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• Biological alterations in bone marrow 
occur before bone metastasis.

• CT-based radiomics quantifies pre- 
metastatic bone marrow changes.

• Radiomics model of bone marrow 
changes predicts bone metastasis risk.
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A B S T R A C T

Background: Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making 
early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic 
vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone 
metastasis in breast cancer, and constructs a model to predict metastasis. Methods: This study retrospectively 
gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from 
January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae 
on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various 
radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was in-
tegrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed 
through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). Results: The 
study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases 
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within five years. The radiomics model’s area under the curve (AUC) for the test set, calculated using logistic 
regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning 
models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater 
clinical benefit in predicting bone metastasis than clinical model and nomogram. Conclusion: CT-based radiomics 
can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering 
a predictive tool for early detection of bone metastasis in breast cancer.

1. Introduction

Bone metastasis is a significant focus in clinical research due to its 
profound impact on increasing the disease burden and the risk of 
diminished quality of life for patients [1]. Additionally, it is closely 
associated with poor prognosis and higher mortality rates [2,3]. Inves-
tigating the processes involved in bone metastasis related to breast 
cancer, along with improving early detection methods, is crucial for 
developing effective treatment strategies and improving patient out-
comes [4–6]. Investigating the changes in the microenvironment that 
occur before bone metastasis can lead to the development of new in-
sights and theoretical frameworks aimed at preventing, diagnosing 
early, and specifically treating breast cancer bone metastasis, a factor 
that is crucial for enhancing patient survival rates [7,8].

Recent progress in studying the metastasis of breast cancer and the 
microenvironment of bone marrow has revealed the complex mecha-
nisms underlying the interactions between tumor cells and the bone 
marrow milieu [9,10]. Recent studies are aimed at investigating the 
ways in which the microenvironment of bone marrow facilitates the 
colonization and spread of breast cancer cells, involving the interactions 
among cytokines, immune cells, and stromal cells within the bone 
marrow [11,12]. Simultaneously, growing evidence indicates that 
modifications in the bone marrow microenvironment could significantly 
influence the initial phases of breast cancer bone metastasis, thereby 
providing new pathways for creating preventive and therapeutic stra-
tegies [13,14]. Through an in-depth exploration of the evolving dy-
namics within the bone marrow microenvironment, we can enhance our 
comprehension of the biological foundations underlying breast cancer 
metastasis, ultimately leading to improved early diagnosis and person-
alized treatment outcomes. Subtle changes in the bone marrow micro-
environment are difficult to visually identify on computerized 
tomography (CT) images. Although CT imaging may not yet show 
visually observable bone abnormalities, metastasis may have already 
occurred. The early detection of metabolic abnormalities is achievable 
through positron emission tomography-computed tomography (PET- 
CT), whereas bone changes detectable on CT are typically observed at a 
later stage [15]. With the rapid advancement of radiomics, researchers 
can extract more detailed and quantitative information from imaging 
data [16,17]. By applying radiomics to CT image analysis, it may be 
possible to capture early changes in the bone marrow microenvironment 
before the onset of bone metastasis, thereby offering new possibilities 
for early diagnosis and intervention.

Therefore, this study combines routine chest CT scans performed on 
breast cancer patients with radiomics techniques to compare and iden-
tify the bone marrow of thoracic vertebrae in patients prior to breast 
cancer bone metastasis with those in patients without bone metastasis. 
The aim is to explore imaging techniques that can forecast the risk of 
developing potential bone metastases in breast cancer patients.

2. Methods

2.1. Study participants

Approval for this study was obtained from the institutional review 
board, and the necessity for informed consent was waived because of the 
retrospective nature of the research. This study retrospectively gathered 
data from breast cancer patients diagnosed and monitored over a period 

of five years, spanning from January 2013 to September 2023. Data 
were gathered from The First Affiliated Hospital of Zhejiang Chinese 
Medical University and The Second Affiliated Hospital of Fujian Medical 
University. The inclusion criteria required: (1) a PET-CT scan must have 
been completed at the time of diagnosis for breast cancer, bone metas-
tasis, or during the fifth year of follow-up; and (2) a non-contrast chest 
CT must have been conducted within one week prior to or following the 
PET-CT scan at the breast cancer diagnosis. Exclusion criteria encom-
passed: (1) incomplete clinical data; (2) poor image quality, such as 
artifacts affecting the analysis; and (3) conditions impacting bone 
metabolism, including severe osteoporosis, hyperparathyroidism, sec-
ondary bone disease from chronic kidney disease, or multiple myeloma. 
The data inclusion and exclusion details are presented in Fig. 1. During 
the follow-up period, patients were categorized into two groups: those 
with bone metastasis and those without, according to the PET-CT find-
ings. The study also collected clinical data, including age, human 
epidermal growth factor receptor 2 (Her-2), estrogen receptor (ER), 
progesterone receptor (PR), Ki-67, and molecular subtypes of breast 
cancer.

2.2. Image acquisition

Non-contrast chest CT imaging was acquired using three different 
multi-slice CT scanners: Brilliance 64 CT (Philips Healthcare, Eind-
hoven, the Netherlands), Brilliance iCT (Philips Healthcare, Eindhoven, 
the Netherlands), and the Somatom Definition AS (Siemens Healthi-
neers, Erlangen, Germany). Across all three scanners, the imaging pa-
rameters were standardized, including a tube voltage of 120 kVp, 
automatic tube current modulation, a matrix size of 512 × 512, and a 
slice thickness of 5 mm. Image reconstruction was performed using the 
filtered back-projection technique for the Philips scanners, while the 
Siemens scanner utilized the “B70f” reconstruction kernel.

2.3. Image segmentation

In this study, CT image segmentation was performed using ITK-SNAP 
(version 4.0.0). The region of interest (ROI) for manual segmentation 
was chosen as the bone marrow of the sixth thoracic vertebral body. If 
this vertebral body showed fractures or other pathological conditions, 
the subsequent thoracic vertebra was selected as the ROI. The initial 
segmentation of all ROIs was conducted by a musculoskeletal imaging 
radiologist with three years of expertise. A second radiologist, with over 
ten years of experience in the same field, then reviewed and refined the 
ROIs.

2.4. Radiomic features extraction

A total of 1197 features were extracted from each ROI. These features 
were organized into 12 categories. The extracted feature set includes 
234 first-order statistical features, 286 features derived from the Gray- 
Level Co-occurrence Matrix (GLCM), 182 features from the Gray Level 
Dependence Matrix (GLDM), 208 features from the Gray Level Run 
Length Matrix (GLRLM), 208 features from the Gray Level Size Zone 
Matrix (GLSZM), 65 features from the Neighboring Gray Tone Difference 
Matrix (NGTDM), and 14 shape-related features.
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2.5. Machine learning models construction

Data preprocessing involved standardizing units, imputing missing 
values, and addressing outliers. The features with a Pearson correlation 
coefficient exceeding 0.90 were eliminated to mitigate redundancy. The 
minimum redundancy maximum relevance (mRMR) method was sub-
sequently employed to select the top 20 features most closely associated 
with categorical variables, facilitating the identification of key imaging 
features. The mRMR method functions as a tool for selecting features, 
aimed at determining the most significant subset of features associated 
with the target variable. A variety of algorithms were utilized to 
construct predictive models, such as logistic regression, K-Nearest 
Neighbors (KNN), Support Vector Machines (SVM), Random Forest, 
Extremely Randomized Trees (ExtraTrees), Light Gradient Boosted 
Machine (LightGBM), and Multilayer Perceptron (MLP). The model 
demonstrating the highest area under the curve (AUC) on the test set was 
selected to compute the bone metastasis risk score, referred to as the 
radiomics score (Rad-score), which was subsequently used for nomo-
gram development.

2.6. Clinical model and nomogram construction

The variable with the highest AUC from the radiomics model, 
referred to as the Rad-score, will be used alongside clinical features to 
build the nomogram. In this study, both the clinical model and the 
nomogram were created using multivariable logistic regression. A 
stepwise regression approach, guided by the Akaike information crite-
rion (AIC), was used, combining forward selection and backward elim-
ination techniques to optimize the model. The workflow of this study is 
presented in Fig. 2.

2.7. Statistical analyses

Analyses of statistical data were conducted using R software (version 
3.6.0; R Foundation). To compare categorical variables among groups 
with bone metastasis and those without, either Fisher’s exact test or 
Pearson’s χ2 test was employed. Meanwhile, the Kruskal-Wallis test was 
utilized for the evaluation of continuous variables. The models’ pre-
dictive ability was evaluated by calculating the AUC and examining 

metrics including sensitivity, specificity, accuracy, negative predictive 
value (NPV), and positive predictive value (PPV). To assess the goodness 
of fit and identify potential overfitting, the Hosmer-Lemeshow test was 
utilized. Decision curve analysis (DCA) served to evaluate the practical 
application of the clinical model, radiomics model, and nomogram 
within a clinical environment. A P-value of less than 0.05 was estab-
lished as the criterion for statistical significance across all analyses.

3. Results

3.1. Clinical features

In this study, 106 patients diagnosed with breast cancer were 
analyzed, among which 37 experienced the development of bone me-
tastases within a five-year timeframe. The training set consisted of 29 
individuals with bone metastases, whereas the testing set included 8 
such patients. Analysis revealed no significant age differences, nor any 
disparities in ER, PR, Her-2, Ki-67, or molecular subtypes between the 
groups with and without bone metastases (all P > 0.05). The distribution 
of clinical features in both the training and testing sets is illustrated in 
Table 1, which also includes the P-values that compare the groups with 
and without bone metastases.

3.2. Evaluation of machine learning models

With the exception of the LightGBM model, all other machine 
learning models accurately predicted breast cancer bone metastasis 
within five years using thoracic vertebral bone marrow data (Table 2). 
The Hosmer-Lemeshow test results indicate that none of the machine 
learning models exhibit signs of overfitting (all P > 0.05). Among the 
various models examined, the model utilizing logistic regression 
demonstrated the highest AUC values within the test set. This model was 
constructed using twelve radiomic features, as illustrated in Fig. 3. The 
AUC values recorded for the logistic regression model were 0.959 (95 % 
CI: 0.923–––1.00) in the training set and 0.929 (95 % CI: 0.814–––1.00) 
in the test set. In both training and testing sets, a statistically significant 
difference in Rad-score was observed between the bone metastasis and 
non-bone metastasis groups (P both < 0.05; Fig. 4). Consequently, the 
logistic regression model was chosen for the subsequent development of 

Fig. 1. Summary of patient recruitment and exclusions.
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the nomogram.

3.3. Comparison of predictive models

Through multivariate logistic regression analysis, variables 
including age, Ki-67, ER, HER-2, PR, and breast cancer molecular sub-
types were incorporated into both the clinical model and the nomogram 
(Fig. 5). In the test set, the radiomics model developed with the logistic 
regression approach demonstrated the most elevated AUC value 
(Table 2, Fig. 6). DCA indicated that the radiomics model designed with 
the logistic regression method provides considerably greater clinical 
benefits compared to both the clinical model and the nomogram (Fig. 7).

4. Discussion

Micro-level changes may occur in the bone marrow environment of 
the thoracic spine in breast cancer patients prior to bone metastasis 
[13,14]. These changes can be detected on CT images using radiomics 
techniques. This study found that the radiomics model constructed using 
logistic regression could accurately predict the occurrence of bone 
metastasis within the next five years in breast cancer patients, even 
without incorporating clinical data.

Bone metastasis commonly occurs and poses a severe complication 
for patients with breast cancer, greatly elevating the burden of the dis-
ease and the risk of mortality [18]. Increasing evidence suggests that 
significant biological changes take place in the bone marrow 

Fig. 2. Overview of the processing workflow for this study.

Table 1 
Clinical features in training and external test sets.

Clinical Feature Training Set (n ¼
84)

Test Set (n ¼
22)

P- 
value

Age, yr 50.3 ± 9.5 51.4 ± 11.2 0.720
ER   0.098
Positive 52 12 
Negative 32 10 
PR   0.156
< 20 % 46 13 
> 20 % 38 9 
Her-2   0.106
Positive 45 13 
Negative 39 9 
Ki-67   0.797
< 14 % 67 20 
> 14 % 17 2 
Molecular subtypes   0.348
HER-2 Positive (HR 

Positive)
18 3 

HER-2 Positive (HR 
Negative)

19 10 

Luminal A 13 0 
Luminal B 21 7 
Triple Negative 11 1 
Special 2 1 

ER estrogen receptor, Her-2 human epidermal growth factor receptor 2, PR 
progesterone receptor.

H.-N. Zhu et al.                                                                                                                                                                                                                                 Journal of Bone Oncology 50 (2025) 100653 

4 



Table 2 
Predictive Performance of Each Model.

Model Set ACC AUC 95 % CI SEN SPE PPV NPV

Logistic Regression Train 0.893 0.959 0.923–––0.996 0.828 0.927 0.857 0.911
Logistic Regression Test 0.864 0.929 0.814–––1.000 0.750 0.929 0.857 0.867
SVM Train 0.940 0.991 0.978–––1.000 0.966 0.927 0.875 0.981
SVM Test 0.818 0.875 0.719–––1.000 0.625 0.929 0.833 0.812
KNN Train 0.905 0.977 0.955–––1.000 0.828 0.945 0.889 0.912
KNN Test 0.773 0.853 0.671–––1.000 0.500 0.929 0.800 0.765
RandomForest Train 0.952 0.989 0.975–––1.000 0.897 0.982 0.963 0.947
RandomForest Test 0.864 0.875 0.702–––1.000 0.750 0.929 0.857 0.867
ExtraTrees Train 0.857 0.955 0.918–––0.993 0.931 0.818 0.730 0.957
ExtraTrees Test 0.773 0.830 0.655–––1.000 0.625 0.857 0.714 0.800
LightGBM Train 0.869 0.950 0.909–––0.991 0.931 0.836 0.750 0.958
LightGBM Test 0.727 0.781 0.578–––0.984 0.750 0.714 0.600 0.833
MLP Train 0.905 0.959 0.916–––1.000 0.828 0.945 0.889 0.912
MLP Test 0.818 0.893 0.758–––1.000 0.750 0.857 0.750 0.857
Clinical Model Train 0.631 0.654 0.528–––0.780 0.655 0.618 0.475 0.773
Clinical Model Test 0.591 0.500 0.202–––0.780 0.375 0.714 0.429 0.667
Nomogram Train 0.905 0.962 0.928–––0.997 0.862 0.927 0.862 0.927
Nomogram Test 0.818 0.830 0.597–––1.000 0.750 0.857 0.750 0.857

AUC area under the curve, SEN Sensitivity, SPE Specificity, NPV negative predictive value, PPV positive predictive value.

Fig. 3. Features and corresponding weights of the radiomics model constructed using the logistic regression algorithm.

Fig. 4. Waterfall plots of the Rad-score distribution in the training set (A) and test set (B).

H.-N. Zhu et al.                                                                                                                                                                                                                                 Journal of Bone Oncology 50 (2025) 100653 

5 



microenvironment prior to the emergence of bone metastasis [6,19]. 
These alterations involve immune cell remodeling, cytokine secretion, 
and the interactions that take place between bone marrow stromal cells 
and tumor cells, collectively creating an environment conducive to 
tumor cell growth and metastasis [20–22]. The bone marrow microen-
vironment is often referred to as “fertile ground” for the migration and 
colonization of tumor cells [23,24]. During the initial stages of bone 
metastasis in breast cancer, tumor cells infiltrate the bone marrow 
microenvironment via the bloodstream and are influenced by factors 
within this environment that enable their survival and proliferation 
[25]. Various cell types in the bone marrow, including stromal cells, 
osteoblasts, and osteoclasts, along with secreted growth factors and 
cytokines, interact with tumor cells through complex signaling path-
ways, facilitating their colonization and expansion [11,12]. This study 
selected a single thoracic vertebral bone marrow as the subject of 
analysis because the microenvironmental changes in bone marrow that 
occur prior to bone metastasis are systemic.

Currently, radiomics research in breast cancer mainly emphasizes 
analyzing the tumor itself and its surrounding tissue features, including 

size, shape, density, and texture, to predict treatment response and pa-
tient prognosis [26,27]. However, studies focusing on the thoracic spinal 
bone marrow in breast cancer patients are relatively limited. The 
thoracic spinal bone marrow, identified as a potential site for bone 
metastasis, may play a critical role in the development of breast cancer 
bone metastasis due to alterations in its microenvironment. Radiomics 
can differentiate between bone islands and metastases in the vertebrae 
[28]. It can also identify changes in vertebral bone density based on CT 
[29]. Radiomics has demonstrated the capability to detect microscopic 
bone changes in non-contrast CT scans. This study shows that radiomics 
based on chest CT can detect subtle vertebral alterations prior to the 
onset of bone metastasis in breast cancer patients, as well as forecast the 
risk of bone metastasis occurring within a five-year period through 
capturing quantitative features.

Radiomics provides an innovative method for comprehending the 
pathophysiological alterations occurring in the bone marrow microen-
vironment preceding bone metastasis in breast cancer. By extracting 
high-dimensional features from imaging data of thoracic vertebral bone 
marrow, radiomics can identify these microstructural changes, 

Fig. 5. Nomogram for predicting the 5-year risk of bone metastasis in breast cancer patients. ER estrogen receptor, Her-2 human epidermal growth factor receptor 2, 
PR progesterone receptor, Rad-score radiomics score.

Fig. 6. ROC curves of the clinical model, radiomics model, and nomogram in the training and testing sets. ROC receiver operating characteristic.

H.-N. Zhu et al.                                                                                                                                                                                                                                 Journal of Bone Oncology 50 (2025) 100653 

6 



particularly subtle alterations in bone density and texture, which often 
represent early manifestations of bone marrow remodeling [29]. 
Radiomics can help capture details related to trabecular changes, 
reflecting stromal activation, immune cell dynamics, and cytokine 
network reorganization within the bone marrow [25,28]. These quan-
titative features provide new insights into how tumor cells survive and 
proliferate within the “fertile ground” of the bone marrow and offer a 
non-invasive method for early risk assessment of bone metastasis. This 
capability has promising potential for patient management by identi-
fying high-risk individuals before metastasis develops, thereby enabling 
timely interventions to delay or prevent bone metastasis.

The study has several limitations that should be acknowledged. First, 
the relatively small sample size may have hindered the identification of 
some potentially important radiomic features, which could restrict the 
applicability of the results to a broader demographic. Second, as a 
retrospective study, we were only able to determine whether bone 
metastasis occurred within the five-year follow-up period, but not the 
exact timing, due to the lack of regular PET-CT scans for all patients. The 
key to addressing this limitation is to conduct prospective studies with 
regular imaging follow-ups to accurately capture the timing of 
metastasis.

This study utilized radiomics to identify changes in features of the 
thoracic vertebral bone marrow environment on CT images before bone 
metastasis in breast cancer patients, consistent with the concept that the 
bone marrow microenvironment undergoes alterations before the 
occurrence of metastasis. Additionally, the logistic regression model 
based on radiomic features from routine chest CT scans accurately 
predicted the occurrence of bone metastasis within five years, demon-
strating its potential as a tool for assessing bone metastasis risk.
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of the tumor cell-bone cell crosstalk during the initiation of breast cancer bone 
metastasis, Int. J. Mol. Sci. 22 (2021), https://doi.org/10.3390/ijms22062898.
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