
RESEARCH ARTICLE

Ecological value of macrophyte cover in

creating habitat for microalgae (diatoms) and

zooplankton (rotifers and crustaceans) in

small field and forest water bodies

Sofia Celewicz-Gołdyn1☯*, Natalia Kuczyńska-Kippen2☯

1 Department of Botany, Faculty of Horticulture and Landscape Architecture, PoznańUniversity of Life

Sciences, Poznań, Poland, 2 Department of Water Protection, Faculty of Biology, Adam Mickiewicz

University, Poznań, Poland

☯ These authors contributed equally to this work.

* celewicz@up.poznan.pl

Abstract

Due to their small area and shallow depth ponds are usually treated as a single sampling

unit, while various microhabitats offer different environmental conditions. Thus, we tested

the effect of different habitat types typically found within small ponds on the microalgae and

zooplankton communities. We found that submerged macrophytes have the strongest

impact on microalgae and zooplankton communities out of all the analysed habitats. Some

epontic diatoms (e.g. Fragilaria dilatata, Cymbella affinis) and littoral-associated zooplank-

ton species (e.g. Simocephalus vetulus, Lecane bulla) were significantly related to elodeids.

However, pelagic species (e.g. bosminids) preferred less complex helophytes, which sug-

gests that the most heterogeneous elodeid habitats were not an anti-predator shelter for cla-

docerans. Selection of different macrophyte types by taxonomically various organisms

suggests that it is not only macrophyte cover that is desired for healthy aquatic environment

but that a level of habitat mosaic is required to ensure the well-being of aquatic food webs.

Species-specific preferences for different types of macrophytes indicate the high ecological

value of macrophyte cover in ponds and a potential direction for the management of small

water bodies towards maintaining a great variation of aquatic plants. Moreover, the type of

surrounding landscape, reflecting human-induced disturbance (28 field ponds) and natural

catchment (26 forest ponds), significantly influenced only zooplankton, while diatoms were

affected indirectly through the level of conductivity. Nutrient overload (higher content of

TRP) and increased conductivity in the field landscape contributed to a rise in microalgae

(e.g. Amphora pediculus, Gomphonema parvulum) and zooplankton (e.g. Thermocyclops

oithonoides, Eubosmina coregoni) abundance. An awareness of the responses of both com-

ponents of plankton communities to environmental factors is necessary for maintaining the

good state of small water bodies in various types of landscape.
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Introduction

Small water bodies have many important functions because they provide several ecosystem ser-

vices, and increase not only local, but also regional biodiversity [1] due to their diverse flora and

fauna, including rare, endemic and species of high conservation interest [2–5]. In spite of their

small areal extent, small ponds play an important role in global cycles, particularly of nitrogen

and phosphorus [6–7]. As the stability of a small water body ecosystem is often threatened by

both warming climate conditions and human-induced pressure their ecological quality around

the world is declining [8–10], which in turn leads to the disappearance of their inhabitants [2].

The high value of biological diversity associated with ponds suggests that they should be the

principal target of strategies for the protection of aquatic biodiversity in Europe [11].

Ponds are subject to great fluctuations in abiotic characteristics due to their shallowness and

small area [12], thus providing specific conditions for the inhabiting organisms. The critical ele-

ments in a pond’s food chain are microalgae and zooplankton. They quickly react to changes in

physical and chemical parameters of water. Although microalgae (particularly diatoms) and

zooplankton (particularly rotifers and cladocerans) are widely used as indicators in freshwater

ecosystems [12–14], little is known about their communities in small water bodies. Ponds also

provide varied microhabitats, particularly structured by aquatic vegetation of a mosaic pattern.

Different factors are expected to determine microalgae and zooplankton communities among

macrophytes when compared to the open water areas. It is well known that plant habitat com-

plexity, understood as the morphological build of a plant, structures lake plankton [15–16].

Plants with dissected leaves (elodeids) provide organisms with more substrate for foraging and

with more effective shelter from predators in comparison with undissected helophytes [17–18],

which are less complex. Not much is known about the effect that aquatic vegetation has on habi-

tat differentiation and on plankton occurrence in ponds. The available data on heleoplankton

usually comes from temporal studies, in annual or long-term cycles [19–20], mainly concerning

the open water area. Macrophytes also influence abiotic parameters [21] and have an impact

on relationships between organisms in the aquatic food web [22]. The physical and chemical

parameters of water are also influenced by the surrounding environment. The character of land

use in the catchment area markedly transforms the water chemistry and is known to affect both

the taxonomic structure and the dynamics of aquatic communities in lakes [23–25] or streams

[26]. It can also be expected that the type of direct surroundings of small water bodies will alter

the abiotic features of water and sediments and in turn microalgae and zooplankton.

The aim of the present study was to examine the effect of different habitat types found

within small ponds on the microalgae and zooplankton communities. Considering all of the

above-mentioned ecological aspects, we expect that the habitat heterogeneity within a pond to

be of great importance, despite the fact that small water bodies are simple ecosystems with lim-

ited morphological features. We will also analyse and discuss the role of the catchment area

(forest vs. field) and associated physical and chemical factors of the water on the microalgae

and zooplankton assemblages.

Methods

Locality description and sampling sites

Investigations were conducted in 54 small water bodies, located in the Wielkopolska Lakeland

(Western Poland) (see the S1 File), during the optimum phase of the vegetation season (June

and July).

All analyses included small water bodies situated in two types of catchment area. In total 28

ponds were qualified as typically field and 26 as forest ponds. Due to the fact that the direct
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character of land use and the specificity of the buffer strip have a very strong effect on the

water quality and consequently on the functioning of the inhabiting organisms [27], we ana-

lysed the type of surroundings of each pond. The potential pressure of the catchment on a

group of pastoral ponds in the Wielkopolska region, where our examination was conducted,

was high, amounting to a mean Ohle index >140 [28]. All forest ponds were located in 100%

forest catchment. Field ponds were regularly under strong anthropogenic impact, with sur-

roundings dominated by typically arable land.

Sampling stations were located within three types of habitats: elodeids (35 stations), helo-

phytes (23 stations) and the open water (52 stations: 26 in field and 26 in forest ponds) of the

investigated ponds.

In two groups of ponds (field and forest) all available microhabitats (the open water area and

macrophyte sites) were analysed. However, due to various environmental factors, e.g. generally

higher degree of shading, fewer macrophyte-dominated habitats were analysed in forest ponds

(14 elodeid stations and 9 helophyte stations) compared to field ponds (21 and 14, respectively).

Physical and chemical analyses

Dissolved oxygen, pH and conductivity (reflecting the total amount of dissolved ions in the

water) were measured directly using a Portable Multiparameter Meter Sension 156 Hach

(Hach Co., USA) at the sampling sites. Chemical analyses were conducted in the laboratory

following standard methods [29] in order to determine total reactive phosphorus (TRP),

nitrate (NO3), nitrite (NO2), ammonium (NH4) and total hardness (CaCO3). Dissolved inor-

ganic nitrogen (DIN) concentration was calculated by summing the concentration of nitrate,

nitrite and ammonium. The chlorophyll a content was determined with a spectrophotometer

(at 663 and 750 nm), following extraction in 4˚C acetone [30].

Macrophytes

Aquatic plants of the examined water bodies represented two ecological groups: submerged

macrophytes—elodeids (Ceratophyllum demersum L., Ceratophyllum submersum L., Chara his-
pida L., Chara tomentosa L., Myriophyllum vericillatum L., Myriophyllum spicatum L., Nitellop-
sis obtusa (Devs.) J. Groves, Potamogeton lucens L., Potamogeton pectinatus L.) and emerged

macrophytes—helophytes (Phragmites australis (Cav.) Trin. ex Steud, Typha angustifolia L.,

Typha latifolia L., Schoenoplectus lacustris (L.) Palla). They formed separate habitats for plank-

tonic organisms. To avoid overlapping of various habitats, the chosen beds of plants were fully

representative monospecies phytocoenoses.

Microalgae and zooplankton analyses

Microalgae and zooplankton were taken from each site in triplicate (total n = 330), using a

plexiglass core sampler (; 50 mm; length 1.5 m) from among vegetated stations. In the open

water area, the material was sampled using a calibrated vessel. Subsamples of ca. 1–2 L were

taken from randomly selected places within each habitat to make up a 10 L sample. Microalgae

samples were first fixed in Lugol solution and then preserved in formaldehyde. Samples for

taxonomical and quantitative analyses were sedimented in the laboratory and thickened to

a volume of 10 ml. Microalgae and zooplankton composition was determined with a light

microscope (magnification 400x). Abundance of microalgae cells was counted over at least

160 fields of a Fuchs–Rosenthal chamber (Brand GmbH+CO KG, Wertheim, Germany). The

zooplankton samples were concentrated using a 45 μm mesh net and fixed with 4% formalin.

Rotifer and crustacean species were first determined and then counted in a 1.0 ml chamber,

Macrophyte cover as habitat for microalgae and zooplankton in ponds
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which was equal to 1 L of pond water. Representatives of Bdelloidea within rotifers were all

counted, but not determined to a particular species.

Statistical analyses

In order to determine whether there is a significant difference in the number of three types of

habitats (elodeids, helophytes, the open water zone) between two types of pond—forest and

field the λ2 test was applied. Differences in environmental factors and also in the mean abun-

dance of microalgae and zooplankton between the two types of water bodies (Student’s t-test)

and three types of habitats (ANOVA) were examined with Statistica v. 10 Software (StatSoft

Inc., Tulsa, OK). Where significant effects were identified, post hoc analyses (the posteriori

Tukey test) were undertaken.

In order to identify the relationship between particular environmental variables, including

habitat (the open water zone, elodeids and helophytes), pond type (field/pastoral and forest), phys-

ical and chemical parameters of water within each analysed habitat (dissolved inorganic nitro-

gen–DIN, total reactive phosphorus–TRP, dissolved oxygen, conductivity, pH, water hardness)

as well as microalgae and zooplankton abundance, Canonical Correspondence Analysis (CCA)

was applied to the log transformed data with CANOCO 4.5 statistical computing environment

software [31]. Data on species abundance were introduced to the models as dependent variables,

while measured environmental factors were considered as explanatory variables. Forward selec-

tion of environmental variables was performed to find which of them add to the model sig-

nificantly. The Monte Carlo Permutation Test (with 5000 replicates) was used on explanatory

variables as well as on the canonical axes to evaluate the statistical significance of relationships

between environmental and species data. CCA analyses were carried out using only taxa of highest

frequency (microalgae species occurring in>19% and zooplankton species occurring in>25% of

the whole set of samples) and/or dominating species (species that exceeded 10% of the total abun-

dance of microalgae and zooplankton communities). The following taxonomical groups of micro-

algae were included, and also analysed separately in CCA analyses: cyanobacteria, chlorophytes,

diatoms, euglenophytes, dinophytes and cryptophytes. They were tested using the Monte Carlo

permutation test with the dependent variables containing numbers of individual species. To ana-

lyse the relationship between the abundance of diatoms and zooplankton species (included in the

CCA analyses) and physical and chemical parameters of water, the Spearman correlation coeffi-

cients were calculated. For species that significantly differed in reference to environmental factors

scatter plots (of the variables identified as significant), plotted against the abundance of zooplank-

ton and diatom species, were performed. The significance of the relationships between particular

plankton species abundance and the pond type were determined by the Mann-Whitney U-test. In

order to examine the relationships between species data and habitat (elodeids, helophytes and the

open water) the non-parametric Kruskal-Wallis test was used. These analyses were performed

using Statistica 6.0 PL 2002 software (StatSoft Inc., Tulsa, OK). A p value of<0.05 was selected as

the minimum level determining significance in all the statistical analyses.

The work did not involve any endangered or protected biological species. No specific per-

mission was required for any of these locations and activities.

Results

Physical and chemical variables, microalgae and zooplankton in

different types of habitats (open water, elodeids and helophytes)

The number of different habitat types was reasonably evenly distributed between two pond

types (λ2 = 1.192, df = 2, p = 0.55).

Macrophyte cover as habitat for microalgae and zooplankton in ponds
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The open water area of examined ponds was characterized by higher concentrations of

nutrients (TRP and DIN) and chlorophyll a content compared to macrophyte-dominated sta-

tions (elodeids and helophytes). Moreover, rotifers prevailed in the open water zone. The

remaining groups of plankton reached higher abundance in macrophyte-dominated areas.

Crustaceans and diatoms had their highest densities among elodeids, while mean microalgae

abundance was highest among helophytes (Table 1, S1 File).

Physical and chemical variables, microalgae and zooplankton in two

types of ponds (forest vs. field)

The level of conductivity, TRP and hardness were significantly higher in field ponds, while

oxygen saturation was lower in this type of water body. Field ponds were characterised by a

higher mean abundance of both groups of zooplankton and microalgae compared with forest

water bodies, while diatoms were more abundant in forest ponds (Table 2).

Diatoms vs. environmental variables

From all the taxonomic groups analysed with CCA, only diatom communities were signifi-

cantly affected by environmental variables, based on the distribution of the 26 most frequently

encountered taxa (Fig 1, Table 3).

The model explained 41% of the variance and was significant at the level p<0.001. The

results of CCA (Table 3) showed that conductivity was the most significant environmental

determinant influencing diatom community structure in the examined ponds. The species asso-

ciated with higher values of conductivity were Gomphonema parvulum,Amphora pediculus,
Navicula menisculus, Fragilaria ulna, Navicula cincta and Cymbella minuta. Species negatively

related to conductivity were Gomphonema acuminatum, Gomphonema olivaceum, Fragilaria
capucina, Pinnularia maior and Rhopalodia gibba. According to the model (Fig 1), the type of

habitat (elodeids) was another factor explaining the structure of diatom assemblages. Species

such as Cymbella affinis, Fragilaria dilatata, Navicula radiosa, Epithemia sorex and Fragilaria

Table 1. Limnological parameters and microalgae and zooplankton community abundance (Min-Max, Mean x ± SD) of three types of habitats

(open water zone–water, elodeids, helophytes). The level of significance (p) of the analysis of variance (ANOVA) between the three types of habitats is

given. The results of posteriori Tukey test in S1.

Type of habitat Water Elodeids Helophytes

Parameter Unit x Range SD x Range SD x Range SD p

pH 7.93 6.4–10.8 0.88 8.00 6.1–9.8 0.81 8.20 7.2–9.6 0.69 -

Conductivity μS cm-1 731 26–1728 419 742 109–1736 392 759 116–1587 412 -

O2 % 88 5–259 53 92 3–224 51 89 28–175 36 -

TRP μg P l-1 303 1–2181 527 233 3–1323 377 180 2–1213 333 -

DIN mg l-1 2.2 0.7–9.1 1.7 1.5 0.5–3.1 0.5 1.3 0.6–3.2 0.6 **

Hardness mg l-1 CaCO3 321 9–1512 255 338 45–811 196 304 14–688 217 -

Chlorophyll a μg l-1 72 0.1–2031 291 19 1–240 41 18 1–81 22 -

Diatoms mln ind l-1 0.3 0–3 0.6 0.7 0–7.1 1 0.5 0.0002–6 1 -

Microalgae mln ind l-1 7.2 3–157 22 3 0.01–13 3 12 0.09–100 26 -

Rotifera ind l-1 3864 5–42655 8803 2492 10–27889 4879

3499 3–19095 5329

-

Crustacea ind l-1 147 1–1991 347 709 3–3960 1050 540 9–4128 1113 **

*—p<0.05

**—p<0.01

***—p<0.001.

https://doi.org/10.1371/journal.pone.0177317.t001
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tenera were associated with elodeids, while Navicula gracilis was distinctly negatively related to

this type of habitat. The other variables included (Table 3) had no significant effect (p>0.05).

Zooplankton vs. environmental variables

Analysing relations between zooplankton and environmental factors, the explanatory variables

describing type of habitat were located along the first axis, whereas the second axis mostly

described physical and chemical parameters associated with the type of catchment area (Fig 2).

The model explained 35.6% of the variance and was significant at the level p<0.001. The

CCA diagram indicated that the key factor that influenced zooplankton communities was the

presence of elodeids (Fig 2, Table 4).

The species associated with this type of habitat were Simocephalus species (S. exspinosus and

S. vetulus), Brachionus quadridentatus, Lecane bulla, Testudinella patina and to a lesser extent

Ceriodaphnia species (C. pulchella and C. quadrangula). The second group of species gathered

around the open water area and was negatively related to elodeids (e.g. Filinia longiseta, Polyar-
thra remata, Trichocerca similis, Keratella cochlearis f. tecta, Brachionus angularis or Anuraeop-
sis fissa). Other significant factors that had an impact on zooplankton communities were TRP

and water conductivity (Table 4). According to the results, TRP positively influenced the abun-

dance of species such as Mytilina mucronata, Alonella excisa, Lecane lunaris, Lecane hamata,

Lepadella patella, Acroperus harpae or Euchlanis dilatata, while some other species (Thermocy-
clops oithonoides, Eubosmina coregoni, Bosmina longirostris, Polyarthra vulgaris and Keratella
quadrata) were related to conductivity. At the same time, these species were attributed to helo-

phytes. The type of catchment area was also among the significant features affecting zooplank-

ton species and explained 4% of the variance of the CCA diagram. Field catchment around

ponds was associated with the group of species affected by an increasing level of conductivity,

while species associated with TRP were recorded in forest ponds (Fig 2). Other variables

included in the canonical analysis did not improve the model significantly (p>0.05).

Non-parametric statistics (data available in S1 File) supported the significance of the rela-

tions between the diatom and zooplankton species and the environmental variables, pond type

and habitat type.

Table 2. Limnological parameters and microalgae and zooplankton community abundance (Min-Max, Mean ± SD) of two types of ponds (TRP–

total reactive phosphorus; DIN–dissolved inorganic nitrogen). The level of significance (p) of the t-test between the two types of water bodies is given.

Type of pond Forest water bodies Field water bodies

Parameter Unit x Range SD x Range SD p

pH 7.88 6.3–10.0 0.87 8.14 6.6–10.8 0.82 -

Conductivity μS cm-1 483 26–1085 295 899 109–1736 407 ***

O2 % 103 22–259 54 79 3–178 44 **

TRP μg P l-1 78 1–590 126 379 3–2128 536 ***

DIN mg l-1 1.7 0.7–6.2 1.0 1.9 0.5–9.1 1.5 -

Hardness mg l-1 CaCO3 209 9–530 134 407 45–1512 247 ***

Chlorophyll a μg l-1 30 0.1–259 59 64 0.5–2031 266 -

Diatoms mln ind l-1 0.7 0–7 1 0.3 0–3 0.5 *

Microalgae mln ind l-1 4 3–29 6 9 0.01–157 25 -

Rotifera ind l-1 2409 3–13356 3105 4108 5–42655 9023 -

Crustacea ind l-1 244 1–2720 477 555 1–4128 1051 *

*—p<0.05

**—p<0.01

***—p<0.001.

https://doi.org/10.1371/journal.pone.0177317.t002
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Fig 1. Canonical Correspondence Analysis (CCA) diagram showing relations between the abundance

of diatom species (triangles) and environmental factors studied (arrows: linear variables; circles:

binominal variables). Solid lines and filled circles: variables significantly adding to the model according to

Forward selection with Monte Carlo permutation test (p < 0.05); dashed lines and open circles: non-significant

variables. The whole model is significant at p < 0.001, F = 1.463; eigenvalues: horizontal (I) axis = 0.136;

vertical (II) axis = 0.078. Diatom species: Acm–Achnanthes minutissima var. affinis (Grun.) Lange-Bertalot,

Amo–Amphora ovalis (Kütz.) Kütz., Amp–Amphora pediculus (Kütz.) Grunow, Cop–Cocconeis placentula

Ehrenb., Cra–Cyclotella radiosa (Grun.) Lemm., Cya–Cymbella affinis Kütz, Cym–Cymbella minuta Hilse ex

Rabenhorst, Es–Epithemia sorex Kütz., Fc–Fragilaria capucina Desm., Fd–Fragilaria dilatata (Bréb.) Lange-

Bertalot, Fi–Fragilaria intermedia Grun., Ft–Fragilaria tenera (Smith) Lange-Bertalot, Fu–Fragilaria ulna

(Nitzsch) Lange-Bertalot var. ulna, Ga–Gomphonema acuminatum Ehrenberg, Go–Gomphonema olivaceum

Kütz., Gp–Gomphonema parvulum (Kütz.) Kütz., Nca–Navicula capitata var. hungarica (Grunow) Ross, Nci–

Navicula cincta (Ehrenberg) Ralfs, Ng–Navicula gracilis Ehrenberg, Nm–Navicula menisculus Schumann,

Nr–Navicula radiosa Kütz., Nia–Nitzschia acicularis (Kütz.) W. Smith, Nip–Nitzschia palea (Kutz.) W. Smith,

Pm–Pinnularia maior (Kütz.) Cl., Rg–Rhopalodia gibba (Ehr.) O. Müll., Sp–Stauroneis phoenicentron Ehr.

https://doi.org/10.1371/journal.pone.0177317.g001

Table 3. Results of Canonical Correspondence Analysis (CCA) on relations between the abundance of diatom species and environmental factors

studied. Values of P and F are calculated using Monte Carlo permutation test with 5000 permutations.

Variable Abbreviations on CCA diagram Variance explained (%) P F

Water conductivity cond 10 < 0.001 3.12

Elodeids El 5 0.030 1.64

Field or Forest catchment Field / Forest 5 0.053 1.55

Dissolved oxygen contents O2 5 0.061 1.55

Water hardness Hardn 5 0.068 1.54

Dissolved inorganic nitrogen DIN 3 0.237 1.20

Water reactivity pH 3 0.554 0.92

Open water / Helophytes Water / H 3 0.709 0.80

Total reactive phosphorus TRP 2 0.725 0.78

Whole model 41 < 0.001 1.463

Bold = variables significantly adding to the model at p < 0.05 level.

https://doi.org/10.1371/journal.pone.0177317.t003
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Discussion

The role of habitat type in structuring diatom and zooplankton

assemblages

As we expected, the type of habitat was a significant factor structuring both microalgae and

zooplankton communities within the 54 analysed small water bodies, similarly to larger

Fig 2. Canonical Correspondence Analysis (CCA) diagram showing relations between the abundance of zooplankton species (triangles)

and environmental factors studied (arrows: linear variables; circles: binominal variables). Solid lines and filled circles: variables significantly

adding to the model according to Forward selection with Monte Carlo permutation test (p < 0.05); dashed lines and open circles: non-significant

variables. The whole model is significant at p < 0.001, F = 3.071; eigenvalues: horizontal (I) axis = 0.153; vertical (II) axis = 0.062. Rotifera species:

Af–Anuraeopsis fissa (Gosse), Bd–Bdelloidae, Ba–Brachionus angularis Gosse, Bq–Brachionus quadridentatus (Hermann), Cv–Cephalodella

ventripes Dixon-Nuttall, Cu–Colurella uncinata (O.F. Müller), Ed–Euchlanis dilatata Ehrenberg, Fl–Filinia longiseta (Ehrenberg), Kc–Keratella

cochlearis (Gosse), Kt–Keratella cochlearis f. tecta (Lauterborn), Kq–Keratella quadrata (O.F. Müller), Lb–Lecane bulla (Gosse), Lc–L. closterocerca

(Schmarda), Lh–L. hamata (Stoces), Ll–Lecane lunaris (Ehrenberg), Lp–Lepadella patella (O.F. Müller), Lq–Lepadella quadricarinata (Stenroos),

Mm–Mytilina mucronata (O.F. Müller), Pr–Polyarthra remata (Skorikov), Pv–Polyarthra vulgaris Carlin, Ss–Synchaeta sp., Tp–Testudinella patina

(Hermann), Ts–Trichocerca similis (Wierzejski). Crustacea species: Ah–Acroperus harpae (Baird), Ae–Alonella excisa (Fischer), Ec–Euosmina

coregoni Baird, Bl–Bosmina longirostris (O.F. Müller), Cq–Ceriodaphnia quadrangula (O.F. Müller), Cp–Ceriodaphnia pulchella Sars, Cs–Chydorus

sphaericus (O.F. Müller), Se–Simocephalus exspinosus (Koch), Sv–Simocephalus vetulus (O.F. Müller), To–Thermocyclops oithonoides (Sars).

https://doi.org/10.1371/journal.pone.0177317.g002
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aquatic ecosystems. The results of statistical analyses showed that the variation of both micro-

algae and zooplankton species was distinctly affected by the presence of submerged macro-

phytes (elodeids), one of the three studied types of habitat, irrespective of the type of water

body (field vs. forest).

The only group of microalgae significantly affected by the environmental variables was

diatoms. It is well known that diatoms, owing to their sensitivity to environmental changes,

indicate a certain level of water quality in many aquatic systems [32–35, 12]. Diatom taxa asso-

ciated with elodeids were sessile (epontic and/or benthic) forms, often typical of shallow water

bodies [36–38] with high water mixing, e.g. Cymbella affinis, Fragilaria dilatata, Epithemia
sorex, Navicula radiosa [39]. Elodeids create a habitat of the highest level of heterogeneity char-

acterised by the greatest spatial and morphological complexity, measured by the density of

plant stems [40]. Thus, elodeids provided a favourable environment for different diatom life

forms: epontic (live attached to the substrate), and epontic/benthic or tychoplanktonic (occur

in plankton, but are of epontic origin), e.g. Fragilaria capucina [39]. Results presented by Sim-

khada & Jüttner [41] also confirm a higher abundance of diatoms related to zones with sub-

merged vegetation, similarly to our findings. Several authors have suggested that the elodeids

and algae could compete for light and/or nutrients or that allelopathic mechanisms between

both groups of primary producers may also exist [42–45]. This may explain why some diatoms,

e.g. Navicula gracilis, were negatively correlated to submerged plants.

Some zooplankton taxa also preferred elodeids, such as cladocerans Simocephalus exspino-
sus, S. vetulus, Ceriodaphnia pulchella or C. quandrangula; and rotifers Brachionus quadri-
dentatus, Lecane bulla and Testudinella patina. Most of the crustaceans were associated with

macrophyte habitats, while in the case of rotifers, only the littoral species were present there.

Elodeids supported a variable community of littoral zooplankters, whereas pelagic crustaceans

(e.g. bosminids) preferred less complex helophytes, possibly treating them as an anti-predator

refuge. This suggests that crustaceans find favourable life conditions among aquatic plants

(littoral forms) as well as concealment from predators (pelagic forms) [45]. Moreover, spatial

segregation may also express the different feeding requirements and/or swimming behaviour

of littoral and pelagic cladocerans [46]. Therefore, a mosaic of different habitats within the

ponds is necessary to support the co-existence of organisms with different habitat preferences.

A third group of zooplankton (incl. Anuraeopsis fissa, Brachionus angularis, Filinia longiseta,

Keratella cochlearis f. tecta, Polyarthra remata and Trichocerca similis) also emerged in our

Table 4. Results of Canonical Correspondence Analysis (CCA) on relations between the abundance of zooplankton species and environmental

factors studied. Values of P and F are calculated using Monte Carlo permutation test with 5000 permutations.

Variable Abbreviations on CCA diagram Variance explained (%) P F

Elodeids El 13 < 0.001 9.48

Total reactive phosphorus TRP 5 < 0.001 4.08

Water conductivity cond 5 < 0.001 4.01

Field or Forest catchment Field / Forest 4 0.003 2.54

Dissolved inorganic nitrogen DIN 2 0.068 1.61

Water hardness Hardn 2 0.063 1.64

Open water / Helophytes Water / H 2 0.068 1.59

Water reactivity pH 1 0.202 1.27

Dissolved oxygen contents O2 2 0.282 1.16

Whole model 36 < 0.001 3.071

Bold = variables significantly adding to the model at p < 0.05 level.

https://doi.org/10.1371/journal.pone.0177317.t004
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analysis. This group, with first four species being indicators of eutrophy [47, 48], preferred the

open water area with prevailing high values of TRP, DIN and chlorophyll a. These species were

found in opposition to elodeids, which confirms that eutrophication may be responsible for

the disappearance of submerged macrophytes and the switch to a turbid and phytoplankton-

dominated state [49], dominated by small-bodied zooplankton [50]. On the other hand, sub-

merged macrophytes intensively uptake nutrients from the water column, and in this way

purify water quality in shallow water bodies [51–52]. Thus zooplankton species that prefer

eutrophy are not found in relation to elodeids.

The impact of the catchment area and associated physical and chemical

factors on microalgae and zooplankton communities

We have demonstrated that the water quality associated with the type of surrounding land-

scape significantly influenced the structure of microalgae and zooplankton assemblages. The

high abundance of microalgae and zooplankton observed in field ponds was associated with

the higher values of nutrients (DIN and TRP) and conductivity in the more fertilized water

bodies. Meanwhile, the abundance of diatoms was significantly higher in forest ponds, which

could be a result of the higher overshading here. It is well known that periphytic diatom species

associated with macrophytes (such as dominating species in our ponds) are low light tolerant.

They are well-adapted to low light levels and resistant to shading caused by plant cover [53].

Shade-tolerant diatoms could therefore, in the forest ponds win the competition for a niche

with representatives of other groups of microalgae which did not have such a high tolerance to

light shortage.

Among the physical and chemical parameters, only water conductivity significantly influ-

enced the structure of both diatoms and zooplankton. Conductivity significantly lower in for-

est ponds, particularly increased the abundance of diatoms such as Gomphonema acuminatum
and Gomphonema olivaceum. On the other hand, higher conductivity in field ponds was

responsible for the increase of individual numbers of Amphora pediculus and Gomphonema
parvulum and of some zooplankton species (Thermocyclops oithonoides, Eubosmina coregoni,
Bosmina longirostris, Polyarthra vulgaris and Keratella quadrata). Therefore, our results show

that agricultural practices in the surroundings of a pond increase the level of conductivity,

which is in accordance with other studies carried out on wetlands [54, 9]. Furthermore, Rydén

et al. [55] stated that the increasing proportion of cultivated land, with a higher level of fertili-

sation of usually fine-grained soil, leads to a large transport of all kind of ions. Some literature

data concerning small water bodies [21] have also demonstrated that electric conductivity

decreases in the presence of submerged vegetation, although we did not obtain any significant

variation in conductivity level between microhabitats. Evidence of overfertilisation was addi-

tionally enhanced by a notably higher content of TRP in field ponds, which significantly struc-

tured zooplankton in our study.

Conclusions

The type of habitat, together with water quality connected with the type of catchment, were of

high significance. Elodeids had a strong influence on the community structure of both diatoms

and zooplankton in a direct way (1. creating favourable conditions and substratum for sessile

species; and 2. inhibiting the occurrence of some species through the release of allelopathic

compounds). The diverse type of habitat preferences of cladoceran species–elodeids with litto-

ral-associated cladocerans and helophytes with pelagic species (e.g. bosminids)–may suggest

that helophytes serve as a refuge against predators. But such spatial differentiation may also

indicate different feeding modes and/or swimming behaviour of littoral and pelagic taxa. This
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fact highlights the need to maintain within the area of a small water body a high complexity of

macrophyte cover so as to allow the co-existence of organisms with different habitat require-

ments. In addition, the type of catchment area had an impact on diatoms and zooplankton in

an indirect way, by conditioning the physical and chemical parameters of water.

The novelty of our study is that it has been shown that in small water bodies, similarly to

large aquatic systems such as lakes, co-occurrence of various habitats substantially determine

the structure of both diatoms and zooplankton, despite the small depth and surface area of

ponds. What is more, the mosaic of habitats not only increases overall biodiversity but should

also be a key element in conservation management.
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