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France, 11 Université Toulouse III Paul-Sabatier, Toulouse, France, 12 Institute of Cardiovascular and

Medical Sciences, University of Glasgow, Glasgow, United Kingdom, 13 R&D VitaK Group, Maastricht

University, Maastricht, Netherlands

☯ These authors contributed equally to this work.

* Karlheinz.Peter@bakeridi.edu.au

Abstract

Identification of individuals who are at risk of suffering from acute coronary syndromes

(ACS) may allow to introduce preventative measures. We aimed to identify ACS-related uri-

nary peptides, that combined as a pattern can be used as prognostic biomarker. Proteomic

data of 252 individuals enrolled in four prospective studies from Australia, Europe and North

America were analyzed. 126 of these had suffered from ACS within a period of up to 5 years

post urine sampling (cases). Proteomic analysis of 84 cases and 84 matched controls

resulted in the discovery of 75 ACS-related urinary peptides. Combining these to a peptide

pattern, we established a prognostic biomarker named Acute Coronary Syndrome Predictor

75 (ACSP75). ACSP75 demonstrated reasonable prognostic discrimination (c-statistic =

0.664), which was similar to Framingham risk scoring (c-statistics = 0.644) in a validation

cohort of 42 cases and 42 controls. However, generating by a composite algorithm named

Acute Coronary Syndrome Composite Predictor (ACSCP), combining the biomarker pattern

ACSP75 with the previously established urinary proteomic biomarker CAD238 characteriz-

ing coronary artery disease as the underlying aetiology, and age as a risk factor, further

improved discrimination (c-statistic = 0.751) resulting in an added prognostic value over Fra-

mingham risk scoring expressed by an integrated discrimination improvement of 0.273 ±
0.048 (P < 0.0001) and net reclassification improvement of 0.405 ± 0.113 (P = 0.0007). In

conclusion, we demonstrate that urinary peptide biomarkers have the potential to predict
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future ACS events in asymptomatic patients. Further large scale studies are warranted to

determine the role of urinary biomarkers in clinical practice.

Introduction

Coronary artery disease (CAD) and its complications such as acute coronary syndrome (ACS)

are a leading cause of morbidity and mortality worldwide [1]. Several directions have been

taken to search for the ideal methods for predicting future cardiovascular events, including

simple clinical risk scoring systems such as the Framingham Risk Score and non-invasive tech-

niques such as carotid intima-media thickness measurements by ultrasound. Novel alternative

approaches have also been investigated, for example, fundus photography to measure retinal

vessel calibers with narrower retinal arterioles and wider retinal venules conferring a greater

risk of death, stroke and coronary artery disease in women [2]. The biomarker approach is one

of the rapidly expanding areas in this field, starting from more traditional high density lipopro-

tein (HDL) cholesterol to high-sensitivity C-reactive protein (hsCRP), N-terminal pro-brain

natriuretic peptide P (NT-proBNP), or even microparticles and microRNAs [3,4]. Reliable bio-

markers to predict future ACS-events could lead to improved risk stratification, enable earlier

interventions and potentially reduce the incidence of ACS. Current attempts include single

biomarkers as well as biomarker combinations directed towards prediction of ACS specially or

to CAD in general [5,6]. Yin et al. used mass spectrometry based plasma proteomics to identify

protein biomarkers for the new onset of acute myocardial infarction (AMI) during a 3-year

follow up in the Framingham Heart Study offspring cohort [5]. A multi-marker model com-

posed of seven plasma proteins thereby reached a median C-statistic of 0.84 and exceeded

models with regular clinical covariates.

Although this approach represents a first step towards predicting ACS, particularly AMI,

based on proteomic biomarkers, routine blood proteomics can be challenging. This is due to

the influence of processing, handling and storage of the specimen, and the potential instabili-

ties of the proteome. We therefore used urine proteome analysis (UPA) for the identification

of prognostic biomarkers for ACS. Proteome analysis of urine has been shown to be a rich and

stable source of specific pathology-related information for multiple conditions including car-

diovascular and renal diseases, revealing diagnostic and, more importantly, prognostic rele-

vance [7–12]. It has been shown that UPA identified patients with coronary artery disease

(CAD) using a diagnostic disease biomarker based on a 238 urinary peptide pattern CAD238

[7]. CAD238 also revealed a prognostic potential for CAD endpoints including non-fatal AMI

[12]. In the current multi-cohort study, we explored the urinary proteome profiles of partici-

pants from Australian, European and North American prospective cohorts to identify an

ACS-specific pattern of urinary peptides that will allow prediction of future ACS events.

Methods

Study population

This study drew cases, comprising individuals with an ACS within 5 years post urine sampling

with available urinary proteomic data, and sex- and age-matched controls without ACS from

four separate studies conducted in Australia, Europe and North America. In total 218 proteo-

mic data sets (109 incident ACS cases and 109 controls without ACS during follow-up) origi-

nated from the Australian Diabetes, Obesity and Lifestyle (AusDiab) study which is the largest

Australian longitudinal population-based study examining the natural history of diabetes,
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heart disease and kidney disease [13]. Fourteen proteome profile data sets (7 ACS cases and 7

controls without ACS during follow-up) originated from the Flemish Study on Environment,

Genes and Health Outcomes (FLEMENGHO) which is a prospective population-based study

examining the potential effects of specific genes on blood pressure conducted in Northern Bel-

gium [8,9]. Eight proteome profile data sets (4 ACS cases and 4 controls without ACS during

follow-up) originated from the Coronary Artery Calcification in Type 1 Diabetes Study

(CACTI) which is a longitudinal cohort study investigating the determinants of atherosclerosis

in people with and without type 1 diabetes [14]. Twelve proteome profile data sets (6 ACS

cases and 6 controls without ACS during follow-up) originated from the Hypertensive Athero-

sclerotic Cardiovascular Disease (HACVD) sub-study population of the Anglo-Scandinavian

Cardiac Outcomes Trial (ASCOT) study [12]. The study was conducted in accordance with

the principles of the Declaration of Helsinki and written informed consent was obtained from

all the participants. The study was approved by the local ethics committee at the Medical

School Hannover, approval number 3184–2016.

All participants were asymptomatic of coronary artery disease at the time of enrolment

when urine samples were collected. Cardiovascular outcomes were adjudicated up to 5 years

post urine sampling (see assessment of outcome section). The study population was split ran-

domly into 2 groups (biomarker discovery cohort and validation cohort) by a to ratio. The

biomarker discovery cohort was used to identify urinary peptide biomarkers which might

potentially discriminate cases (individuals with future ACS events during follow-up) from

controls (individuals without ACS during follow-up). 84 cases with 84 age- (within 5 years)

and sex-matched controls were randomly selected for this purpose. The urinary peptide bio-

markers thus identified were then applied to the remainder of the cases and controls for

validation (validation cohort) in a blinded manner. 42 cases and 42 controls were used for vali-

dation. Thirty-six (28.6%) out of the 126 participants with an ACS event during the observa-

tion period of 5 years (cases) had a previous history of angina pectoris and/or AMI. In the

other 90 participants it was the first cardiac event without a past history of known coronary

artery disease. Out of the 126 control individuals 9 (8.3%) had previous angina pectoris and/or

AMI but had no ACS event during the observation period.

Assessment of outcome

For this study four outcomes were considered, non-fatal ACS (N = 67), fatal ACS (N = 58),

ACS without information on fatality (N = 1) and no ACS during a follow-up time up to 5 years

after urine sampling (controls). Non-fatal ACS was defined as either non-fatal AMI or new

onset or worsening angina pectoris requiring hospitalization with angiographically docu-

mented coronary atherosclerosis or transient electrocardiographic changes of the ST-segment

or T-wave without evidence for myocardial necrosis. AMI was defined as having at least two

of: (i) a typical clinical presentation, (ii) ECG changes and (iii) cardiac enzymes rises (includ-

ing creatine kinase and troponin) compliant with World Health Organisation MONICA crite-

ria for myocardial infarction. Fatal ACS was defined from death certificate coding, using

International Classification of Diseases Version 10 (ICD-10) codes I20-I25.

Sample preparation and Capillary Electrophoresis–Mass Spectrometry

(CE-MS) analysis

Urine sampling followed established standard operating procedures. Samples were kept frozen

at -80˚C, which has been shown to preserve proteomic profiles [15]. Proteomic analysis of all

urine samples was performed by Mosaiques Diagnostics using the same protocol for all cohorts

investigated. For proteomic analysis, 0.7 mL aliquot of urine was thawed immediately before
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use and diluted with 0.7 mL of 2 M urea, 10 mM NH4OH containing 0.02% sodium dodecyl

sulfate. To remove higher molecular mass proteins, such as albumin and immunoglobulin

G, the sample was ultra-filtered using Centrisart ultracentrifugation filter devices (20 kDa

MWCO; Sartorius, Goettingen, Germany) at 3000 rcf until 1.1 ml of filtrate was obtained. This

filtrate was then applied onto a PD-10 desalting column (GE Healthcare, Uppsala, Sweden)

equilibrated in 0.01% NH4OH in HPLC-grade in H2O (Roth, Germany) to decrease matrix

effects by removing urea, electrolytes, salts, and to enrich polypeptides present. Finally, all

samples were lyophilized, stored at 4˚C, and suspended in HPLC-grade H2O shortly before

CE-MS analyses, as described previously [16].

CE-MS analyses were performed using a P/ACE MDQ capillary electrophoresis system

(Beckman Coulter, Fullerton, USA) on-line coupled to a microTOF MS (Bruker Daltonics,

Bremen, Germany) as described previously [16,17]. The ESI sprayer (Agilent Technologies,

Palo Alto, CA, USA) was grounded, and the ion spray interface potential was set between –4

and –4.5 kV. Data acquisition and MS acquisition methods were automatically controlled by

the CE via contact-close-relays. Spectra were accumulated every 3 s, over a range of m/z 350 to

3000. Accuracy, precision, selectivity, sensitivity, reproducibility, and stability of the CE-MS

measurements were demonstrated elsewhere [16].

Proteomics data processing

Mass spectral peaks representing identical molecules at different charge states were deconvo-

luted into single masses using MosaiquesVisu software [18]. Only signals with z>1 observed

in a minimum of 3 consecutive spectra with a signal-to-noise ratio of at least 4 were consid-

ered. Reference signals of 1770 urinary polypeptides were used for CE-time calibration by

locally weighted regression. For normalization of analytical and urine dilution variances, signal

intensities were normalized relative to 29 ‘‘housekeeping” peptides with small relative stan-

dard. For calibration, linear regression was performed [16,19]. Deviation of CE migration time

was controlled to be below 0.35 minutes after calibration. The resulting peak list characterized

each peptide by its molecular mass (Da) and normalized CE migration time (minutes). Nor-

malized signal intensity was used as a measure for relative abundance. All detected peptides

were deposited, matched, and annotated in a Microsoft SQL database allowing further statisti-

cal analysis [20]. For clustering, peptides in different samples were considered identical if mass

deviation was <50 ppm. Due to analyte diffusion effects, CE peak widths increase with CE

migration time. In the data clustering process, this effect was considered by linearly increasing

cluster widths over the entire electropherogram (19–45 min) from 2 to 5%.

Sequencing of polypeptides

Identified prognostic biomarkers for ACS events were in silico assigned to the previously

sequenced peptides from the Human urinary proteome database, version 2.0. Peptides from

the Human urinary proteome database were sequenced as described elsewhere [21,22].

Biomarker discovery

Peptides (< 20 kDa) present in urine as a result of naturally occurring protein degradation

were investigated as potential biomarkers. For this investigation, statistical analysis of selected

urinary proteome profiles was performed using non-parametric Wilcoxon rank sum test. Up to

2042 distinct peptides were analyzed in individual proteome profiles. Only peptides that were

present at a frequency of 70% or higher in either case or control group were considered as

potential biomarkers. Thus, the identified peptide biomarkers were independent of the cohort

and potential population-specific genetic variability. The false discovery rate adjustments of
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PLOS ONE | DOI:10.1371/journal.pone.0172036 March 8, 2017 4 / 18



Benjamini-Hochberg [23] were employed to correct for multiple testing. A P-value less than

0.05 was considered to be statistically significant.

In each of the 4 study cohorts, participants with verified ACS during follow-up were ran-

domly assigned either to biomarker discovery or validation by a to ratio. The participants

selected for biomarker discovery were representative of the cases in each cohort and matched

to controls by age (within 5 years range) and sex. A match for cardiovascular (CV) risk based

on 10-year cardiovascular disease risk prediction scores generated by the primary lipid Fra-

mingham model [24] between cases and controls was intended but not always possible

(Table 1).

Support vector machine (SVM) modelling

The classifier established by SVM modelling allows the classification of samples in the high

dimensional data space. ACS-specific peptide biomarkers were combined into a single sum-

mary multidimensional classifier using the SVM-based MosaCluster proprietary software, ver-

sion 1.7.0 [25]. Classification is performed by determining the Euclidian distance (defined as

the SVM classification score) of the vector to a maximal margin separating hyperplane. The

SVM classifier uses the log2 transformed intensities of x features (peptides) as coordinates in

an N-dimensional space (N = 75 for the ACSP75 biomarker pattern). It then builds an N-1

dimensional hyperplane that spans this space by performing a quadratic programming optimi-

zation of a Lagrangian using the training labels only while allowing for samples to lie on the

wrong side of the plane. For such mistakes in classification the SVM introduces a cost parame-

ter C. Because non-separable problems in low dimensions may be separable in higher dimen-

sions the SVM uses the Kernel-trick to transform the samples to a higher dimensional space.

MosaCluster uses the standard radial basis functions as kernel. These functions are just Gaus-

sians with the parameter γ controlling their width. The optimal parameters C and γ are found

via e.g. cross validation error estimation using a lattice build by different values of these two

Table 1. Demographics and clinical features of the discovery cohort.

control (N = 84) ACS (N = 84)

Women (%) 36 35

Age, years 64 ± 11 64 ± 12

Systolic pressure (mm Hg) 136 ± 19 147 ± 23

Diastolic pressure (mm Hg) 72 ± 12 79 ± 13

BMI (kg/m2) 26 ± 4 29 ± 5

Current smokers (%) 10 24*

Total cholesterol (mmol/L) 6.0 ± 1.1 5.9 ± 1.3

HDL cholesterol (mmol/L) 1.5 ± 0.4 1.2 ± 0.3

eGFR (ml/min/1.73m2) 72 ± 11 70 ± 15

Diabetes mellitus (%) 13 29*

Hypertension (%) 45 69*

History of cardiac events (%)# 7 23*

Median time to event (years) N/A 2.3 ± 1.5

BMI, body mass index; HDL high-density lipoprotein cholesterol; diabetes mellitus type I and II; hypertension

was defined as blood pressure of�140 mmHg systolic, or�90 mm Hg diastolic, or use on antihypertensive

drugs; N/A, not available; some data (e.g. smoking status) are not available for all individuals)
# angina pectoris and/or AMI

Differences between cases and controls have been assessed by Mann-Whitney rank sum test and marked

with an * when P < 0.05.

doi:10.1371/journal.pone.0172036.t001
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parameters. SVMs are generally implemented in most popular data mining software, particu-

larly the kernlab cran contributed R package is a versatile tool for building SVM based-classifi-

ers [26].

Statistical methods and determination of predictive potential

For biomarker discovery, the reported unadjusted P-values were calculated using the univari-

ate non-parametric Wilcoxon rank sum test. Statistical adjustment due to the existence of

multiple test sets was performed by applying the Benjamini-Hochberg false discovery rate cor-

rections [27]. By maximizing Youden’s index based on exact binomial calculations carried out

in MedCalc version 12.7.3.0 (MedCalc Software, Mariakerke, Belgium, http://www.medcalc.

be), we determined optimal thresholds for the ACS classifier to differentiate individuals with

and without future ACS and calculated sensitivity and specificity given as mean along with

their 95% confidence intervals in brackets. We assessed the predictive capacity (discrimina-

tion) of models using Harrell’s c-statistic. The c-statistic estimates the probability of concor-

dance between predicted risk and the observed order of events from a randomly selected pair

of participants while accounting for censored data. A score of 1.0 indicates perfect discrimina-

tion and 0.5 indicates poor discrimination. The c-statistic and 95% confidence intervals (CI)

from each model were estimated using the somersd package, respectively, in STATA (version

12.1, (StataCorp, College Station, TX, USA), as described [28].

For demographic data, means were compared using ANOVA and proportions by Fisher’s

exact test. Statistical significance was a 1-sided significance level of 0.05.

We used Cox regression to compute standardized hazard ratios. The response variable used

was the “hazard” of an ACS occurring and baseline characteristics considered as covariates in

Cox regression were sex, age, current smoking status, body mass index, diabetes mellitus,

hypertension (office blood pressure of�140 mmHg systolic, or�90 mm Hg diastolic, use of

antihypertensive drugs and/or history of elevated blood pressure), estimated glomerular filtra-

tion rate (eGFR), total cholesterol, HDL cholesterol, and history of cardiovascular disease

(angina pectoris, myocardial infarction, stroke). We identified covariates to be retained in the

analyses by a step-down procedure, removing the least significant covariate at each step until

all P-values of covariates were less than 0.05. All Cox models complied with the proportional

hazards assumption.

To further evaluate the added predictive potential of the established prognostic algorithms

(ACSP75 and ACSCP), we used the net reclassification improvement (NRI) and the integrated

discrimination improvement (IDI) method [29]. We calculated the c-statistics, the NRI, and

IDI considering the risk categories <10% (low), 10–19% (intermediate), and�20% (high) for

the 10-year cardiovascular disease risk prediction scores generated by the primary multi-

marker lipid Framingham model (FCVRS) [24]. The formulas for the calculation were as

follows:

(a) model 1: logit(y=ACS case/control) = α0 + α1 x [study centre] + α2 x [FCVRS]

(b) model 2: logit(y=ACS case/control) = α0 + α1 x [study centre] + α2 x [FCVRS] + α3 x

[ACSP75 score]

(c) model 3: logit(y=ACS case/control) = α0 + α1 x [study centre] + α2 x [FCVRS] + α3 x

[ACSCP score]

Results

Identification of biomarkers in the discovery data set

Proteomics data of all subjects involved in this study were listed in S1, S2, S3 and S4 Tables

(supporting information). To identify ACS-specific prognostic urinary peptide biomarkers

Urine proteomics to predict ACS
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potentially discriminating between individuals with (cases) and without (controls) future ACS

events, we compared the CE-MS-based urinary proteome profiles of 84 fatal and non-fatal

ACS cases occurring within a mean time interval of 2.34 ± 1.48 years during follow-up after

urine sampling and 84 age- and sex-matched controls. The clinical characteristics of these

selected cases and controls are presented in Table 1. The previously published proteomic bio-

marker pattern characteristic for coronary artery disease CAD238 [7,12] discriminated

between these patients and controls with a c-statistic of 0.574 (95% confidence interval)

(0.515–0.633) with adjustment for time to event. Classification by the 10-year cardiovascular

disease risk prediction scores generated by the composite multi-marker primary lipid Fra-

mingham model [24] resulted in a c-statistic of 0.636 (0.578–0.693) with adjustment for time

to event. The central assessment of the current study is the univariate analysis (including

correction for multiple testing) leading to the identification of 75 statistically significant

(P< 0.05) peptide biomarkers enabling the discrimination between cases and controls (Fig 1),

of which 54 (72%) were not part of the CAD238 biomarker pattern. 51 (68%) could be charac-

terized by sequence and post-translational modifications (Table 2). The majority of the

sequenced peptides originated from constituents of the extracellular matrix (ECM), i.e. frag-

ments of various types of collagens, comprising type I (N = 43) and II (N = 3), respectively.

Fig 1. Urinary polypeptide patterns of control and individuals with ACS. Panels A and B: Compiled polypeptide patterns of the

controls and individuals with ACS events during follow up after urine sampling examined in the training set; the molecular mass (0.6–

20 kDa, on a logarithmic scale) is plotted against normalized migration time (18–45 min). Signal intensity is encoded by peak height

and colour. Panels C and D: Distribution of potential biomarkers for ACS in controls and individuals with ACS events during follow up

after urine sampling based on the ACS-specific peptide biomarker pattern. All statistically significant biomarkers are shown.

doi:10.1371/journal.pone.0172036.g001
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Table 2. Sequenced peptides constituting the ACS-specific peptide panel and their differential excretion between ACS and Controls.

Peptide ID Protein name Accession number Sequence CAD 238 DE1

31525 Apolipoprotein A-IV P06727 FQDKLGEVNTY y

58084 Collagen alpha-1(I) chain P02452 GPpGPpGKNGDDGEAGKpG -1.35

90344 Collagen alpha-1(I) chain P02452 GKNGDDGEAGKpGRpGERGPpGPQ -1.04

23697 Collagen alpha-1(I) chain P02452 DDGEAGKpGRpG -1.07

82026 Collagen alpha-1(I) chain P02452 GNSGEpGApGSKGDTGAKGEpGPVG y -1.14

70635 Collagen alpha-1(I) chain P02452 NSGEpGApGSKGDTGAKGEpGP 1.06

79626 Collagen alpha-1(I) chain P02452 NSGEpGApGSKGDTGAkGEpGPVG y 1.04

72896 Collagen alpha-1(I) chain P02452 SGEpGApGSKGDTGAKGEpGPVG 1.12

5675 Collagen alpha-1(I) chain P02452 DGKTGPpGPA -1.27

28561 Collagen alpha-1(I) chain P02452 SpGPDGKTGPpGPA y -1.38

14906 Collagen alpha-1(I) chain P02452 DGRpGPpGPpG -1.27

127351 Collagen alpha-1(I) chain P02452 AAGEPGkAGERGVpGPpGAVGPAGKDGEAGAQGPPGP 1.00

49332 Collagen alpha-1(I) chain P02452 GPpGEAGKpGEQGVpGD 1.17

74902 Collagen alpha-1(I) chain P02452 GPpGEAGkPGEQGVPGDLGApGP -1.03

17694 Collagen alpha-1(I) chain P02452 ApGDRGEpGpP -1.12

32171 Collagen alpha-1(I) chain P02452 ApGDRGEpGPpGPA y -1.05

81758 Collagen alpha-1(I) chain P02452 ADGQpGAKGEpGDAGAKGDAGPpGP 1.00

85761 Collagen alpha-1(I) chain P02452 ADGQpGAKGEpGDAGAKGDAGPpGPA -1.06

77763 Collagen alpha-1(I) chain P02452 DGQpGAKGEpGDAGAKGDAGPPGp y 1.10

118224 Collagen alpha-1(I) chain P02452 ESGREGApGAEGSpGRDGSpGAKGDRGETGPA -1.06

78073 Collagen alpha-1(I) chain P02452 AEGSpGRDGSpGAKGDRGETGPA -1.40

43442 Collagen alpha-1(I) chain P02452 VGPpGPpGPpGPPGPPS 1.03

44618 Collagen alpha-1(I) chain P02452 VGPpGPpGPpGpPGPPS 1.01

34766 Collagen alpha-1(I) chain P02452 PpGPpGPpGpPGPPS -1.02

26113 Collagen alpha-2(I) chain P08123 GppGPDGNKGEpG 1.08

41431 Collagen alpha-1(II) chain P02458 GPpGKpGDDGEAGKPG y 1.02

27517 Collagen alpha-1(II) chain P02458 ApGEDGRpGPpGP 1.01

24502 Collagen alpha-1(II) chain P02458 GpVGpAGGpGFpGA

33973 Collagen alpha-1(II) chain P02458 PVGpSGKDGANGIpG -1.13

69769 Collagen alpha-1(III) chain P02461 DGESGRPGRpGERGLpGPpG 1.04

117770 Collagen alpha-1(III) chain P02461 GESGKPGANGLSGERGPPGpqGLpGLAGTAGEP

121716 Collagen alpha-1(III) chain P02461 GQPGVMGFpGPKGNDGAPGKNGERGGpGGpGpQ

70413 Collagen alpha-1(III) chain P02461 DGESGRpGRpGERGLpGPpG 1.00

61945 Collagen alpha-1(III) chain P02461 GLpGTGGPpGENGKpGEPGp 1.22

70911 Collagen alpha-1(III) chain P02461 GLpGTGGPpGENGKpGEPGpKG 1.12

18943 Collagen alpha-1(III) chain P02461 SpGERGETGPp -1.10

28747 Collagen alpha-1(III) chain P02461 SpGERGETGPpGP 1.25

84542 Collagen alpha-1(III) chain P02461 QNGEpGGKGERGAPGEKGEGGppG 1.01

71171 Collagen alpha-1(III) chain P02461 GEPGGkGERGApGEKGEGGpPG 1.24

141804 Collagen alpha-1(V) chain P20908 GEAGEPGLpGEGGpPGPKGERGEKGESGPSGAAGppGPKGP -1.02

56053 Collagen alpha-2(V) chain P05997 pGEGGKPGDqGVPGDPGAV y

102725 Collagen alpha-2(XI) chain P13942 GNEGpSGPPGpAGSPGERGAAGSGGPIGpPG 1.00

132834 Collagen alpha-1(XVI) chain Q07092 AGERGHPGAPGpSGSpGLPGVPGSMGDMVNYDEIK 1.29

42378 Collagen alpha-1(XVII) chain Q9UMD9 AmGpPGPPGAPGPAGPAG

99021 Collagen alpha-1(XXI) chain F5GZK2 KGDPGLPGNpGYpGqPGQDGKPGYQG y

40091 Collagen alpha-1(XXII) chain Q8NFW1 GpTGpPGKDGPnGPpG y

36156 Collagen alpha-1(XXV) chain Q9BXS0 KGDqGqAGPPGppGP y

(Continued )
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Other identified peptides originated from apolipoprotein A-IV, complement C3, fibrillin-1,

forkhead box protein O1, mucin-1, mucin-3, sarcalumenin or titin.

SVM modelling

The pattern of 75 ACS-specific peptide biomarkers was then applied to the urinary proteomic

profiles used for biomarker discovery in subsequent support vector machine (SVM) based

modelling of a proteomic prognostic ACS classifier. The resulting biomarker pattern Acute

Coronary Syndrome Predictor 75 (ACSP75; radial basis function kernel with parameters

C = 1638.4 and γ = 0.000256) allowed the classification of the ACS cases and controls of the

discovery cohort with a sensitivity (95% confidence interval) of 83.3% (73.6–90.6) and a speci-

ficity (95% confidence interval) of 96.4% (89.9–99.3).

Validation of the prognostic biomarker pattern ACSP75

The clinical characteristics of the study participants in the validation data set, comprising 42

individuals with future ACS events (cases; mean time-to-event 2.74 ± 1.51 years; maximum

time-to-event 4.89 years; Fig 2A) and 42 controls are presented in Table 3.

In comparison to controls, ACS cases were more likely to be older, hypertensive and have

diabetes as well as a history of cardiovascular events (HCVE). Analysis of the ACS scores gen-

erated from the urinary proteome profiles by the ACSP75 classifier showed that ACSP75 dis-

criminated between individuals with future ACS and controls with a sensitivity of 73.8%

(58.0–86.1) and a specificity of 73.8% (58.0–86.1) based on an optimized threshold value of

0.041 for the ACSP75 scores. This discriminatory power was further demonstrated by a c-sta-

tistic of 0.664 (0.587–0.741) with adjustment for time to event. The positive likelihood ratio

reached 2.82 (Fig 2B).

Table 2. (Continued)

Peptide ID Protein name Accession number Sequence CAD 238 DE1

108021 Complement C3 P01024 EGVQKEDIPPADLSDQVPDTESETR 1.23

52189 Fibrillin-1 H0YND0 ECVDTDECSVGNPCGN y -1.06

37056 Forkhead box protein O1 Q12778 SGQEGAGDSPGSQFS y

7094 Hemoglobin subunit beta P68871 SAVTALWGK 1.14

67263 Keratin; type II cytoskeletal 1 P04264 GSGGSSYGSGGGSYGSGGGGGGGRG -1.41

8342 Mucin-1 subunit alpha P15941 TTLASHSTK -1.09

45445 Mucin-3A Q02505 TSFSTIIWSSTPTI y 1.19

71312 Protocadherin-12 Q9NPG4 FAERNPVEELTVDSPPVQ 1.23

123750 Rhox homeobox family member 1 Q8NHV9 EGGVNHENGmNRDGGmIPEGGGGNQEPRQQ 1.16

69979 Sarcalumenin Q86TD4 EETEDANEEAPLRDRSH -1.19

31480 Titin Q8WZ42 KEADRGDSGTYD 1.08

65746 Uromodulin P07911 SGSVIDQSRVLNLGPITR -1.26

54438 Uromodulin P07911 VIDQSRVLNLGPITR 1.05

48176 Uromodulin P07911 IDQSRVLNLGPITR -1.07

Only peptides discriminatory for ACS and characterized by sequence are shown (N = 61). The differential excretion (DE) of peptides between ACS and

controls for the prognostic biomarker pattern ACSP75 has been calculated as follows: For mean MS amplitude (ACS) > mean MS amplitude (control):

(mean ampl. (ACS) x frequency) / (mean ampl. (control) x frequency); For mean MS amplitude (ACS) < mean MS amplitude (control):—(mean ampl.

(control) x frequency) / (mean ampl. (ACS) x frequency). For calculating means, values from all samples were used, considering 0 for undetected values;

Peptide ID, peptide identifier annotated by the SQL database; CAD238, also present in the biomarker pattern CAD238; P in peptide sequences, oxidized

prolines; m in peptide sequences, oxidized methionines.

doi:10.1371/journal.pone.0172036.t002
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Survival analysis for the biomarker pattern ACSP75

Longitudinal analysis of ACS events as outcomes in the validation cohort based on the prog-

nostic ACSP75 scores as a dichotomous variable (0 = ACSP75 scores� 0.041; 1 = ACSP75

scores> 0.041) by the Kaplan-Meier method revealed an unadjusted hazard ratio of 4.39

(2.14–9.01) for individuals with an ACSP75 score above the threshold of 0.041 (Fig 2C). In

order to determine those clinical parameters relevant for ACS events as outcome/endpoint

(response variable) in addition to the prognostic ACSP75 score as a dichotomous variable, and

thus properly identify potential confounding factors, we performed stepwise Cox proportional

hazards regression analysis (backwards, removal P at> 0.1). Based on clinical characteristics

(Table 3), age, eGFR (estimated glomerular filtration rate), diabetes, hypertension and history

of cardiovascular events were selected as variables approximating to the rule of 1 independent

Fig 2. Performance of the ACSP75 urinary polypeptide classifier at follow up. A. Frequency histogram of ACS cases during follow-up. B. Receiver

operating characteristic (ROC) curve for the validation set (N = 168). ROC analyses for prediction of ACS using the urinary ACS biomarker pattern ACSP75

(blue solid line), urinary composite classification by ACSCP (red solid line) and Framingham risk score (FCVRS; black spotted line) are shown. C. Kaplan

Meier survival curve showing the cumulative percentage with an ACS event based on an ACSP75 score above (red solid line) and below (black spotted line)

the threshold of 0.041. D. Multi-variable adjusted Cox proportional-hazards regression analysis of the same data sets based on ACSP75 score above and

below the threshold of 0.041.

doi:10.1371/journal.pone.0172036.g002
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variable per 10 outcomes. The analysis revealed a variable-adjusted hazard ratio of 2.74 (1.32–

5.70; P = 0.0072) for ACSP75 (Fig 2D) and a c-statistic of 0.743 (0.660–0.827) with adjustment

for time to event. Finally, age and eGFR were identified as the only significant (P< 0.05) clini-

cal parameters showing a hazard ratio of 1.08 (1.03–1.13; P = 0.0017) and 0.97 (0.95–0.99;

P = 0.0098), respectively.

Comparison of biomarker pattern ACSP75 to the Framingham risk score

In comparison to urinary proteomic prognostic classification, a prognostic classification of

future ACS cases and controls in this study based on the well-recognized FCVRS model [24]

resulted in a c-statistic of 0.644 (0.547–0.741) (Fig 2B) with adjustment for time to event.

Thereby the common 20% high risk threshold for the Framingham score shows a sensitivity of

92.9% (80.5–98.5) but a specificity of only 31.0% (17.6–47.1). However, at the observed opti-

mized risk threshold of 41.5%, the sensitivity was 69.5% (52.9–82.4) and the specificity was

76.2% (60.5–87.9). A comparison of prognostic discriminatory power of FCVRS with ACSP75

showed no significant difference in c-statistic. Adding ACSP75 scores to FCVRS did not

provide any added prognostic value (Table 4; model 2 vs. 1) based on assessed incremental

improvement of integrated discrimination improvement (IDI) or net reclassification improve-

ment (NRI). Detailed formulas for the calculations for model 1 and 2 are provided in “Statisti-

cal methods and determination of predictive potential” section earlier.

Prognostic ACS classification by a composite score based on the

biomarker pattern ACSP75

To test if combining the ACSP75 scores with clinical patient parameters and other CAD-

related proteomic classifier scores further improves ACS prediction, we established the

ACSP75-based composite prognostic Acute Coronary Syndrome Composite Predictor

Table 3. Demographics and clinical features of the validation cohort.

control (N = 42) ACS (N = 42)

Women (%) 31 31

Age, years 68 ± 13 77 ± 9*

Systolic pressure (mm Hg) 147 ± 31 156 ± 22

Diastolic pressure (mm Hg) 78 ± 11 78 ± 13

BMI (kg/m2) 28 ± 4 27 ± 4

Current smokers (%) 2 7

Total cholesterol (mmol/L) 5.9 ± 1.6 5.9 ± 1.0

HDL cholesterol (mmol/L) 1.4 ± 0.3 1.4 ± 0.4

eGFR (ml/min/1.73m2) 72 ± 13 61 ± 17*

Diabetes mellitus (%) 19 43*

Hypertension (%) 69 95*

History of cardiac events (%) # 7 38*

Median time to event (years) N/A 2.7 ± 1.5

BMI, body mass index; HDL high-density lipoprotein cholesterol; diabetes mellitus includes type I and II;

hypertension was an office blood pressure of�140 mmHg systolic, or�90 mm Hg diastolic, or use of

antihypertensive drugs; eGFR, estimated glomerular filtration rate (MDRD formula); N/A, not available
# angina pectoris and/or AMI

Differences between cases and controls have been assessed by Mann-Whitney rank sum test and marked

with an * when P < 0.05; some data (e.g. smoking status) are not available for all individuals).

doi:10.1371/journal.pone.0172036.t003
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(ACSCP). It combined the ACSP75 biomarker pattern scores with age (see Cox analysis

above) as well as the CAD238 biomarker pattern scores specific for CAD [7,12] as parameters

significantly (P< 0.05) contributing to ACS prediction based on logistic regression analysis.

Other parameters like the eGFR showed no significant contribution. The formula for the cal-

culation of the prognostic ACSCP classification score based on logistic regression analysis was

as follows: ACSCP score = 0.2 x [ACSP75 score] + 2.6 x [CAD238 score] + 0.15 x [age]. When

classifying the study participants of the validation data set with ACSCP, it showed a c-statistic

of 0.751 (0.675–0.829) with adjustment for time to event with a sensitivity of 78.6% (63.2–89.7)

and a specificity of 92.9% (80.5–98.5) based on a threshold of 10.256. The c-statistic of ACSCP

was significantly higher than the one for the Framingham model (P = 0.021) showing a clear

advantage in prognostic discriminatory power for ACSCP (Fig 2B). To further evaluate an

added prognostic discriminatory power for ACSCP, we again assessed IDI and NRI (Table 4;

model 3 vs. 1) and observed a significant incremental improvement of IDI and NRI compared

to Framingham scoring. ACSCP therefore showed a positive likelihood ratio of 11.1. Detailed

formulas for the calculations for model 1 and 3 are provided in “Statistical methods and deter-

mination of predictive potential” section earlier.

Survival analysis for ACSCP

Longitudinal analysis of ACS events as outcomes in the validation cohort based on the prog-

nostic ACSCP scores as a dichotomous variable (0 = ACSCP score< 10.256; 1 = ACSCP

score > 10.256) by stepwise Cox proportional hazards regression analysis (backwards, removal

P at< 0.1) again adjusted for age, eGFR, diabetes, hypertension and history of cardiovascular

events revealed a variable-adjusted hazard ratio of 6.56 (2.36–18.25; P = 0.0003). None of the

clinical parameters showed a significant (P< 0.05) contribution.

Discussion

Peptides and some intact proteins circulating in the blood stream are excreted in urine

through variable filtration in the kidney. Since this had previously led to the identification of

urinary peptide biomarkers characteristic of atherosclerosis [30], particularly CAD [7,31,32],

we hypothesized that urinary proteome/peptidome profiles contain peptide biomarkers indic-

ative of different pathophysiological aspects in the progression of atherosclerotic plaques

towards the inflamed, unstable, “vulnerable”, thin-cap fibroatheromas that are prone to rup-

ture, and ultimately cause thrombotic occlusion of coronary arteries presenting as ACS. These

peptides might originate either from plaques themselves or from activated circulating cells

such as monocytes and platelets [33].

While prediction of ACS events in individuals of the discovery cohort using the already

established biomarker pattern CAD238 was ineffective, state-of-the-art CE-MS analyses of

Table 4. IDI and NRI for the prediction of ACS events by adding either ACSP75 or ACSCP scores to a

basal model based on Framingham 10-year cardiovascular disease risk prediction scores (FCVRS).

Model 2 vs. 1 Model 3 vs. 1

IDI 0.028 ± 0.015 0.284 ± 0.048

P-value IDI P = 0.0645 P < 0.0001

NRI 0.024 ± 0.024 0.405 ± 0.119

P-value NRI P = 0.3173 P = 0.0007

Model 2 vs. 1, improvement of basal FCVRS model (model 1) by adding ACSP75 scores; model 3 vs. 1,

improvement of model 1 by adding ACSCP scores.

doi:10.1371/journal.pone.0172036.t004
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their urinary proteome profile data allowed for the identification of ACS-specific urinary pep-

tide biomarkers and the establishment a new prognostic classifier based on these biomarkers.

This proteomic biomarker pattern ACSP75 proved to be capable of predicting the onset of an

ACS up to 4.89 years before the event with a sensitivity of 73.8% in individuals who were

asymptomatic at baseline. However, prediction of ACS with ACSCP surpassed prediction with

ACSP75 suggesting that optimal prediction of ACS events can be achieved by integrating a

urine peptide pattern characteristic for the presence of CAD and the age of an individual

[7,12].

The peptide biomarkers characterized so far by their amino acid sequence predominantly

originated from collagens, i.e. type I and III. Potential release of collagens via metalloprotei-

nase activity, which is known to be upregulated in unstable and inflamed plaques, has been

shown in human carotid endarterectomy specimens [34]. While surrounding endothelial cells

in the tunica intima, collagens also contribute to the composition of the three dimensional net-

work of vascular smooth muscle cells (VSMC), fibronectin, and proteoglycan-rich layers of the

tunica media as well as the composition of the fibroblast-rich tunica adventitia [35,36]. Type I

collagen can comprise approximately 60% of the total protein content of an atherosclerotic

plaque and plays, in addition to proteoglycans, an active role in lipid retention [37]. Both, type

I and III collagen are part of the complex and dynamic ECM of blood vessel walls thereby also

contributing to the strength and integrity of the fibrous cap of a plaque as well as the modula-

tion of cellular responses within it [35–37]. Moreover, a cap rich in fibrillar collagens and elas-

tin confers stability to the whole plaque. Initial accumulation of ECM, particularly collagens, is

further part of the fibrotic remodelling associated with hypertension and atherosclerosis

[38,39]. The observed decrease of collagen type I fragments and increase of type III fragments

in the excreted urine of individuals with a future ACS may therefore mirror atherogenic alter-

ations of the ECM that contribute to plaque destabilization along with a weakening of the

fibrous cap [37,40]. These processes may include altered collagen synthesis by endothelial cells

in the intima and/or fibroblast and myofibroblast cells in the adventitia layer of blood vessels

and therefore altered fibrillogenesis. They may also include altered covalent cross linking of

collagens by lysyl oxidases (LOX) and/or oxidative modification e.g. by reactive aldehydes

originating from oxidized low-density-lipoprotein [41] within the ECM. Collagens influence

the function and activity of cells in the arterial wall, i.e. VSMCs and macrophages [35,38]. The

composition of the ECM further directly regulates activities of proteases secreted by macro-

phages and VSMCs, which is highly relevant in the pathophysiology of plaque rupture [42].

The urinary biomarkers in our study seemed to be different from the plasma protein mak-

ers identified by Yin et al. A pattern of seven plasma proteins was found to be predictive of

AMI by Yin et al, which included cyclophilin A, cluster of differentiation 5 molecule antigen-

like cell-surface glycoprotein, mucin cell surface associated protein 18, collagen-α 1 [XVIII]

chain, salivary α-amylase 1, C-reactive protein (CRP) and multimerin-2 [5]. The reason for

this difference is not entirely clear although the urine proteome is expected to be inherently

different from the plasma proteome due to several factors including variable metabolism and

differential renal handling of some proteins and peptides. For example, CRP excretion in the

urine is rare [43] and despite being an established serum marker of CAD, has not been seen in

urine peptide patterns of CAD patients [7,31].

The previously described biomarker pattern CAD238 has been shown to be able to identify

patients with stable coronary artery disease, as validated in patients undergoing elective surgi-

cal coronary revascularization [7]. Brown et al found CAD238 can also be useful in predicting

the development of coronary artery disease in the future [12]. As the study cohort includes

patients with a broad spectrum of CAD (patients with fatal CAD, non-fatal MI as well as

patients just undergoing revascularization), it is not clear whether its prediction is specific for

Urine proteomics to predict ACS

PLOS ONE | DOI:10.1371/journal.pone.0172036 March 8, 2017 13 / 18



ACS or applies more broadly to coronary artery disease. Brown et al also found only some of

the markers in the CAD238 panel were different between cases and controls, and hypothesized

that these markers reflect earlier stages of CAD that had the potential to progress. It is interest-

ing to see there is some overlap of the urinary biomarkers identified in ACSP75 of our study

and the previously described CAD238 (Table 2). Some peptides derived from collagen alpha-1,

fibrillin-1, mucin-3A were found in both CAD238 and ACSP75. It is possible that CAD238

predominantly identifies the patients who have or might develop CAD. However when athero-

sclerotic plaques become relatively unstable, the urinary peptide pattern somewhat changes to

reflect the greater collagen breakdown in the fibrous cap, leaning towards ACSP75 pattern as

discussed earlier. This would explain some overlap between the two panels. ACSP75 alone

does not seem to perform better than the clinical Framingham score in predicting future car-

diovascular events, highlighting that clinical parameters are still very important. But combin-

ing these two patterns (CAD238 for the presence of atherosclerotic plaques and ACSP75 for

potential plaque instability) with age, which is the most important clinical risk factor in

ACSCP, significantly increases the predictive value for future ACS events.

Several of the peptides identified as biomarkers for ACS fit well in the mechanistic concept

of increased plaque instability in individuals with an increased risk of an ACS event. An associ-

ation with the pathogenesis of atherosclerosis has been shown for circulating complement C3

[44], and with acute myocardial infarction for titin [45] and fibrillin-1 [46]. Notably, some of

these proteins have also been identified in the urine of atherosclerotic mice [30], pointing out

the possibility that a mouse model for unstable plaques [47] can be used to further investigate

urinary biomarkers of plaque instability.

Our study adheres to the relevant guidelines of proteomic testing as the biomarkers de-

scribed have a clear context of use which is “prediction of ACS” and performance of the bio-

markers was not only evaluated in comparison to the current state of the art, but was also

validated in a separate cohort in a blinded fashion. The main limitation of our study is the

small sample size, especially in the validation cohort. While a positive discriminatory effect of

ACSCP even in a small study sample serves as a “proof of concept”, it should be validated in a

much larger independent cohort.

Conclusion

A newly established urinary biomarker pattern reflects molecular pathological alterations asso-

ciated with atherosclerotic plaque evolution towards “vulnerable” plaques, plaque rupture and

ultimately thrombotic artery occlusion. This biomarker pattern potentially allows for a suc-

cessful identification of individuals, who are at high risk of experiencing a future ACS event,

thereby enabling timely preventative interventions. Further prospective studies exploring

larger cohorts e.g. in the context of larger pharmacological trials are warranted to establish a

highly attractive non-invasive concept of identifying individuals at risk, with the potential

of initiating preventative measures and ultimately reducing cardiovascular mortality and

morbidity.

Supporting information

S1 Table. Cohort classification for biomarker discovery and validation. A total of 252 indi-

viduals were used in this study. 0 represents individuals with no Acute Coronary Syndrome

(ACS) used as controls and 1 represents individuals with ACS used as cases. For the biomarker

discovery, the discovery cohort was used and the validation cohort was used for the ACS classi-

fier validation.
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S2 Table. Mass spectrometry amplitudes of individuals. The amplitudes were given for all

252 individuals and all peptides (5605) identified by CE-MS.
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S3 Table. All identified peptides using CE-MS. For each peptide, mean CE-migration time

(min), and mass (Da) is given.
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