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+is paper presents an in-depth survey and performance evaluation of cat swarm optimization (CSO) algorithm. CSO is a robust
and powerful metaheuristic swarm-based optimization approach that has received very positive feedback since its emergence. It
has been tackling many optimization problems, and many variants of it have been introduced. However, the literature lacks a
detailed survey or a performance evaluation in this regard. +erefore, this paper is an attempt to review all these works, including
its developments and applications, and group them accordingly. In addition, CSO is tested on 23 classical benchmark functions
and 10 modern benchmark functions (CEC 2019). +e results are then compared against three novel and powerful optimization
algorithms, namely, dragonfly algorithm (DA), butterfly optimization algorithm (BOA), and fitness dependent optimizer (FDO).
+ese algorithms are then ranked according to Friedman test, and the results show that CSO ranks first on the whole. Finally,
statistical approaches are employed to further confirm the outperformance of CSO algorithm.

1. Introduction

Optimization is the process by which the optimal solution is
selected for a given problem among many alternative so-
lutions. One key issue of this process is the immensity of the
search space for many real-life problems, in which it is not
feasible for all solutions to be checked in a reasonable time.
Nature-inspired algorithms are stochastic methods, which
are designed to tackle these types of optimization problems.
+ey usually integrate some deterministic and randomness
techniques together and then iteratively compare a number
of solutions until a satisfactory one is found. +ese algo-
rithms can be categorized into trajectory-based and pop-
ulation-based classes [1]. In trajectory-based types, such as a
simulated annealing algorithm [2], only one agent is
searching in the search space to find the optimal solution,
whereas, in the population-based algorithms, also known as
swarm Intelligence, such as particle swarm optimization
(PSO) [3], multiple agents are searching and communicating

with each other in a decentralized manner to find the op-
timal solution. Agents usually move in two phases, namely,
exploration and exploitation. In the first one, they move on a
global scale to find promising areas, while in the second one,
they search locally to discover better solutions in those
promising areas found so far. Having a trade-off between
these two phases, in any algorithm, is very crucial because
biasing towards either exploration or exploitation would
degrade the overall performance and produce undesirable
results [1]. +erefore, more than hundreds of swarm in-
telligence algorithms have been proposed by researchers to
achieve this balance and provide better solutions for the
existing optimization problems.

Cat swarm optimization (CSO) is a swarm Intelligence
algorithm, which was originally invented by Chu et al. in
2006 [4, 5]. It is inspired by the natural behavior of cats, and
it has a novel technique in modeling exploration and ex-
ploitation phases. It has been successfully applied in various
optimization fields of science and engineering. However, the
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literature lacks a recent and detailed review of this algorithm.
In addition, since 2006, CSO has not been compared against
novel algorithms, i.e., it has been mostly compared with PSO
algorithm while many new algorithms have been introduced
since then. So, a question, which arises, is whether CSO
competes with the novel algorithms or not? +erefore,
experimenting CSO on a wider range of test functions and
comparing it with new and robust algorithms will further
reveal the potential of the algorithm. As a result, the aims of
this paper are as follows: firstly, provide a comprehensive
and detailed review of the state of art of CSO algorithm (see
Figure 1), which shows the general framework for con-
ducting the survey; secondly, evaluate the performance of
CSO algorithm against modern metaheuristic algorithms.
+ese should hugely help researchers to further work in the
domain in terms of developments and applications.

+e rest of the paper is organized as follows. Section 2
presents the original algorithm and its mathematical
modeling. Section 3 is dedicated to reviewing all modified
versions and variants of CSO. Section 4 summarizes the
hybridizing CSO algorithm with ANN and other non-
metaheuristic methods. Section 5 presents applications of
the algorithm and groups them according to their disci-
plinary. Section 6 provides performance evaluation, where
CSO is compared against dragonfly algorithm (DA) [6],
butterfly optimization algorithm (BOA) [7], and fitness
dependent optimizer (FDO) [8]. Finally, Section 7 provides
the conclusion and future directions.

2. Original Cat Swarm Optimization Algorithm

+e original cat swarm optimization is a continuous and
single-objective algorithm [4, 5]. It is inspired by resting and
tracing behaviours of cats. Cats seem to be lazy and spend
most of their time resting. However, during their rests, their
consciousness is very high and they are very aware of what is
happening around them. So, they are constantly observing
the surroundings intelligently and deliberately and when
they see a target, they start moving towards it quickly.
+erefore, CSO algorithm is modeled based on combining
these two main deportments of cats.

CSO algorithm is composed of two modes, namely,
tracing and seeking modes. Each cat represents a solution
set, which has its own position, a fitness value, and a flag.+e
position is made up of M dimensions in the search space,
and each dimension has its own velocity; the fitness value
depicts how well the solution set (cat) is; finally, the flag is to
classify the cats into either seeking or tracing mode.+us, we
should first specify how many cats should be engaged in the
iteration and run them through the algorithm. +e best cat
in each iteration is saved into memory, and the one at the
final iteration will represent the final solution.

2.1. General Structure of the Algorithms. +e algorithm takes
the following steps in order to search for optimal solutions:

(1) Specify the upper and lower bounds for the solution
sets.

(2) Randomly generate N cats (solution sets) and spread
them in the M dimensional space in which each cat
has a random velocity value not larger than a pre-
defined maximum velocity value.

(3) Randomly classify the cats into seeking and tracing
modes according to MR. MR is a mixture ratio,
which is chosen in the interval of [0, 1]. So, for
example, if a number of cats N is equal to 10 and MR
is set to 0.2, then 8 cats will be randomly chosen to go
through seeking mode and the other 2 cats will go
through tracing mode.

(4) Evaluate the fitness value of all the cats according to
the domain-specified fitness function. Next, the best
cat is chosen and saved into memory.

(5) +e cats thenmove to either seeking or tracingmode.
(6) After the cats go through seeking or tracing mode,

for the next iteration, randomly redistribute the cats
into seeking or tracing modes based on MR.

(7) Check the termination condition; if satisfied; termi-
nate the program; otherwise, repeat Step 4 to Step 6.

2.2. Seeking Mode. +is mode imitates the resting behavior
of cats, where four fundamental parameters play important
roles: seeking memory pool (SMP), seeking range of the
selected dimension (SRD), counts of dimension to change
(CDC), and self-position considering (SPC). +ese values
are all tuned and defined by the user through a trial-and-
error method.

SMP specifies the size of seeking memory for cats, i.e., it
defines number of candidate positions in which one of them
is going to be chosen by the cat to go to, for example, if SMP
was set to 5, then for each and every cat, 5 new random
positions will be generated and one of them will be selected
to be the next position of the cat. How to randomize the new
positions will depend on the other two parameters that are
CDC and SRD. CDC defines how many dimensions to be
modified which is in the interval of [0, 1]. For example, if the
search space has 5 dimensions and CDC is set to 0.2, then for
each cat, four random dimensions out of the five need to be
modified and the other one stays the same. SRD is the
mutative ratio for the selected dimensions, i.e., it defines the
amount of mutation and modifications for those dimensions
that were selected by CDC. Finally, SPC is a Boolean value,
which specifies whether the current position of a cat will
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Figure 1: General framework for conducting the survey.
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be selected as a candidate position for the next iteration or
not. So, for example, if the SPC flag is set to true, then for
each cat, we need to generate (SMP-1) number of can-
didates instead of SMP number as the current position is
considered as one of them. Seeking mode steps are as
follows:

(1) Make as many as SMP copies of the current position
of Catk.

(2) For each copy, randomly select as many as CDC
dimensions to be mutated. Moreover, randomly add
or subtract SRD values from the current values,
which replace the old positions as shown in the
following equation:

Xjdnew � (1 + rand∗ SRD)∗Xjdold, (1)

where Xjdold is the current position; Xjdnew is the
next position; j denotes the number of a cat and d
denotes the dimensions; and rand is a random
number in the interval of [0, 1].

(3) Evaluate the fitness value (FS) for all the candidate
positions.

(4) Based on probability, select one of the candidate
points to be the next position for the cat where
candidate points with higher FS have more chance
to be selected as shown in equation (2). However,
if all fitness values are equal, then set all the
selecting probability of each candidate point to
be 1.

Pi �
FSi − FSb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

FSmax − FSmin
, where 0< i< j. (2)

If the objective is minimization, then FSb � FSmax; oth-
erwise, FSb � FSmin.

2.3. TracingMode. +is mode copies the tracing behavior of
cats. For the first iteration, random velocity values are given
to all dimensions of a cat’s position. However, for later steps,
velocity values need to be updated. Moving cats in this mode
are as follows:

(1) Update velocities (Vk,d) for all dimensions according
to equation (3).

(2) If a velocity value outranged the maximum value,
then it is equal to the maximum velocity.

Vk,d � Vk,d + r1c1 Xbest,d − Xk,d􏼐 􏼑. (3)

(3) Update position of Catk according to the following
equation:

Xk,d � Xk,d + Vk,d. (4)

Refer to Figure 2 which recaps the whole algorithm in a
diagram.

3. Variants of CSO

In the previous section, the original CSO was covered; this
section briefly discusses all other variants of CSO found in the
literature. Variantsmay include the following points: binary or
multiobjective versions of the algorithm, changing parame-
ters, altering steps, modifying the structure of the algorithm,
or hybridizing it with other algorithms. Refer to Table 1, which
presents a summary of these modifications and their results.

3.1. Discrete Binary Cat Swarm Optimization Algorithm
(BCSO). Sharafi et al. introduced the BCSO Algorithm,
which is the binary version of CSO [9]. In the seeking mode,
the SRD parameter has been substituted by another pa-
rameter called the probability of mutation operation (PMO).
However, the proceeding steps of seeking mode and the
other three parameters stay the same. Accordingly, the di-
mensions are selected using the CDC and then PMO will be
applied. In the tracing mode, the calculations of velocity and
position equations have also been changed into a new form,
in which the new position vector is composed of binary
digits taken from either current position vector or global
position vector (best position vector). Two velocity vectors
are also defined in order to decide which vector (current or
global) to choose from.

3.2. Multiobjective Cat Swarm Optimization (MOCSO).
Pradhan and Panda proposed multiobjective cat swarm
optimization (MOCSO) by extending CSO to deal with
multiobjective problems [10]. MOCSO is combined with the
concept of the external archive and Pareto dominance in
order to handle the nondominated solutions.

3.3. Parallel Cat Swarm Optimization (PCSO). Tsai and pan
introduced parallel cat swarm optimization (PCSO) [11].
+is algorithm improved the CSO algorithm by eliminating
the worst solutions. To achieve this, they first distribute the
cats into subgroups, i.e., subpopulations. Cats in the seeking
mode move as they do in the original algorithm. However, in
the tracing mode, for each subgroup, the best cat will be
saved into memory and will be considered as the local best.
Furthermore, cats move towards the local best rather than
the global best. +en, in each group, the cats are sorted
according to their fitness function from best to worst. +is
procedure will continue for a number of iterations, which is
specified by a parameter called ECH (a threshold that defines
when to exchange the information of groups). For example,
if ECH was equal to 20, then once every 20 iterations, the
subgroups exchange information where the worst cats will
be replaced by a randomly chosen local best of another
group. +ese modifications lead the algorithm to be com-
putationally faster and show more accuracy when the
number of iteration is fewer and the population size is small.

3.4.CSOClustering. Santosa andNingrum improved the CSO
algorithm and applied it for clustering purposes [12].+emain
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goal was to use CSO to cluster the data and find the best cluster
center. +e modifications they did were two main points:
firstly, removing the mixture ratio (MR) and hence forcing all
the cats to go through both seeking and tracing mode. +is is

aimed at shortening the time required to find the best cluster
center. Secondly, always setting the CDC value to be 100%,
instead of 80% as in the original CSO, in order to change all
dimensions of the candidate cats and increase diversity.

Start

Generate N cats

Initialize the position, velocities,
and the flag of every cat
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Figure 2: Cat swarm optimization algorithm general structure.
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Table 1: Summary of the modified versions of the CSO algorithm.

Comparison of With Testing field Performance Reference
CSO (original) PSO and weighted-PSO Six test functions Better [4, 5]

BCSO GA, BPSO, and NBPSO
Four test functions (sphere,

Rastrigin, Ackley, and
Rosenbrock)

Better [9]

MOCSO NSGA-II Cooperative spectrum sensing in
cognitive radio Better [10]

PCSO CSO and weighted-PSO +ree test functions (Rosenbrock,
Rastrigrin, and Griewank)

Better when the number of
iteration is fewer and the
population size is small

[11]

CSO clustering K-means and PSO clustering
Four different clustering datasets
(Iris, Soybean, Glass, and Balance

Scale)
More accurate but slower. [12]

EPCSO
PCSO, PSO-LDIW, PSO-CREV,
GCPSO, MPSO-TVAC, CPSO-

H6, PSO-DVM

Five test functions and aircraft
schedule recovery problem Better [13]

AICSO CSO +ree test functions (Rastrigrin,
Griewank, and Ackley) Better [14]

ADCSO CSO
Six test functions (Rastrigrin,
Griewank, Ackley, axis parallel,

Trid10, and Zakharov)

Better except for Griewank test
function. [15]

Enhanced HCSO PSO Motion estimation block-
matching Better [16, 17]

ICSO PSO Motion estimation block-
matching Better [17]

OL-ICSO K-median, PSO, CSO, and ICSO ART1, ART2, Iris, CMC, Cancer,
and Wine datasets Better [18]

CQCSO QCSO, CSO, PSO, and CPSO

Five test functions (Schaffer,
Shubert, Griewank, Rastrigrin,
and Rosenbrock) and multipeak
maximum power point tracking
for a photovoltaic array under

complex conditions

Better [19]

ICSO CSO and PSO +e 69-bus test distribution
system Better [20]

ICSO CSO, BCSO, AICSO, and EPCSO

Twelve test functions (sphere,
Rosenbrock, Rastrigin, Griewank,
Ackley, Step, Powell, Schwefel,

Schaffer, Zakharov’s,
Michalewicz, quartic) and five

real-life clustering problems (Iris,
Cancer, CMC, Wine, and Glass)

Better [21]

Hybrid PCSOABC PCSO and ABC Five test functions Better [22]

CSO-GA-PSOSVM CSO+ SVM (CSOSVM)
66 feature points from each face of
CK+ (Cohn Kanade) dataset Better [23]

Hybrid CSO-based
algorithm GA, EA, SA, PSO, and AFS School timetabling test instances Better [24]

Hybrid CSO-GA-
SA SLPA and CFinder

Seven datasets (Karate, Dolphin,
Polbooks, Football, Net-Science,

Power, Indian Railway)
Better [25]

MCSO CSO Nine datasets from UCI Better [26]
MCSO CSO Eight dataset Better [27]
NMCSO CSO, PSO Sixteen benchmark functions Better [28]
ICSO CSO Ten datasets from UCI Better [29]
cCSO DE, PSO, CSO 47 benchmark functions Better [30]

BBCSO

Binary particle swarm
optimization (BPSO), binary

genetic algorithm (BGA), binary
CSO

0/1 Knapsack optimization
problem Better [31]

CSO-CS N/A VRP instances from http://neo.
lcc.uma.es/vrp/ N/A [32]
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3.5. Enhanced Parallel Cat Swarm Optimization (EPCSO).
Tsai et al. further improved the PCSO Algorithm in terms of
accuracy and performance by utilizing the orthogonal array
of Taguchi method and called it enhanced parallel cat swarm
optimization (EPCSO) [13]. Taguchi methods are statistical
methods, which are invented by Japanese Engineer Genichi
Taguchi. +e idea is developed based on “ORTHOGONAL
ARRAY” experiments, which improves the engineering
productivity in thematters of cost, quality, and performance.
In their proposed algorithm, the seeking mode of EPCSO is
the same as the original CSO. However, the tracingmode has
adopted the Taguchi orthogonal array. +e aim of this is to
improve the computational cost even when the number of
agents increases. +erefore, two sets of candidate velocities
will be created in the tracing mode. +en, based on the
orthogonal array, the experiments will be run and accord-
ingly the position of cats will be updated. Orouskhani et al.
[14] added some partial modifications to EPCSO in order to
further improve it and make it fit their application. +e
modifications were changing the representation of agents
from the coordinate to a set; adding a newly defined cluster
flag; and designing custom-made fitness function.

3.6. Average-Inertia Weighted CSO (AICSO). Orouskhani
et al. introduced an inertia value to the velocity equation in
order to achieve a balance between exploration and ex-
ploitation phase. +ey experimented that (w) value is better
to be selected in the range of [0.4, 0.9] where at the beginning
of the operation, it is set to 0.9, and as the iteration number
moves forward, (w) value gradually becomes smaller until it
reaches 0.4 at the final iteration. Large values of (w) assist
global search; whereas small values of (w) assist the local
search. In addition to adding inertia value, the position
equation was also reformed to a new one, in which averages
of current and previous positions, as well as an average of
current and previous velocities, were taken in the equation
[14].

3.7. Adaptive Dynamic Cat Swarm Optimization (ADCSO).
Orouskhani et al. further enhanced the algorithm by in-
troducing three main modifications [15]. Firstly, they in-
troduced an adjustable inertia value to the velocity equation.
+is value gradually decreases as the dimension numbers
increase. +erefore, it has the largest value for dimension
one and vice versa. Secondly, they changed the constant (C)
to an adjustable value. However, opposite to the inertia
weight, it has the smallest value for dimension one and
gradually increases until the final dimension where it has the
largest value. Finally, they reformed the position equation by
taking advantage of other dimensions’ information.

3.8. Enhanced Hybrid Cat Swarm Optimization (Enhanced
HCSO). Hadi and Sabah proposed a hybrid system and
called it enhanced HCSO [16, 17]. +e goal was to decrease
the computation cost of the block matching process in video
editing. In their proposal, they utilized a fitness calculation
strategy in seeking mode of the algorithm. +e idea was to

avoid calculating some areas by deciding whether or not to
do the calculation or estimate the next search location to
move to. In addition, they also introduced the inertia weight
to the tracing mode.

3.9. Improvement Structure of Cat Swarm Optimization
(ICSO). Hadi and Sabah proposed combining two concepts
together to improve the algorithm and named it ICSO. +e
first concept is parallel tracing mode and information ex-
changing, which was taken from PCSO. +e second concept
is the addition of an inertia weight to the position equation,
which was taken from AICSO. +ey applied their algorithm
for efficient motion estimation in block matching.+eir goal
was to enhance the performance and reduce the number of
iterations without the degradation of the image quality [17].

3.10. Opposition-Based Learning-Improved CSO (OL-ICSO).
Kumar and Sahoo first proposed using Cauchy mutation
operator to improve the exploration phase of the CSO al-
gorithm in [34]. +en, they introduced two more modifi-
cations to further improve the algorithm and named it
opposition-based learning-improved CSO (OL-ICSO). +ey
improved the population diversity of the algorithm by
adopting opposition-based learning method. Finally, two
heuristic mechanisms (for both seeking and tracing mode)
were introduced. +e goal of introducing these two mech-
anisms was to improve the diverse nature of the populations
and prevent the possibility of falling the algorithm into the
local optima when the solution lies near the boundary of the
datasets and data vectors cross the boundary constraints
frequently [18].

3.11. Chaos Quantum-Behaved Cat Swarm Optimization
(CQCSO). Nie et al. improved the CSO algorithm in terms
of accuracy and avoiding local optima trapping. +ey first
introduced quantum-behaved cat swarm optimization
(QCSO), which combined the CSO algorithm with quantum
mechanics. Hence, the accuracy was improved and the al-
gorithm avoided trapping in the local optima. Next, by
incorporating a tent map technique, they proposed chaos
quantum-behaved cat swarm optimization (CQCSO) algo-
rithm. +e idea of adding the tent map was to further
improve the algorithm and again let the algorithm to jump
out of the possible local optima points it might fall into [19].

3.12. Improved Cat Swarm Optimization (ICSO). In the
original algorithm, cats are randomly selected to either go
into seeking mode or tracing mode using a parameter called
MR. However, Kanwar et al. changed the seeking mode by
forcing the current best cat in each iteration to move to the
seeking mode. Moreover, in their problem domain, the
decision variables are firm integers while solutions in the
original cat are continuous. +erefore, from selecting the
best cat, two more cats are produced by flooring and ceiling
its value. After that, all probable combinations of cats are
produced from these two cats [20].
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3.13. ImprovedCat SwarmOptimization (ICSO). Kumar and
Singh made two modifications to the improved CSO algo-
rithm and called it ICSO [21]. +ey first improved the
tracing mode by modifying the velocity and updating po-
sition equations. In the velocity equation, a random uni-
formly distributed vector and two adaptive parameters were
added to tune global and local search movements. Secondly,
a local search method was combined with the algorithm to
prevent local optima problem.

3.14.Hybrid PCSOABC. Tsai et al. proposed a hybrid system
by combining PCSO with ABC algorithms and named is
hybrid PCSOABC [22]. +e structure simply included
running PCSO and ABC consecutively. Since PCSO per-
forms faster with a small population size, the algorithm first
starts with a small population and runs PCSO. After a
predefined number of iterations, the population size will be
increased and the ABC algorithm starts running. Since the
proposed algorithm was simple and did not have any ad-
justable feedback parameters, it sometimes provided worse
solutions than PCSO. Nevertheless, its convergence was
faster than PCSO.

3.15. CSO-GA-PSOSVM. Vivek and Reddy proposed a new
method by combining CSO with particle swarm intelligence
(PSO), genetic algorithm (GA), and support vector machine
(SVM) and called it CSO-GA-PSOSVM [23]. In their
method, they adopted the GA mutation operator into the
seeking mode of CSO in order to obtain divergence. In
addition, they adopted all GA operators as well as PSO
subtraction and addition operators into the tracing mode of
CSO in order to obtain convergence. +is hybrid meta-
heuristic system was then incorporated with the SVM
classifier and applied on facial emotion recognition.

3.16.HybridCSO-BasedAlgorithm. Skoullis et al. introduced
three modifications to the algorithm [24]. Firstly, they
combined CSO with a local search refining procedure.
Secondly, if the current cat is compared with the global best
cat and their fitness values were the same, the global best cat
will still be updated by the current cat. +e aim of this is to
achieve more diversity. Finally, cats are individually selected
to go into either seeking mode or tracing mode.

3.17. Hybrid CSO-GA-SA. Sarswat et al. also proposed a
hybrid system by combining CSO, GA, and SA and then
incorporating it with a modularity-based method [25]. +ey
named their algorithm hybrid CSO-GA-SA.+e structure of
the system was very simple and straight forward as it was
composed of a sequential combination of CSO, GA, and SA.
+ey applied the system to detect overlapping community
structures and find near-optimal disjoint communities.
+erefore, input datasets were firstly fed into CSO algorithm
for a predefined number of iterations. +e resulted cats were
then converted into chromosomes and henceforth GA was
applied on them. However, GA may fall into local optima,
and to solve this issue, SA was applied afterward.

3.18. Modified Cat Swarm Optimization (MCSO). Lin et al.
combined a mutation operator as a local search procedure
with CSO algorithm to find better solutions in the area of the
global best [26]. It is then used to optimize the feature se-
lection and parameters of the support vector machine.
Additionally, Mohapatra et al. used the idea of using mu-
tation operation before distributing the cats into seeking or
tracing modes [27].

3.19. Normal Mutation Strategy-Based Cat Swarm Optimi-
zation (NMCSO). Pappula et al. adopted a normal mutation
technique to CSO algorithm in order to improve the ex-
ploration phase of the algorithm. +ey used sixteen
benchmark functions to evaluate their proposed algorithm
against CSO and PSO algorithms [28].

3.20. Improved Cat Swarm Optimization (ICSO). Lin et al.
improved the seeking mode of CSO algorithm. Firstly, they
used crossover operation to generate candidate positions.
Secondly, they changed the value of the new position so that
SRD value and current position have no correlations [29]. It
is worth mentioning that there are four versions of CSO
referenced in [17, 20, 21, 29], all having the same name
(ICSO). However, their structures are different.

3.21. Compact Cat Swarm Optimization (CCSO). Zhao in-
troduced a compact version of the CSO algorithm. A dif-
ferential operator was used in the seeking mode of the
proposed algorithm to replace the original mutation ap-
proach. In addition, a normal probability model was used in
order to generate new individuals and denote a population
of solutions [30].

3.22. Boolean Binary Cat Swarm Optimization (BBCSO).
Siqueira et al. worked on simplifying the binary version of
CSO in order to increase its efficiency. +ey reduced the
number of equations, replaced the continues operators with
logic gates, and finally integrated the roulette wheel ap-
proach with the MR parameter [31].

3.23.HybridCat SwarmOptimization-CrowSearch (CSO-CS)
Algorithm. Pratiwi proposed a hybrid system by combining
CSO algorithm with crow search (CS) algorithm. +e al-
gorithm first runs CSO algorithm followed by the memory
update technique of the CS algorithm and then new posi-
tions will be generated. She applied her algorithm on vehicle
routing problem [32].

4. CSO and its Variants with Artificial
Neural Networks

Artificial neural networks are computing systems, which
have countless numbers of applications in various fields.
Earlier neural networks were used to be trained by con-
ventional methods, such as the backpropagation algorithm.
However, current neural networks are trained by nature-
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inspired optimization algorithms. +e training could be
optimizing the node weights or even the network archi-
tectures [35]. CSO has also been extensively combined with
neural networks in order to be applied in different appli-
cation areas. +is section briefly goes over those works, in
which CSO is hybridized with ANN and similar methods.

4.1. CSO+ANN+OBD. Yusiong proposes combining ANN
with CSO algorithm and optimal brain damage (OBD)
approach. Firstly, the CSO algorithm is used as an opti-
mization technique to train the ANN algorithm. Secondly,
OBD is used as a pruning algorithm to decrease the com-
plexity of ANN structure where less number of connections
has been used. As a result, an artificial neural network was
obtained that had less training errors and high classification
accuracy [36].

4.2. ADCSO+GD+ANFIS. Orouskhani et al. combined
ADCSO algorithm with gradient descent (GD) algorithm in
order to tweak parameters of the adaptive network-based
fuzzy inference system (ANFIS). In their method, the an-
tecedent and consequent parameters of ANFIS were trained
by CSO algorithm and GD algorithm consecutively [37].

4.3. CSO+ SVM. Abed and Al-Asadi proposed a hybrid
system based on SVM and CSO. +e system was applied to
electrocardiograms signals classification. +ey used CSO for
the purpose of feature selection optimization and enhancing
SVM parameters [38]. In addition, Lin et al. and Wang and
Wu [39, 40] also combined CSO with SVM and applied it to
a classroom response system.

4.4. CSO+WNN. Nanda proposed a hybrid system by
combining wavelet neural network (WNN) and CSO al-
gorithm. In their proposal, the CSO algorithm was used to
train the weights of WNN in order to obtain the near-op-
timal weights [41].

4.5. BCSO+ SVM. Mohamadeen et al. built a classification
model based on BCSO and SVM and then applied it in a
power system. +e use of BCSO was to optimize SVM
parameters [42].

4.6. CCSO+ANN. Wang et al. proposed designing an ANN
that can handle randomness, fuzziness, and accumulative
time effect in time series concurrently. In their work, the
CSO algorithm was used to optimize the network structure
and learning parameters at the same time [43].

4.7. CSO/PSO+ANN. Chittineni et al. used CSO and PSO
algorithms to train ANN and then applied their method on
stock market prediction. +eir comparison results showed
that CSO algorithm performed better than the PSO algo-
rithm [44].

4.8. CS-FLANN. Kumar et al. combined the CSO algorithm
with functional link artificial neural network (FLANN) to
develop an evolutionary filter to remove Gaussian noise [45].

5. Applications of CSO

+is section presents the applications of CSO algorithm,
which are categorized into seven groups, namely, electrical
engineering, computer vision, signal processing, system
management and combinatorial optimization, wireless and
WSN, petroleum engineering, and civil engineering. A
summary of the purposes and results of these applications is
provided in Table 2.

5.1. Electrical Engineering. CSO algorithm has been exten-
sively applied in the electrical engineering field. Hwang et al.
applied both CSO and PSO algorithms on an electrical
payment system in order to minimize electricity costs for
customers. Results indicated that CSO is more efficient and
faster than PSO in finding the global best solution [46].
Economic load dispatch (ELD) and unit commitment (UC)
are significant applications, in which the goal is to reduce the
total cost of fuel is a power system. Hwang et al. applied the
CSO algorithm on economic load dispatch (ELD) of wind
and thermal generators [47]. Faraji et al. also proposed
applying binary cat swarm optimization (BCSO) algorithm
on UC and obtained better results compared to the previous
approaches [48]. UPFC stands for unified power flow
controller, which is an electrical device used in transmission
systems to control both active and reactive power flows.
Kumar and Kalavathi used CSO algorithm to optimize
UPFC in order to improve the stability of the system [49].
Lenin and Reddy also applied ADCSO on reactive power
dispatch problemwith the aim tominimize active power loss
[50]. Improving available transfer capability (ATC) is very
significant in electrical engineering. Nireekshana et al. used
CSO algorithm to regulate the position and control pa-
rameters of SVC and TCSC with the aim of maximizing
power transfer transactions during normal and contingency
cases [51]. +e function of the transformers is to deliver
electricity to consumers. Determining how reliable these
transformers are in a power system is essential. Moha-
madeen et al. proposed a classification model to classify the
transformers according to their reliability status [42]. +e
model was built based on BCSO incorporation with SVM.
+e results are then compared with a similar model based on
BPSO. It is shown that BCSO is more efficient in optimizing
the SVM parameters. Wang et al. proposed designing an
ANN that can handle randomness, fuzziness, and accu-
mulative time effect in time series concurrently [43]. In their
work, the CSO algorithm has been used to optimize the
network structure and learning parameters at the same time.
+en, the model was applied to two applications, which were
individual household electric power consumption fore-
casting and Alkaline-surfactant-polymer (ASP) flooding oil
recovery index forecasting in oilfield development. +e
current source inverter (CSI) is a conventional kind of power
inverter topologies. Hosseinnia and Farsadi combined
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Table 2: +e purposes and results of using CSO algorithm in various applications.

Purpose Results Ref.
CSO applied on electrical payment system in order to
minimize electricity cost for customers CSO outperformed PSO [46]

CSO applied on economic load dispatch (ELD) of
wind and thermal generator CSO outperformed PSO [47]

BCSO applied on unit commitment (UC) CSO outperformed LR, ICGA, BF, MILP, ICA, and
SFLA [48]

Applied CSO algorithm on UPFC to increase the
stability of the system

IEEE 6-bus and 14-bus networks were used in the
simulation experiments and desirable results were

achieved
[49]

Applied ADCSO on reactive power dispatch problem
to minimize active power loss

IEEE 57-bus system was used in the simulation
experiments, in which ADCSO outperformed 16

other optimization algorithms
[50]

Applied CSO algorithm to regulate the position and
control parameters of SVC and TCSC to improve
available transfer capability (ATC)

IEEE 14-bus and IEEE 24-bus systems were used in
the simulation experiments, in which the system

provided better results after adopting CSO
[51]

Building a classification model based on BCSO and
SVM to classify the transformers according to their
reliability status.

+e model performed better compared to a similar
model, which was based on BPSO and VSM [42]

Applied CSO to optimize the network structure and
learning parameters of an ANN model named
CPNN-CSO, which is used to predict household
electric power consumption

CPNN-CSO outperformed ANFIS and similar
methods with no CSO such as PNN and CPNN [43]

Applied CSO and selective harmonic elimination
(SHE) algorithm on current source inverter (CSI)

CSO successfully optimized the switching parameters
of CSI and hence minimized the total harmonic

distortion
[52]

Applied both CSO, PCSO, PSO-CFA, and ACO-ABC
on distributed generation units on distribution
networks

IEEE 33-bus and IEEE 69-bus distribution systems
were used in the simulation experiments and CSO

outperformed the other algorithms
[53]

AppliedMCSO onMPPTto achieve global maximum
power point (GMPP) tracking

MCSO outperformed PSO, MPSO, DE, GA, and HC
algorithms [54]

Applied BCSO to optimize the location of phasor
measurement units and reduce the required number
of PMUs

IEEE 14-bus and IEEE 30-bus test systems were used
in the simulation. BCSO outperformed BPSO,

generalized integer linear programming, and effective
data structure-based algorithm

[55]

Used CSO algorithm to identify the parameters of
single and double diode models in solar cell system

CSO outperformed PSO, GA, SA, PS, Newton, HS,
GGHS, IGHS, ABSO, DE, and LMSA [56]

Applied CSO and SVM to classify students’ facial
expression

+e results show 100% classification accuracy for the
selected 9 face expressions [39]

Applied CSO and SVM to classify students’ facial
expression +e system achieved satisfactory results [40]

Applied CSO-GA-PSOSVM to classify students’
facial expression +e system achieved 99% classification accuracy [23]

Applied CSO, HCSO and ICSO in block matching for
efficient motion estimation

+e system reduced computational complexity and
provided faster convergence [16, 17, 57]

Used CSO algorithm to retrieve watermarks similar
to the original copy

CSO outperformed PSO and PSO time-varying
inertia weight factor algorithms [58, 59]

Sabah used EHCSO in an object-tracking system to
obtain further efficiency and accuracy

+e system yielded desirable results in terms of
efficiency and accuracy [60]

Used BCSO as a band selection method for
hyperspectral images BCSO outperformed PSO [61]

Used CSO and multilevel thresholding for image
segmentation CSO outperformed PSO [62]

Used CSO and multilevel thresholding for image
segmentation PSO outperformed CSO [63]

Used CSO, ANN and wavelet entropy to build an
AUD identification system. CSO outperformed GA, IGA, PSO, and CSPSO [64]

Used CSO and FLANN to remove the unwanted
Gaussian noises from CT images

+e proposed system outperformed mean filter and
adaptive Wiener filter. [45]

Used CSO with L-BFGS-B technique to register
nonrigid multimodal images +e system yielded satisfactory results [65]

Used CSO in image enhancement to optimize
parameters of the histogram stretching technique PSO outperformed CSO [66]

Used CSO algorithm for IIR system identification CSO outperformed GA and PSO [67]
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Table 2: Continued.

Purpose Results Ref.
Applied CSO to do direct and inverse modeling of
linear and nonlinear plants CSO outperformed GA and PSO [68]

Used CSO and SVM for electrocardiograms signal
classification

Optimizing SVM parameters using CSO improved
the system in terms of accuracy [38]

Applied CSO to increase reliability in a task allocation
system CSO outperformed GA and PSO [69, 70]

Applied CSO on JSSP
+e benchmark instances were taken from OR-

Library. CSO yielded desirable results compared to
the best recorded results in the dataset reference.

[71]

Applied BCSO on JSSP ACO outperformed CSO and cuckoo search
algorithms [72]

Applied CSO on FSSP
Carlier, Heller, and Reeves benchmark instances were
used, CSO can solve problems of up to 50 jobs

accurately
[73]

Applied CSO on OSSP CSO performs better than six metaheuristic
algorithms in the literature. [74]

Applied CSO on JSSP CSO performs better than some conventional
algorithms in terms of accuracy and speed. [75]

Applied CSO on bag-of-tasks and workflow
scheduling problems in cloud systems

CSO performs better than PSO and two other
heuristic algorithms [76]

Applied CSO on TSP and QAP

+e benchmark instances were taken from TSPLIB
and QAPLIB. +e results show that CSO

outperformed the best results recorded in those
dataset references.

[77]

Comparison between CSO, cuckoo search, and bat-
inspired algorithm to solve TSP problem

+e benchmark instances are taken from STPLIB.+e
results show that CSO falls behind the other

algorithms
[78]

Applied CSO and MCSO on workflow scheduling in
cloud systems CSO performs better than PSO [79]

Applied BCSO on workflow scheduling in cloud
systems BCSO performs better than PSO and BPSO [80]

Applied BCSO on SCP BCSO performs better than ABC [81]

Applied BCSO on SCP BCSO performs better than binary teaching-learning-
based optimization (BTLBO) [82, 83]

Used a CSO as a clustering mechanism in web
services. CSO performs better than K-means [84]

Applied hybrid CSO-GA-SA to find the overlapping
community structures.

Very good results were achieved. Silhouette
coefficient was used to verify these results in which

was between 0.7 and 0.9
[25]

Used CSO to optimize the network structures for
pinning control CSO outperformed a number of heuristic methods [85]

Applied CSO with local search refining procedure to
address high school timetabling problem

CSO outperformed genetic algorithm (GA),
evolutionary algorithm (EA), simulated annealing
(SA), particle swarm optimization (PSO) and

artificial fish swarm (AFS).

[24]

BCSO with dynamic mixture ratios to address the
manufacturing cell design problem

BCSO can effectively tackle the MCDP problem
regardless of the scale of the problem [86]

Used CSO to find the optimal reservoir operation in
water resource management CSO outperformed GA [87]

Applied CSO to classify the the feasibility of small
loans in banking systems

CSO resulted in 76% of accuracy in comparison to
64% resulted from OLR procedure. [88]

Used CSO, AEM and RPT to build a groundwater
management systems

CSO outperformed a number of metaheuristic
algorithms in addressing groundwater management

problem
[89]

Applied CSO to solve the multidocument
summarization problem CSO outperformed harmonic search (HS) and PSO [90]

Used CSO and (RPCM) to address groundwater
resource management CSO outperformed a similar model based on PSO [91]

Applied CSO-CS to solve VRPTW

CSO-CS successfully solves the VRPTW problem.
+e results show that the algorithm convergences
faster by increasing population and decreasing cdc

parameter.

[32]
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selective harmonic elimination (SHE) in corporation with
CSO algorithm and then applied it on current source in-
verter (CSI) [52]. +e role of the CSO algorithm was to
optimize and tune the switching parameters and minimize
total harmonic distortion. El-Ela et al. [53] used CSO and
PCSO to find the optimal place and size of distributed
generation units on distribution networks. Guo et al. [54]
used MCSO algorithm to propose a novel maximum power
point tracking (MPPT) approach to obtain global maximum
power point (GMPP) tracking. Srivastava et al. used BCSO
algorithm to optimize the location of phasor measurement
units and reduce the required number of PMUs [55]. Guo
et al. used CSO algorithm to identify the parameters of single
and double diode models in solar cell models [56].

5.2. Computer Vision. Facial emotion recognition is a bio-
metric approach to identify human emotion and classify
them accordingly. Lin et al. and Wang and Wu [39, 40]
proposed a classroom response system by combining the
CSO algorithm with support vector machine to classify
student’s facial expressions. Vivek and Reddy also used
CSO-GA-PSOSVM algorithm for the same purpose [23].

Block matching in video processing is computationally
expensive and time consuming. Hadi and Sabah used CSO
algorithm in block matching for efficient motion estimation
[57]. +e aim was to decrease the number of positions that
needs to be calculated within the search window during the
block matching process, i.e., to enhance the performance
and reduce the number of iterations without the degradation
of the image quality. +e authors further improved their
work and achieved better results by replacing the CSO al-
gorithm with HCSO and ICSO in [16, 17], respectively.
Kalaiselvan et al. and Lavanya and Natarajan [58, 59] used
CSO Algorithm to retrieve watermarks similar to the
original copy. In video processing, object tracking is the
process of determining the position of a moving object over
time using a camera. Hadi and Sabah used EHCSO in an
object-tracking system for further enhancement in terms of
efficiency and accuracy [60]. Yan et al. used BCSO as a band
selection method for hyperspectral images [61]. In computer
vision, image segmentation refers to the process of dividing
an image into multiple parts. Ansar and Bhattacharya and
Karakoyun et al. [62, 63] proposed using CSO algorithm
incorporation with the concept of multilevel thresholding
for image segmentation purposes. Zhang et al. combined

Table 2: Continued.

Purpose Results Ref.
Applied CSO and K-median to detect overlapping
community in social networks

CSO and K-median provides better modularity than
similar models based on PSO and BAT algorithm [92]

Applied MOCSO, fitness sharing, and fuzzy
mechanism on CR design

MOCSO outperformed MOPSO, NSGA-II and
MOBFO [93, 94]

Applied CSO and five other metaheuristic algorithms
to design a CR engine

CSO outperformed the GA, PSO, DE, BFO and ABC
algorithms [95]

Applied EPCSO on WSN to be used as a routing
algorithm

EPCSO outperformed AODV, a ladder diffusion
using ACO and a ladder diffusion using CSO. [33]

Applied CSO on WSN in order to solve optimal
power allocation problem

PSO is marginally better for small networks.
However, CSO outperformed PSO and cuckoo search

algorithm
[96]

Applied CSO on WSN to optimize cluster head
selection

+e proposed system outperformed the existing
systems by 75%. [97]

Applied CSO on CR based smart grid
communication network to optimize channel
allocation

+e proposed system obtains desirable results for
both fairness-based and priority-based cases [98]

Applied CSO in WSN to detect optimal location of
sink nodes

CSO outperformed PSO in reducing total power
consumption. [99, 100]

Applied CSO on time modulated concentric circular
antenna array to minimize the sidelobe level of
antenna arrays and enhance the directivity

CSO outperformed RGA, PSO and DE algorithms [101]

Applied CSO to optimize the radiation pattern
controlling parameters for linear antenna arrays.

CSO successfully tunes the parameters and provides
optimal designs of linear antenna arrays. [102]

Applied Cauchy mutated CSO to make linear
aperiodic arrays, where the goal was to reduce
sidelobe level and control the null positions

+e proposed system outperformed both CSO and
PSO [103]

Applied CSO and analytical formula-based objective
function to optimize well placements CSO outperformed DE algorithm [104]

Applied CSO to optimize well placements
considering oilfield constraints during development. CSO outperformed GA and DE algorithms [105]

CSO applied to optimize the network structure and
learning parameters of an ANN model, which is used
to predict an ASP flooding oil recovery index

+e system successfully forecast the ASP flooding oil
recovery index [42]

Applied CSO to build an identification model to
detect early cracks in beam type structures

CSO yields a desirable accuracy in detecting early
cracks [106]
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wavelet entropy, ANN, and CSO algorithm to develop an
alcohol use disorder (AUD) identification system [64].
Kumar et al. combined the CSO algorithm with functional
link artificial neural network (FLANN) to remove the un-
wanted Gaussian noises from CT images [45]. Yang et al.
combined CSO with L-BFGS-B technique to register non-
rigid multimodal images [65]. Çam employed CSO algo-
rithm to tune the parameters in the histogram stretching
technique for the purpose of image enhancement [66].

5.3. Signal Processing. IIR filter stands for infinite impulse
response. It is a discrete-time filter, which has applications in
signal processing and communication. Panda et al. used
CSO algorithm for IIR system identification [67]. +e au-
thors also applied CSO algorithm as an optimization
mechanism to do direct and inverse modeling of linear and
nonlinear plants [68]. Al-Asadi combined CSO Algorithm
with SVM for electrocardiograms signal classification [38].

5.4. System Management and Combinatorial Optimization.
In parallel computing, optimal task allocation is a key
challenge. Shojaee et al. [69, 70] proposed using CSO al-
gorithm to maximize system reliability. +ere are three basic
scheduling problems, namely, open shop, job shop, and flow
shop. +ese problems are classified as NP-hard and have
many real-world applications. +ey coordinate assigning
jobs to resources at particular times, where the objective is to
minimize time consumption. However, their difference is
mainly in having ordering constraints on operations.
Bouzidi and Riffi applied the BCSO algorithm on job
scheduling problem (JSSP) in [71]. +ey also made a
comparative study between CSO and two other meta-
heuristic algorithms, namely, cuckoo search (CS) algorithm
and the ant colony optimization (ACO) for JSSP in [72].
+en, they used the CSO algorithm to solve flow shop
scheduling (FSSP) [73] and open shop scheduling problems
(OSSP) as well [74]. Moreover, Dani et al. also applied CSO
algorithm on JSSP in which they used a nonconventional
approach to represent cat positions [75]. Maurya and Tri-
pathi also applied CSO algorithm on bag-of-tasks and
workflow scheduling problems in cloud systems [76].
Bouzidi and Riffi applied CSO algorithm on the traveling
salesman problem (TSP) and the quadratic assignment
problem (QAP), which are two combinatorial optimization
problems [77]. Bouzidi et al. also made a comparative study
between CSO algorithm, cuckoo search algorithm, and bat-
inspired algorithm for addressing TSP [78]. In cloud
computing, minimizing the total execution cost while al-
locating tasks to processing resources is a key problem.
Bilgaiyan et al. applied CSO and MCSO algorithms on
workflow scheduling in cloud systems [79]. In addition,
Kumar et al. also applied BCSO on workflow scheduling in
cloud systems [80]. Set cover problem (SCP) is considered as
an NP-complete problem. Crawford et al. successfully ap-
plied the BCSO Algorithm to this problem [81].+ey further
improved this work by using Binarization techniques and
selecting different parameters for each test example sets
[82, 83]. Web services provide a standardized

communication between applications over the web which
have many important applications. However, discovering
appropriate web services for a given task is challenging.
Kotekar and Kamath used a CSO-based approach as a
clustering algorithm to group service documents according
to their functionality similarities [84]. Sarswat et al. applied
Hybrid CSO-GA-SA to detect the overlapping community
structures and find the near-optimal disjoint communities
[25]. Optimizing the problem of controlling complex net-
work systems is critical in many areas of science and en-
gineering. Orouskhani et al. applied CSO algorithm to
address a number of problems in optimal pinning con-
trollability and thus optimized the network structure [85].
Skoullis et al. combined the CSO algorithm with local search
refining procedure and applied it on high school timetabling
problem [24]. Soto et al. combined BCSO with dynamic
mixture ratios to organize the cells in manufacturing cell
design problem [86]. Bahrami et al. applied a CSO algorithm
on water resource management where the algorithm was
used to find the optimal reservoir operation [87]. Kencana
et al. used CSO algorithm to classify the feasibility of small
loans in banking systems [88]. Majumder and Eldho
combined the CSO algorithm with the analytic element
method (AEM) and reverse particle tracking (RPT) to model
novel groundwater management systems [89]. Rautray and
Balabantaray used CSO algorithm to solve the multidocu-
ment summarization problem [90]. +omas et al. combined
radial point collocation meshfree (RPCM) approach with
CSO algorithm to be used in the groundwater resource
management [91]. Pratiwi created a hybrid system by
combining the CSO algorithm and crow search (CS) algo-
rithm and then used it to address the vehicle routing
problem with time windows (VRPTW) [32]. Naem et al.
proposed a modularity-based system by combining the CSO
algorithm with K-median clustering technique to detect
overlapping community in social networks [92].

5.5. Wireless and WSN. +e ever-growing wireless devices
push researchers to use electromagnetic spectrum bands
more wisely. Cognitive radio (CR) is an effective dynamic
spectrum allocation in which spectrums are dynamically
assigned based on a specific time or location. Pradhan and
Panda in [93, 94] combined MOCSO with fitness sharing
and fuzzy mechanism and applied it on CR design.+ey also
conducted a comparative analysis and proposed a gener-
alized method to design a CR engine based on six evolu-
tionary algorithms [95]. Wireless sensor network (WSN)
refers to a group of nodes (wireless sensors) that form a
network to monitor physical or environmental conditions.
+e gathered data need to be forwarded among the nodes
and each node requires having a routing path. Kong et al.
proposed applying enhanced parallel cat swarm optimiza-
tion (EPCSO) algorithm in this area as a routing algorithm
[33]. Another concern in the context of WSN is minimizing
the total power consumption while satisfying the perfor-
mance criteria. So, Tsiflikiotis and Goudos addressed this
problem which is known as optimal power allocation
problem, and for that, three metaheuristic algorithms were
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presented and compared [96]. Moreover, Pushpalatha and
Kousalya applied CSO in WSN for optimizing cluster head
selection which helps in energy saving and available
bandwidth [97]. Alam et al. also applied CSO algorithm in a
clustering-based method to handle channel allocation (CA)
issue between secondary users with respect to practical
constraints in the smart grid environment [98].+e authors
of [99, 100] used the CSO algorithm to find the optimal
location of sink nodes in WSN. Ram et al. applied CSO
algorithm to minimize the sidelobe level of antenna arrays
and enhance the directivity [101]. Ram et al. used CSO to
optimize controlling parameters of linear antenna arrays
and produce optimal designs [102]. Pappula and Ghosh
also used Cauchy mutated CSO to make linear aperiodic
arrays, where the goal was to reduce sidelobe level and
control the null positions [103].

5.6. Petroleum Engineering. CSO algorithm has also been
applied in the petroleum engineering field. For example, it
was used as a good placement optimization approach by
Chen et al. in [104, 105]. Furthermore, Wang et al. used CSO
algorithm as an ASP flooding oil recovery index forecasting
approach [43].

5.7. Civil Engineering. Ghadim et al. used CSO algorithm to
create an identification model that detects early cracks in
building structures [106].

6. Performance Evaluation

Many variants and applications of CSO algorithm were
discussed in the above sections. However, benchmarking
these versions and conducting a comparative analysis be-
tween them were not feasible in this work. +is is because:
firstly, their source codes were not available. Secondly,
different test functions or datasets have been used during
their experiments. In addition, since the emergence of CSO
algorithm, many novel and powerful metaheuristic algo-
rithms have been introduced. However, the literature lacks a
comparative study between CSO algorithm and these new
algorithms. +erefore, we conducted an experiment, in

which the original CSO algorithm was compared against
three new and robust algorithms, which were dragonfly
algorithm (DA) [6], butterfly optimization algorithm (BOA)
[7], and fitness dependent optimizer (FDO) [8]. For this, 23
traditional and 10 modern benchmark functions were used
(see Figure 3), which illustrates the general framework for
conducting the performance evaluation process. It is worth
mentioning that for four test functions, BOA returned
imaginary numbers and we set “N/A” for them.

6.1. Traditional Benchmark Functions. +is group includes
the unimodal and multimodal test functions. Unimodal test
functions contain one single optimumwhile multimodal test
functions contain multiple local optima and usually a single
global optimum. F1 to F7 are unimodal test functions
(Table 3), which are employed to experiment with the global
search capability of the algorithms. Furthermore, F8 to F23
are multimodal test functions, which are employed to ex-
periment with the local search capability of the algorithms.
Refer to [107] for the detailed description of unimodal and
multimodal functions.

6.2. Modern Benchmark Functions (CEC 2019). +ese set of
benchmark functions, also called composite benchmark
functions, are complex and difficult to solve. +e CEC01 to
CEC10 functions as shown in Table 3 are of these types,
which are shifted, rotated, expanded, and combined versions
of traditional benchmark functions. Refer to [108] for the
detailed description of modern benchmark functions.

+e comparison results for CSO and other algorithms
are given in Table 3 in the form of mean and standard
deviations. For each test function, the algorithms are exe-
cuted for 30 independent runs. For each run, 30 search
agents were searching over the course of 500 iterations.
Parameter settings are set as defaults for all algorithms, and
nothing was changed.

It can be noticed fromTable 3 that the CSO algorithm is a
competitive algorithm for the modern ones and provides
very satisfactory results. In order to perceive the overall
performance of the algorithms, they are ranked as shown in
Table 4 according to different benchmark function groups. It

CSO and its 
competitive 
algorithms

Classical and modern 
benchmark functions

Ranking 
(Friedman test)

Wilcoxon matched-pairs 
signed-rank test

(confirm the results)

Default control parameters
30 independent runs
30 search agents
500 iterations

(i)
(ii)

(iii)
(iv)

Figure 3: General framework of the performance evaluation process.

Computational Intelligence and Neuroscience 13



Table 3: Comparison results of CSO algorithm with modern metaheuristic algorithms.

CSO DA BOA FDO
fminFunctions AV STD AV STD AV STD AV STD

F1 3.50E − 14 6.34E − 14 15.24805 23.78914 1.01E − 11 1.66E − 12 2.13E − 23 1.06E − 22 0
F2 2.68E − 08 2.61E − 08 1.458012 0.869819 4.65E − 09 4.63E − 10 0.047175 0.188922 0
F3 7.17E − 09 1.16E − 08 136.259 151.9406 1.08E − 11 1.71E − 12 2.39E − 06 1.28E − 05 0
F4 0.010352 0.007956 3.262584 2.112636 5.25E − 09 5.53E − 10 4.93E − 08 9.09E − 08 0
F5 8.587858 0.598892 374.9048 691.5889 8.935518 0.02146 21.58376 39.66721 0
F6 1.151759 0.431511 12.07847 17.97414 1.04685 0.346543 7.15E − 22 2.80E − 21 0
F7 0.026026 0.015039 0.035679 0.023538 0.001513 0.00056 0.612389 0.299315 0
F8 − 2855.11 359.1697 − 2814.14 432.944 NA NA − 10502.1 15188.77 − 418.9829× 5
F9 24.01772 6.480946 26.53478 11.20011 28.6796 20.17813 7.940883 4.110302 0
F10 3.754226 1.680534 2.827344 1.042434 3.00E − 09 1.16E − 09 7.76E − 15 2.46E − 15 0
F11 0.355631 0.19145 0.680359 0.353454 1.35E − 13 6.27E − 14 0.175694 0.148586 0
F12 1.900773 1.379549 2.083215 1.436402 0.130733 0.084891 7.737715 4.714534 0
F13 1.160662 0.53832 1.072302 1.327413 0.451355 0.138253 4.724571 6.448214 0
F14 0.998004 3.39E − 07 1.064272 0.252193 1.52699 0.841504 2.448453 1.766953 1
F15 0.001079 0.00117 0.005567 0.012211 0.000427 9.87E − 05 0.001492 0.003609 0.00030
F16 − 1.03162 1.53E − 05 − 1.03163 4.76E − 07 NA NA − 1.00442 0.149011 − 1.0316
F17 0.304253 1.81E − 06 0.304251 0 0.310807 0.004984 0.397887 5.17E − 15 0.398
F18 3.003667 0.004338 3.000003 1.22E − 05 3.126995 0.211554 3 2.37E − 07 3
F19 − 3.8625 0.00063 − 3.86262 0.00037 NA NA − 3.86015 0.003777 − 3.86
F20 − 3.30564 0.045254 − 3.25226 0.069341 NA NA − 3.06154 0.380813 − 3.32
F21 − 9.88163 0.90859 − 7.28362 2.790655 − 4.44409 0.383552 − 4.19074 2.664305 − 10.1532
F22 − 10.2995 0.094999 − 8.37454 2.726577 − 4.1496 0.715469 − 4.89633 3.085016 − 10.4028
F23 − 10.0356 1.375583 − 6.40669 2.892797 − 4.12367 0.859409 − 4.03276 2.517357 − 10.5363
CEC01 1.58E+ 09 1.71E+ 09 3.8E+ 10 4.03E+ 10 58930.69 11445.72 4585.278 20707.63 1
CEC02 19.70367 0.580672 83.73248 100.1326 18.91597 0.291311 4 3.28E − 09 1
CEC03 13.70241 2.35E − 06 13.70263 0.000673 13.70321 0.000617 13.7024 1.68E − 11 1
CEC04 179.1984 55.37322 371.2471 420.2062 20941.5 7707.688 33.08378 16.81143 1
CEC05 2.671378 0.171923 2.571134 0.304055 6.176949 0.708134 2.13924 0.087218 1
CEC06 11.21251 0.708359 10.34469 1.335367 11.83069 0.771166 12.13326 0.610499 1
CEC07 365.2358 164.997 534.3862 240.0417 1043.895 215.3575 120.4858 13.82608 1
CEC08 5.499615 0.484645 5.86374 0.51577 6.337199 0.359203 6.102152 0.769938 1
CEC09 6.325862 1.295848 8.501541 16.90603 2270.616 811.4442 2 2.00E − 10 1
CEC10 21.36829 0.06897 21.29284 0.176811 21.4936 0.079492 2.718282 4.52E − 16 1

Table 4: Ranking of CSO algorithm compared to the modern metaheuristic algorithms.

Test functions Ranking of CSO Ranking of DA Ranking of BOA Ranking of FDO
F1 2 4 3 1
F2 2 4 1 3
F3 2 4 1 3
F4 3 4 1 2
F5 1 4 2 3
F6 3 4 2 1
F7 2 3 1 4
F8 2 3 4 1
F9 2 3 4 1
F10 4 3 2 1
F11 3 4 1 2
F12 2 3 1 4
F13 3 2 1 4
F14 1 2 3 4
F15 2 4 1 3
F16 1 2 4 3
F17 3 4 2 1
F18 3 2 4 1
F19 2 3 4 1
F20 1 2 4 3
F21 1 2 3 4
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can be seen that CSO ranks first in the overall ranking and
multimodal test functions. Additionally, it ranks second in
unimodal and CEC test functions (see Figure 4). +ese
results indicate the effectiveness and robustness of the CSO
algorithm. +at being said, these results need to be con-
firmed statistically. Table 5 presents the Wilcoxon matched-
pairs signed-rank test for all test functions. In more than
85% of the results, P value is less than 0.05%, which proves
that the results are significant and we can reject the null
hypothesis that there is no difference between the means. It
is worth mentioning that the performance of CSO can be
further evaluated by comparing it against other new algo-
rithms such as donkey and smuggler optimization algorithm
[109], modified grey wolf optimizer [110], BSA and its

variants [111], WOA and its variants [112], and other
modified versions of DA [113].

7. Conclusion and Future Directions

Cat swarm optimization (CSO) is a metaheuristic optimi-
zation algorithm proposed originally by Chu et al. [5] in
2006. Henceforward, many modified versions and applica-
tions of it have been introduced. However, the literature
lacks a detailed survey in this regard. +erefore, this paper
firstly addressed this gap and presented a comprehensive
review including its developments and applications.

CSO showed its ability in tackling different and complex
problems in various areas. However, just like any other

Table 4: Continued.

Test functions Ranking of CSO Ranking of DA Ranking of BOA Ranking of FDO
F22 1 2 4 3
F23 1 2 3 4
Cec01 3 4 2 1
Cec02 3 4 2 1
Cec03 2 3 4 1
Cec04 2 3 4 1
Cec05 3 2 4 1
Cec06 2 1 3 4
Cec07 2 3 4 1
Cec08 1 2 4 3
Cec09 2 3 4 1
Cec10 3 2 4 1
Total 70 97 91 72
Overall ranking 2.121212 2.939394 2.757576 2.181818
F1–F7 subtotal 15 27 11 17
F1–F7 ranking 2.142857 3.857143 1.571429 2.428571
F8–F23 subtotal 32 43 45 40
F8–F23 ranking 2 2.6875 2.8125 2.5
CEC01–CEC10 subtotal 23 27 35 15
CEC01–CEC10 ranking 2.3 2.7 3.5 1.5

CSO DA BOA FDO

Overall ranking
F1–F7 ranking

F8–F23 ranking
CEC01–CEC10 ranking
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Figure 4: Ranking of algorithms according to different groups of test functions.

Computational Intelligence and Neuroscience 15



metaheuristic algorithm, CSO algorithm possesses strengths
and weaknesses. +e tracing mode resembles the global
search process while the seeking mode resembles the local
search process. +is algorithm enjoys a significant property
for which these two modes are separated and independent.
+is enables researchers to easily modify or improve these
modes and hence achieve a proper balance between ex-
ploration and exploitation phases. In addition, fast con-
vergence is another strong point of this algorithm, which
makes it a sensible choice for those applications that require
quick responses. However, the algorithm has a high chance
of falling into local optima, known as premature conver-
gence, which can be considered as the main drawback of the
algorithm.

Another concern was the fact that CSO algorithm was
not given a chance to be compared against new algorithms
since it has been mostly measured up against PSO and GA
algorithms in the literature. To address this, a performance
evaluation was conducted to compare CSO against three
new and robust algorithms. For this, 23 traditional bench-
mark functions and 10 modern benchmark functions were
used. +e results showed the outperformance of CSO al-
gorithm, in which it ranked first in general. +e significance
of these results was also confirmed by statistical methods.

+is indicates that CSO is still a competitive algorithm in the
field.

In the future, the algorithm can be improved in many
aspects; for example, different techniques can be adapted to
the tracing mode in order to solve the premature conver-
gence problem or transformingMR parameter is static in the
original version of CSO. Transforming this parameter into a
dynamic parameter might improve the overall performance
of the algorithm.
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