.

26. Sun Q, Jankovic MV, Bally L, et al. Predicting blood glucose with an

LSTM and Bi-LSTM based deep neural network. arXiv, doi: https://arxiv.

org/abs/1809.03817, 11 Sep 2018, preprint: not peer reviewed.

27. Zhu T, Li K, Herrero P, et al. A deep learning algorithm for person-

alized blood glucose prediction. In: Proceedings of the 27th Interna-

tional Joint Conference on Artificial Intelligence; 2018: 74–8;

Stockholm, Schweden.

28. Oviedo S, Veh�ı J, Calm R, et al. A review of personalized blood glucose

prediction strategies for T1DM patients. Int J Numer Method Biomed

Eng 2017; 33 (6): e2833–54. doi:10.1002/cnm.2833.

29. Mhaskar HN, Pereverzyev SV, van der Walt MD. A deep learning ap-

proach to diabetic blood glucose prediction. Front Appl Math Stat 2017;

3: 14. doi:10.3389/fams.2017.00014

30. Li K, Liu C, Zhu T, et al. GluNet: a deep learning framework for accurate

glucose forecasting. IEEE J Biomed Health Inform 2020; 24 (2): 414–23.

31. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet

Mol Biol 2007; 6: Article25.

32. Heus P, Damen JAAG, Pajouheshnia R, et al. Uniformity in measuring ad-

herence to reporting guidelines: the example of TRIPOD for assessing

completeness of reporting of prediction model studies. BMJ Open 2019; 9

(4): e025611.

33. Inzucchi SE. Diabetes Facts and Guidelines. New Haven, CT: Yale Diabe-

tes Center; 2011. https://medicine.yale.edu/intmed/drc/diabetescenter/liv-

ing/50135_Yale%20National%20F_102165_284_13584_v1.pdf.

Accessed November 26, 2020.

34. Sawin G, Shaughnessy AF. Glucose control in hospitalized patients. Am

Fam Physician 2010; 81 (9): 1121–4.

35. Meikle AW, Tyler FH. Potency and duration of action of glucocorticoids.

Effects of hydrocortisone, prednisone and dexamethasone on human

pituitary-adrenal function. Am J Med 1977; 63 (2): 200–7.

36. Singer M, Webb A. Oxford Handbook of Critical Care. London: Oxford Uni-

versity Press https://oxfordmedicine.com/view/10.1093/med/9780199235339.

001.0001/med-9780199235339. Accessed December 17, 2020.

37. Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and pharmacody-

namics of systemically administered glucocorticoids. Clin Pharmacokinet

2005; 44 (1): 61–98.

38. ICD-10 Version. 2019. https://icd.who.int/browse10/2019/En. Accessed

November 26, 2020.

39. Saito T, Rehmsmeier M. The precision-recall plot is more informative

than the ROC Plot when evaluating binary classifiers on imbalanced data-

sets. PLoS One 2015; 10 (3): e0118432.

2218 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 10

https://med.stanford.edu/starr-tools.html
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized-patients?search=Management%20of%20Diabetes%20Mellitus%20in%20Hospitalized%20Patients&hx0026;source=search_result&hx0026;selectedTitle=1&hx0026;sim;150&hx0026;usage_type=default&hx0026;display_rank=1
https://doi.org/10.1155/2020/7326073.
https://arxiv.org/abs/1809.03817,
https://arxiv.org/abs/1809.03817,
https://medicine.yale.edu/intmed/drc/diabetescenter/living/50135_Yale%20National%20F_102165_284_13584_v1.pdf
https://medicine.yale.edu/intmed/drc/diabetescenter/living/50135_Yale%20National%20F_102165_284_13584_v1.pdf
https://icd.who.int/browse10/2019/En


40. Reiterer F, Polterauer P, Schoemaker M, et al. Significance and reliability

of MARD for the accuracy of CGM systems. J Diabetes Sci Technol 2017;

11 (1): 59–67.

41. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. New York: Springer; 2009:

593–4.

42. High-alert’ medications and patient safety. Int J Qual Health Care 2001;

13 (4): 339–40.

43. Haque WZ, Demidowich AP, Sidhaye A, et al. The financial impact of an

inpatient diabetes management service. Curr Diab Rep 2021; 21 (2): 1–9.

doi:10.1007/s11892-020-01374-0

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 10 2219


