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Abstract: Coniine, a polyketide-derived alkaloid, is poisonous to humans and animals. It is a nicotinic
acetylcholine receptor antagonist, which leads to inhibition of the nervous system, eventually causing
death by suffocation in mammals. Coniine’s most famous victim is Socrates who was sentenced
to death by poison chalice containing poison hemlock in 399 BC. In chemistry, coniine holds two
historical records: It is the first alkaloid the chemical structure of which was established (in 1881), and
that was chemically synthesized (in 1886). In plants, coniine and twelve closely related alkaloids are
known from poison hemlock (Conium maculatum L.), and several Sarracenia and Aloe species. Recent
work confirmed its biosynthetic polyketide origin. Biosynthesis commences by carbon backbone
formation from butyryl-CoA and two malonyl-CoA building blocks catalyzed by polyketide synthase.
A transamination reaction incorporates nitrogen from L-alanine and non-enzymatic cyclization leads
to γ-coniceine, the first hemlock alkaloid in the pathway. Ultimately, reduction of γ-coniceine to
coniine is facilitated by NADPH-dependent γ-coniceine reductase. Although coniine is notorious for
its toxicity, there is no consensus on its ecological roles, especially in the carnivorous pitcher plants
where it occurs. Lately there has been renewed interest in coniine’s medical uses particularly for pain
relief without an addictive side effect.

Keywords: Aloe; alkaloids; coniine; poison hemlock (Conium maculatum L.); polyketides; Sarracenia;
secondary metabolism; Socrates

1. Introduction

Coniine is an alkaloid which is known to be present in a diversity of plants, including monocots
(Aloe [1–4]) and dicots (Conium (e.g., [5]) and Sarracenia [6,7]). Coniine holds two records in chemistry
in that it constitutes the first alkaloid the structure of which was fully resolved, and that has been
chemically synthesized. Poison hemlock, and thus coniine, have historically been used as medicine but
not anymore due to a narrow treatment window. Its mode of action in the nervous system is to block
nicotinic acetylcholine receptors which, in the worst case, can lead to death by suffocation. Coniine’s
ecological role in plants, on the other hand, is not yet fully revealed, especially in insectivorous
Sarracenia plants.

Previously, the poison hemlock and coniine literature has been reviewed by López et al. [8],
Vetter [9] and Reynolds [10]. Since then, there have been many advances related to the biosynthesis,
occurrence in plants, molecular diversity and biological interactions, justifying an updated summary.

2. Hemlock Alkaloids and Their Chemistry

Piperidine alkaloids are characterized by a six-membered saturated heterocyclic ring,
i.e., piperidine nucleus. Over 700 members of this alkaloid class are currently known [11].

Currently, there are thirteen alkaloids known from poison hemlock (in the following text referred
as hemlock alkaloids) (Figure 1), which can be classified according to the number of carbon atoms
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in their backbone. The simplest category, C6, comprises only one member, 6-methylpiperidine.
The C8-category includes nine members. The C10-category is the most recent in hemlock alkaloids.
Its first members were discovered in 1997. In the literature, there are hints that even more alkaloids
could exist. The following list describes all known, and two theoretical hemlock alkaloids.
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Figure 1. Classification of hemlock alkaloids naturally occurring in poison hemlock
(Conium maculatum L.), Sarracenia spp. and Aloe spp. according to their carbon number. Theoretical
hemlock alkaloids are N-methylconhydrine [12] and 5-hydroxy-γ-coniceine [13]. Reproduced from [14].

2-Methylpiperidine. C6H13N. MW 99.17 g/mol. CAS number 109-05-7. Also known as
2-pipecoline, α-pipecoline, α-methylpiperidine. The boiling point is 120 ◦C [15] and the melting point is
−4 ◦C [16]. 2-Methylpiperidine is an alkaloid found from poison hemlock (Conium maculatum L.) [5,17].

Coniine. C8H17N. MW 127.23 g/mol. CAS number 458-88-8. Also known as 2-propylpiperidine,
cicutine, conicine. The boiling point is 166 ◦C and the melting point −2 ◦C [10]. Coniine was
first isolated from poison hemlock in 1826 by Giseke [18]. Its structure was established in 1881 by
Hofmann [19] and soon thereafter, in 1886, it was synthesized by Ladenburg [20], thus making it the
first alkaloid to be structurally characterized and chemically synthesized. Coniine has a stereocenter
at position C-2, leading to two stereoisomers, (S) and (R), of which the former is the naturally
occurring [10].

γ-Coniceine. C8H15N. MW 125.21 g/mol. CAS number 1604-01-9. Also known as
2-propyl-1,4,5,6-tetrahydropyridine. The boiling point is 171 ◦C [10] and the predicted melting point is
−4.56 ◦C [21]. γ-Coniceine was isolated from poison hemlock by Wolffenstein [22]. He also determined
the chemical formula, but the structure was determined as late as 1961 by Beyerman et al. [23] by
hydrogen nuclear magnetic resonance and infrared. The alkaloid was first synthesized by Gabriel [24].
γ-Coniceine is the principal alkaloid in leaves and young tissues of poison hemlock [5].

Pseudoconhydrine. C8H17NO. MW 143.23 g/mol. CAS number 140-55-6. Also known as
6-propyl-3-piperidinol, Ψ-conhydrine. The predicted boiling point is 246 ◦C [21] and the melting point
is 105 ◦C [10]. Pseudoconhydrine was isolated from poison hemlock by Merck [25]. Its structure was
finally determined by Yanai and Lipscomb [26]. It is an isomer of conhydrine with a hydroxyl group at
C-5. This alkaloid is usually present in poison hemlock as a minor alkaloid but in one American strain
it is reported to be a major component and it originates from γ-coniceine [13].
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N-Methylconiine. C9H19N. MW 141.25 g/mol. CAS number 35305-13-6. Also known as
1-methyl-2-propylpiperidine, methylconiine. The predicted melting and boiling points are −6.2 ◦C
and 177.6 ◦C, respectively [21]. It was first synthesized from coniine and its formula was determined
by von Planta and Kekulé [27]. The alkaloid’s structure was determined by Wolffenstein [28] from
poison hemlock extract.

N,N-Dimethylconiine. C10H22N. MW 156.24 g/mol. CAS number 329270-32-8. Also known
as 1,1-dimethyl-2-propylpiperidinium. The predicted melting and boiling points are 144.4 ◦C and
383.2 ◦C, respectively [21]. It was isolated from Aloe sabaea [3].

Conhydrinone. C8H15NO. MW 141.21 g/mol. CAS number 97073-23-9. Also known as
1-(2-piperidynyl)-1-propanone. The predicted melting point is 34.9 ◦C [21] and the boiling point
is 94 ◦C [29]. It was isolated from poison hemlock by Leete and Olson [30]. They also showed that
biosynthetically conhydrinone originates from γ-coniceine.

1′-Oxo-γ-coniceine. C8H13NO. MW 139.19 g/mol. CAS number 80933-75-1. Also known as
1-(3,4,5,6-Tetrahydro-2-pyridinyl)-1-propanone. The predicted melting and boiling points are 24.9 ◦C
and 213 ◦C, respectively [21]. It was found from poison hemlock by Holstege et al. [17].

Conhydrine.C8H17NO. MW 143.23 g/mol. CAS number 495-20-5. Also known as
2-(1-hydroxypropyl)piperidine, α-ethyl-2-piperidinemethanol, 2-(α-hydroxypropyl)-piperidine.
The melting point is 121 ◦C [10] and the predicted boiling point is 241 ◦C [21]. It was found from
poison hemlock in (+) form by Wertheim [31].

N-Methylpseudoconhydrine. C9H19NO. MW 157.25 g/mol. CAS number 78962-69-3. Also known
as 1-methyl-6-propyl-3-piperidinol. The melting point is 157 ◦C [32] and the predicted boiling point is
238.6 ◦C [21]. The alkaloid was found in a South-African yellow-flowered Conium sp. [32].

Conmaculatin. C10H21N. MW 155.28 g/mol. CAS number 33354-97-1. Also known as
2-pentylpiperidine. The predicted melting point is 30 ◦C [21] and the boiling point is 207–208 ◦C [33].
The alkaloid was first found from Serbian poison hemlock [34].

2-n-Pentyl-3,4,5,6-tetrahydropyridine. C10H19N. MW 153.26 g/mol. CAS 5832-23-5. The predicted
melting and boiling points are 8.4 ◦C and 212 ◦C, respectively [21]. The alkaloid was discovered from
poison hemlock [35]. The compound has also been found from fire ant (Solenopsis) species [36].

5-Hydroxy-2-n-pentylpiperidine. C10H21NO. MW 171.28 g/mol. CAS number 220088-35-7.
Also known as 6-pentyl-3-piperidinol. The predicted melting and boiling points are 66 ◦C and 280 ◦C,
respectively [21]. It was found in poison hemlock [36].

Other possible hemlock alkaloids. Research performed by Cromwell [5] and Fairbairn and
Suwal [37] indicated that poison hemlock contains alkaloids which have larger molecular size and are
more polar. Castells et al. [38] found an unknown alkaloid from poison hemlock. Its MS fragmentation
pattern (m/z: 125 (M+, 1), 124 (6), 110 (18), 97 (100), 96 (31), 82 (9), 69 (7), 55 (15)) is similar to that
of γ-coniceine, thus making it a possible γ-coniceine isomer, but the location of the double bond
is unknown. Roberts [12] postulated the possible existence of N-methylconhydrine (Figure 1) in
poison hemlock after a series of enzymatic studies. Leete and Adityachaudhury [12] theorized that
5-hydroxy-γ-coniceine could be an intermediate product in the biosynthesis route of pseudoconhydrine
from γ-coniceine.

Chemical synthesis of piperidines, e.g., coniine, has been achieved and is constantly further
developed based on various reaction types such as Mannich-type reaction, Michael addition,
ring-closing metathesis, iminium ion cyclization, Diels–Alder reaction, PdII-catalyzed reaction of
nitrogen nucleophile [39], intramolecular N–C bond formation, C–C bond formation, intermolecular
reactions and modification of six-membered nitrogen heterocycles [40].

3. Plant Containing Hemlock Alkaloids

Piperidine alkaloids are found in many genera, for example, Nicotiana, Conium, Lobelia, Pinus,
Punica, Duboisia, Sedum, Withania, Carica, Hydrangea, Dichroa, Cassia, Prosopis, Genista, Ammodendron,
Lupinus, Liparia and Collidium [41]. Fire ants (Solenopsis sp.), as an example outside the plant kingdom,
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also contain simple piperidine alkaloids [36]. The occurrence of hemlock alkaloids among plants is
restricted to few but unrelated genera.

3.1. Conium sp.

The genus Conium has five members, of which four (C. chaerophylloides, C. fontanum,
C. hilliburttorum, C. sphaerocarpum) are South African [42]. They belong to the family Apiaceae,
which comprises 434 genera and 3780 species depending on classification [43]. The most investigated
member of the genus is poison hemlock (C. maculatum). Poison hemlock is native to Europe,
northern Africa, and western Asia. It has also been introduced to North America, South America,
Australia and New Zealand (Figure 2) [44]. The old Roman name for poison hemlock was cicuta,
which is used nowadays for water hemlock (Cicuta virosa L.). The modern name is derived from
the Greek word ‘Konas’, ‘to whirl about’ since consumption causes ataxia, tremor, and convulsions.
The Latin word maculatum means spotted, and indeed the plant has reddish spots on the stem and
the leaf stalk. Hemlock has been written hemlic/hymelic (Anglo–Saxon), hymlice, hymlic, hemeluc,
hemlake, hemlocke and hemlock (first used in William Shakespeare’s play ‘Life of Henry the Fifth’) [9].
Common names for the plant (Table 1) include poison parsley, carrot fern, conium, spotted hemlock,
spotted cowbane, spotted corobane, carrot weed, California or Nebraska fern, musquash root and
poison root [45–48].
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Table 1. Poison hemlock names in selected countries.

Language Name

Argentina cicuta, denta
Belgium dolle kervel, gevlekte scheerling

Brazil cicuta, cicuta da europa, cigue, cuquta maior, funcho selvagem
Chile cicuta, sarrac

Denmark skarntyde
Finland myrkkykatko
France grande cique

Germany Gefleckter Schierling
Italy cicuta maggiore

Japan doku-ninjin
Portugal ansarina-malhada

Spain perejillon cicuta
Sweden odört
Turkey tri baldiran
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Poison hemlock (Figure 3) (2n = 22) is a herbaceous biennial plant, but it can also be a winter
annual or a short-lived perennial. The stem is stout and can achieve a height of 1–2 m. It is straight,
branched, mainly in the upper part. Its texture is smooth and colored pale green with purple spots,
which are the most important key identification of the species. The basal part is 4–8 mm thick and
terete or angled. The cross-section of the stem is hollow or rarely solid, except at the nodes where it
has fine, shallow, longitudinal ridges. The inflorescences are large, compound umbels which are open
and 4–6 cm across. The terminal umbel, which is situated at the top, blooms first. The flowers are
small in large, loose clusters with a circle of narrow bracts at the base. The poison hemlock has five
petals, which are white, incurved and devoid of sepals. The bracts are involucre lanceolate, acuminate
and inconspicuous. The fruit is a schizocarp, oval to circular in outline and forms a compound of
two grey or brown mericarps (seeds). The seeds are narrowly ovate, 1.2–2 mm wide, 2–3 mm long,
with a slightly extended apex, the dorsal side strongly convex with 5 prominent wave ridges from
top to bottom and they weight about 0.5 mg. Its taproot is long, 5–11 mm thick, whitish and usually
unbranched. The leaves are present as a rosette from the crown and alternately on the stem. They are
20–40 cm long with 3 or 4 times pinnate leaf compounds and their segments are toothed or deeply cut.
The base of the petiole tends to sheath the stem and is shorter on upper leaves [44,49].
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All tissues of poison hemlock contain alkaloids in abundance [50]. The main alkaloid of flower
buds and flowers is γ-coniceine, which is transformed during the fruit development into coniine and
further into N-methylconiine, which are the main alkaloids in mature fruit [5]. The volatile alkaloids
in flowers may attract pollinators [51].

There is a “coniine layer” in fruits which starts to develop during week 3 after fertilization.
By week 7 the walls are completely thickened. During week 3 the fruits also contain the maximum
amount of alkaloids, which can be as much as 3% of dry weight [5,52]. The role of alkaloids in
fruits may be related to protection of seeds before germination, as the coniine layer is lost during
germination [51]. There are secretory structures, called ‘vittae’, in seedlings, vegetative organs, flowers
and fruits, which are possible sites for alkaloid biosynthesis [50].

Poison hemlock is a cross-breeding species [53]. The plant is a prolific seed producer with
1700–39,000 seeds per plant and can dominate small areas if left unchecked, at the same time creating a
seed bank [54,55]. Seed dispersal occurs from mid-September to late February, as the stalks persist
through winter, and by late December 95% of the seeds have been dispersed [55,56]. Seeds do not have
a dormancy restriction, which allows them to germinate as soon as the prevailing conditions permit.
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Depending on the year, 40–85% of seeds will germinate when there is a suitable temperature difference.
Generally, poison hemlock seeds remain viable for 3–6 years [48,55].

Poison hemlock belongs to a group of widely spread weeds [9]. It is a pioneer plant and thus an
invasive species [48]. The plant’s invasiveness is due to its ability to grow in very different locations,
such as in cultivated fields, waste areas, along ditch banks or fences, around barnyards, waterways
and along roadsides [54,57]. The general habitat is moderately dry, mull-rich and nutrient-rich bare
soil with good moisture in the light-open area [49,54]. The plant tolerates a high level of heavy metals
(arsenic, cadmium, lead) in soil [53].

Poison hemlock can contaminate harvested hay, as it grows in alfalfa fields. It also grows in grass
pastures and meadows, causing a risk of poisoning to grazing livestock, especially in the spring when
there is little else to feed on and poison hemlock is one of the first plants to emerge (in the USA) [54].
Thus, poison hemlock is part of the overall problem caused by introduced weeds, which result in
about $1–2 billion/year losses in forage crops in the USA [58,59].

Parts of poison hemlock have been confused with many edible Apiaceae plants; its leaves with
parsley (Petroselinum crispum (Mill.) Fuss), roots with parsnip (Pastinaca sativa L.) and seeds with anise
(Pimpinella anisum L.) [9,57,60]. Other mix-ups are with e.g., Chaerophyllum sp., Anthriscus sylvestris
(L.) Hoffm and Aethusa cynapium L. [49]. Key characteristics to distinguish poison hemlock from other
Apiaceae, e.g., wild carrot, Daucus carota L., are the unbranched stems with red spots and the absence
of hairs on stems and leaves. When crushed, the pungent smell is very intense [49].

In order to prevent spreading of invasive poison hemlock, the plants should be eradicated as
soon as they are noticed. A 3–6-year approach is needed, as the plant stand cannot be effectively
controlled in one year [48]. For chemical control of poison hemlock, suitable compounds include
hexazinone (active over 90%); metribuzin (over 90%); terbacil (over 90%); glyphosate at 1.1 kg/ha
(97–98%); and 2,4-dichlorophenoxyacetic acid (2,4-D) at 1.1 kg/ha (97–98%) [48,57,61,62]. The spraying
should be performed when seedlings emerge or before the flowering stalk begins to develop in order
to stop the invasion [57]. Physical control should be applied before the plants produce seeds. Manual
methods include hoeing, digging, cutting and grubbing. Recommended mechanical methods are
mowing and tillage. For biological control, the hemlock moth (Agonopterix alstroemeriana Clerk) may
be used [48].

3.2. Aloe sp.

The genus Aloe is a member of the family Xanthorrhoeaceae [63]. About 400 species are included
in the genus, which is native to most of Africa south of the Sahara Desert, the Arabian Peninsula,
Madagascar and several smaller islands in the Indian Ocean [64]. The habitat of Aloe is generally an
arid or semi-arid region, more specifically dry forests, open woodland, grassland, bare rock surfaces
and cliff faces [65]. Humans have used aloes for several millennia at least, as A. vera (L.) Burm.f.
was used as a medicine in China and India about 2400 years ago [66]. Nowadays they are mainly
ornamental plants in warm climates. In traditional medicine, the aloes have a role in treating burns,
skin disorders and as a purgative. In cosmetics, extract of aloe is used e.g., in soaps. In many African
cultures cut aloes are dried and used as such in dyes. Poisonous A. ruspoliana Baker is used to kill
hyenas in eastern Africa.

Aloe species are rich in secondary compounds. These include various chromones, anthraquinones,
anthrones, coumarins, pyrones, flavonoids and sterols [67]. Very few alkaloids have been described
from the genus, namely the purines hypoxanthine and xanthine from A. ferox Mill. [68], and the
tyramine-derivated phenylethylamines in 18 Aloe species [2]. Piperidine alkaloids are present in
twelve species (Table 2) [1–3]. A. globuligemma, used as a herbal medicine, has caused deaths in rural
Africa [69]. Parry and Matambo [70] studied the toxicity of A. globuligemma as it is used as a traditional
herbal medicine in Zimbabwe. Its crude extract has LD50 < 250 mg/kg on mice and the toxic symptoms
were reported to be similar to those of poison hemlock poisoning.
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Table 2. Hemlock alkaloids reported from Aloe [1–4].

Aloe Species Alkaloids

A. ballyii Reynolds γ-coniceine, conhydrinone
A. deltoideodonta Baker γ-coniceine, a trace of pseudoconhydrine
A. descoingsii Reynolds coniine, conhydrine
A. gariepensis Pillans γ-coniceine, conhydrine, a trace of coniine and N-methylconiine
A. globuligemma Pole Evans γ-coniceine, coniine, conhydrine, N-methylconiine
A. gracilicaulis Reynolds and P.R.O. Bally γ-coniceine
A. ibitiensis Perrier γ-coniceine
A. krapholiana Marloth. coniine, conhydrine
A. ortholopha Christian and Milne-Redh. coniine, conhydrine
A. ruspoliana Baker γ-coniceine
A. sabaea Schweinf. (syn. A. gillilandii Reynolds) γ-coniceine, coniine, N,N-dimethylconiine
A. viguieri Perrier coniine, γ-coniceine, N-methylconiine

3.3. Sarracenia sp.

Sarraceniaceae is a New World carnivorous plant family. It includes three genera, Darlingtonia,
Heliamphora, and Sarracenia. In Sarracenia, there are 8–11 species depending on the classification [71,72].
The native range of Sarracenia is the eastern seaboard of North America. The native habitats are
nutrient-poor, acidic and wet environments comprising swamps, fens and grassy plains. All Sarracenia
species are insectivorous i.e., they attract, capture and digest insects to supplement their nutrient
uptake. A common feature of all Sarracenia is that they lure insects to their elongated tubular leaves.
S. psittacina Michx. hides the entry/exit hole using multiple translucent false entries so that trapped
insects finally tire and die. Other Sarracenia species utilize downward pointing hairs and waxy
substances in their pitchers to trap insects.

Initially, Mody et al. [6] reported 5 mg of coniine from 45 kg fresh plant material via steam
distillation. Hotti et al. [7] confirmed from the occurrence in S. flava and additionally detected it in
S. alata, S. leucophylla, S. minor, S. oreophila, S. psittacina, S. purpurea and S. rubra. In all cases coniine is
present in low amounts in the studied plant material. Mody et al. [6] tested the isolated coniine with
fire ants and found that the compound paralyzed them. Harborne [73] suggested that coniine not only
paralyzes insects but also entices them into the pitcher. In contrast to Conium [50], it is still unknown
where coniine is biosynthesized in Sarracenia sp. i.e., whether it is in the lid, hairs, extrafloral nectar,
mouth, middle or lower part of the pitcher.

3.4. Other Plants Possibly Containing Hemlock Alkaloids

There are speculations that other plants contain hemlock alkaloids, too, but detailed investigations
are missing. Such plants include upright spurge (Euphorbia stricta L.) and crown imperial
(Fritillaria imperialis L.), both of which have reportedly a characteristic mousy smell when crushed [10].
Fritillaria spp. definitely contains alkaloids, but so far only typical steroid-based alkaloids were
found [74]. Hébert and Haim [75] speculated that different aroids (Amorphophallus sp., Arisarum sp.,
Arum sp., Caladium sp.) could contain hemlock alkaloids. Raffauf [76] continued this list with the genera
Sarcolobus, Punica, and Parietaria. Power and Tutin [77] examined fool’s parsley (Aethusa cynapium) and
reported coniine or a related alkaloid. Later research has shown that the then identified compound is
aethusin (cynapine), a polyacetate [78].

Interestingly, Semnostachya menglaensis Tsui (Apocynaceae), a rare plant from the Yunnan province
of China, reportedly contains 1′-oxo-γ-coniceine as a major component and conhydrinone in its
volatile oil. The plant contains four other simple alkaloids (Figure 4) [79]. Conhydrine has been
reported from Bermuda grass (Cynodon dactylon (L.) Pers.), Poaceae [80]. Another report indicates
the presence of the same alkaloid in lemon balm (Melissa officinalis L.), Lamiaceae [81]. Coniine,
N-methylconiine, 1-methyl-2-butylpiperidine and 1-methyl-2-pentylpiperidine have been reported
from Pimpinella acuminate (Edgeworth) C. B. Clarke [82].
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4. Biosynthesis of Hemlock Alkaloids

Robinson [83] suggested that piperidine alkaloid biosynthesis starts from the amino acid lysine.
Typically, the amino acid is first processed into cadaverine and then ∆1-piperideine from which several
piperidine alkaloids are derived [84,85]. This single idea has later been expanded by recognizing that
besides lysine, the carbon backbone of piperidine alkaloids can also originate from acetate, mevalonate
or monoterpenes (e.g., alkaloid skythanthine) [86].

Poison hemlock is the only plant species in which hemlock alkaloid biosynthesis
has been studied. Leete [87] fed uniformly labeled [14C]-L-lysine, [2-14C]-DL-lysine and
[1,5-14C]-cadaverine to poison hemlock. These feedings resulted in negligible activity in the alkaloids.
However, Cromwell and Roberts [88] fed uniformly labelled [14C]-L-lysine, [14C]-∆1-piperideine
and [14C]-∆1-piperideine-2-carboxylic acid together with [6-14C]-DL-α-aminoadipic acid,
[1,5-14C]-cadaverine and [2-14C]-propionate, which were incorporated into γ-coniceine. Leete [87,89]
interpreted his results obtained with uniformly labeled [14C]-lysine so that lysine underwent
metabolism in the plant, finally ending up as acetate, which was ultimately incorporated into
γ-coniceine and then into coniine. However, because lysine was not incorporated directly into coniine,
Leete [87,89] proposed an alternative hypothesis that acetate, rather than lysine, could function as the
carbon source for coniine.

In order to verify this, Leete [87,89] fed poison hemlock plants sodium [1-14C]-acetate and
the activity from labeled acetate was detected in the carbons of coniine and conhydrine (Figure 5).
Via systematic degradation, it was indeed established that almost all the activity remained in the
even-numbered carbons and was equally distributed between these positions (C-2 26%, C-3 1.6%,
C-4 22%, C-5 1%, C-6 24%, C-1′ 1.3%, C-2′ 22%, C-3′ 1.6%). He postulated that the possible
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Figure 5. Poison hemlock plants were fed sodium [1-14C]-acetate and the radioactive carbon (blue dots)
was found in the even-numbered carbons of coniine [87,89].

In order to get further proof, Leete [90] fed poison hemlock plants labeled sodium [1-14C]-
and [2-14C]-octanoate. The plants were harvested after seven days and the labeled carbon was
found in γ-coniceine. He postulated that octanoic acid must have been activated to 5-keto-octanoic
acid and/or cleaved to acetyl-CoA via the Krebs cycle and processed further into γ-coniceine.
In other words, octanoic acid is not used directly as such but via oxidation. In the next stage
Leete and Olson [91] fed plants sodium [1-14C]-acetate, [1-14C]-octanoic acid, [6-14C]-5-keto-octanoic
acid and [6-14C]-5-keto-octanal, and the plants were harvested after 24 h. The incorporation rates were
0.009% for [1-14C]-acetate, 0.07% for [1-14C]-octanoic acid, 0.61% for [6-14C]-5-keto-octanoic acid and
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1.1% for [6-14C]-5-keto-octanal. They noticed that octanoic acid is not the preferred precursor for the
alkaloids as it shows a poor incorporation rate. The compound could, however, lead to the formation
of 5-keto-octanoic acid, which probably happens before alkaloid formation, as its activity was in the
C-1′ carbon of formed alkaloids. Therefore, they claimed that 5-keto-octanal and 5-keto-octanoic acid
are the most probable precursors in the alkaloid biosynthesis [30]. They suggested that 5-keto-octanal
goes through transamination to form γ-coniceine. The key to hemlock alkaloid production could
therefore be the availability of 5-keto-octanal [51]. Even though [1-14C]-hexanoic acid was incorporated
in coniine at a poor rate this could be explained by chain elongation in the form of hexanoyl-CoA
with malonyl-CoA [84]. Accordingly, 2-methylpiperidine biosynthesis could proceed in an analogous
manner from 5-ketohexanoic acid.

The problem of identifying the enzyme responsible for carbon backbone formation of coniine
alkaloids was recently approached by isolating and characterizing full-length genes of type III
polyketide synthases (PKS) expressed in tissues of poison hemlock. Hotti et al. [92] isolated CPKS5
which is expressed in stem, flower and developing fruit, and fed different aliphatic starter-CoAs
in in vitro enzymatic tests to follow up on Leete’s hypothesis. The tests indicated that the order
of preference for starter units was as follows: butyryl-CoA (at pH 6.2 with kcat/Km 1595 s−1 M−1),
hexanoyl-CoA, acetyl-CoA and finally octanoyl-CoA. CPKS5 exhibits seven amino acids changes in
the active site when compared to a typical chalcone synthase [93]. Based on these observations it was
suggested that coniine’s carbon backbone is formed from one butyryl-CoA and two malonyl-CoAs.

Leete’s hypothesis [87,89], proposing a tetraketide backbone of coniine formed from one
acetyl-CoA and three malonyl-CoAs, remains unsupported because a PKS favoring acetyl-CoA as a
starter could not be identified. On the other hand, the substrate preference of CPKS5 correlates with
the alkaloid presence in poison hemlock. It is tempting to speculate that the same enzyme could be
responsible for the polyketide formation of all C6, C8 and C10 alkaloids in the plant. Such a scenario
would involve condensation of either acetyl-, butyryl-, or hexanoyl-CoA with two malonyl-CoAs to
form a triketide. C8-alkaloids are the most common (e.g., [5]), consistently with butyryl-CoA being the
favored starter among those tested. C10-alkaloids are minor alkaloids. Conmaculatin is a relatively
new finding [36] that probably escaped earlier analyses due to its low amounts. Hexanoyl-CoA is
a suitable starter but may not be preferred naturally. The only C6-alkaloid, 2-methylpiperidine, has
occasionally been reported [5,17], however, CPKS5 does not utilize acetyl-CoA very well under the
tested conditions [92]. According to the in vitro substrate tests there could theoretically be C12-alkaloids
in poison hemlock, but hitherto these have not been observed.

In the light of the current knowledge, Leete’s labeling results in planta [87,89] could be interpreted
so that fed acetate is first activated into acetyl-CoA, part of which is further processed into malonyl-CoA.
Acetyl-CoA is then elongated with malonyl-CoA by fatty acid synthase to form butyryl-CoA [94],
resulting in the labeling of even-numbered carbons when using 14C-labelled acetate substrate.
Then butyryl-CoA is elongated twice with malonyl-CoA containing 14C originating from the fed
acetate (Figure 6).
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Further downstream the series of steps are characterized on the enzymatic level. Nitrogen of
hemlock alkaloids is introduced in a transaminase-catalyzed reaction between 5-keto-octanal and
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L-alanine by L-alanine:5-keto-octanal aminotransferase (AAT) (Figure 7) [95]. The enzyme has no
reverse activity, i.e., the reaction is unidirectional; L-alanine:5-ketooctanal to pyruvate:γ-coniceine with
an activity of 10 U/mg protein. Serine, glutamic acid, 3-aminobutyric acid and 6-amino hexanoic
acid can also function as nitrogen donors for AAT [96]. The transaminase has two isozymes, A and
B, with the same molecular size, 56.23 kDa [97]. Isozyme A is mitochondrial [98] and its Km for
5-keto-octanal is 1.6 mM and for L-alanine 27 mM, with a pH optimum of 7.5–8.5 [97]. Isozyme B
is chloroplastic [98], and its Km for 5-keto-octanal is 0.14 mM and for L-alanine 55 mM, with a pH
optimum of 8.5 [97]. Roberts [98] suggested that especially the isozyme B would be the transaminase
responsible for alkaloid formation. An AAT isolated from spinach (Spinacia oleracea L.) leaves is
also capable of forming γ-coniceine from 5-keto-octanal with L-alanine [99]. The cyclization after
transamination is a non-enzymatic reaction [96,99].
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γ-Coniceine is a precursor of coniine [13,52,100,101,103], which is formed by γ-coniceine reductase
(CR). The enzyme was isolated from metabolically active leaves and unripe fruits of hemlock, in which
coniine is a major alkaloid. The CR is NADPH-dependent [105] and catalyzes the formation of
the (S)-isomer of coniine [30]. Conhydrinone [30] and pseudoconhydrine [13] are also derived
from γ-coniceine.

N-Methylation of coniine leads to N-methylconiine [100,101]. The hemlock plants were fed
[methyl-14C]-L-methionine and the methyl group was incorporated into N-methylconiine [106].
The enzyme behind the reaction is S-adenosyl-L-methionine:coniine methyltransferase (CSAM) [104],
which was isolated from unripe fruits. The actual donor of the methyl group is
S-adenosyl-L-methionine. The enzyme’s optimal reaction rate is 140 nmol coniine/h/mg protein with
Km 1.55 mM and its optimal pH is 8.2. The enzyme accepts coniine, conhydrine and pseudoconhydrine
as substrates to produce N-methylated alkaloids. CSAM works best with pseudoconhydrine, followed
by coniine and most poorly with conhydrine [12].

As mentioned before (Section 3.1) seeds are major accumulation sites for hemlock alkaloids.
Otherwise, Cromwell [5] deduced that the biosynthesis of alkaloids is more likely to occur in shoots
than in roots. This conclusion was based on the fact that the root sap of a decapitated plant was devoid
of alkaloids, and there was no accumulation over a period of one week. Fairbairn and Suwal [37]
noted that roots of young seedlings did not contain alkaloids, in contrast to the roots of second-year
plants before spring growth but during the growth season; alkaloids were not detected in their roots
either. [14C]-Labelled alkaloids in seeds were not found in germinating cotyledons, as γ-coniceine of
seedlings is synthesized de novo [12]. The key enzymes of alkaloid production (AAT, CR and CSAM)
are active during leaf expansion. This activity ceases when the leaf has matured and a similar situation
prevails in the fruits [51]. Interestingly, green callus of poison hemlock does not contain any alkaloids
even when elicitated [107,108].

In poison hemlock, the switch from γ-coniceine to saturated alkaloid accumulation may be
associated with active growth in a reversible fashion [52,103]. Coniine content can vary by over 100%
and γ-coniceine by over 400% during the daytime. The amount of γ-coniceine peaks around midday,
when coniine is absent. There are also hourly and daily changes in alkaloid concentrations [37].
Roberts [98] suggested that there is a close link between illumination and alkaloid production.
Biosynthesis of pseudoconhydrine is apparently dependent on environmental factors, as the same
variety produced conhydrine outdoors and pseudoconhydrine in a greenhouse [13]. γ-Coniceine is
the dominant alkaloid during the rainy season and coniine in the dry season [52]. Lang and Smith [35]
concluded that alkaloid production varies according to temperature and moisture conditions.

Another reason for the alkaloid fluctuation could be that hemlock alkaloids are coupled to an
oxidation-reduction mechanism [52]. γ-Coniceine and coniine could have a similar function as NAD+

and NADH in poison hemlock [10,103]. However, increased alkaloid production is associated with
general improvement in growth and vigor.

In the poison hemlock plant, especially the fruit, the alkaloids accumulate over time and yield
γ-coniceine, coniine and some other alkaloids [102,103]. Coniine alkaloids are quite stable once they
are formed, at least for nine days [30], and are present in non-volatile form [109].

5. Biological Activity of Hemlock Alkaloids

5.1. Mode of Action of Hemlock Alkaloids in Organisms

Hemlock alkaloids constitute neurotoxins and teratogens [10,110]. They affect the mammalian
respiration so that it is first stimulated, then depressed, becoming cyanosed, and causing respiration
failure [111]. Coniine is a nicotinic acetylcholine receptor (nAChR) antagonist. Its teratogenic action
may be related to its ability to activate (stimulate) and subsequently, desensitize (depress) nAChRs,
as this leads to inhibition of fetal movement [110].
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One of the first studies on the biological effects of coniine in the body was performed in 1898 by
Moore and Row [112]. They injected 10–20 mg coniine subcutaneously into a frog weighing about
25 g. This led to complete muscular paralysis of the animal. When the nerves of the frog were
stimulated with electricity, there was no response due to paralysis of the intramuscular part of the
muscular nerves. The coniine poisoning first affected the peripheral nervous system. In a rabbit,
50–60 mg coniine applied to the superior cervical ganglion induced partial paralysis, which rapidly
passed off. The authors also observed that coniine slowed down amphibian and mammalian hearts.
Coniine caused threefold dilation of arterioles as compared to the normal diameter. In mammals,
coniine caused a slight quickening and marked deepening of the respiration. Later, the breathing
became slower and the individual breaths became shallower. When coniine (20–70 mg) was injected
into a cat or a dog, their respiration became feebler and finally halted due to peripheral paralysis of
the respiratory muscles. There was no clear result to indicate the fatal dose. Moore and Row [112]
concluded that coniine has similar physiological roles to those of nicotine and piperidine, only with
varying intensity.

Bowman and Sangvi [111] studied the effects of coniine, N-methylconiine, and γ-coniceine on
the body. Coniine (15–50 µg/mL) and γ-coniceine (5–15 µg/mL) caused contraction of isolated
guinea pig ileum and rabbit duodenum. The action arose from stimulation of parasympathetic
ganglia. N-Methylconiine did not cause any effect on the tested material. Blood pressure dropped
with a coniine dosage of 0.5–2 mg/kg, N-methylconiine 1–4 mg/kg and γ-coniceine 0.2–0.5 mg/kg.
In isolated rabbit heart, a decrease in the strength of beating was recorded with coniine at a
dosage of 2 mg, N-methylconiine at 4 mg, and γ-coniceine at 0.2 mg. Generally, hemlock alkaloids
intravenously or intra-arterially caused a small increase in venous outflow in skeletal muscle blood
flow. The authors observed that respiration was first stimulated and then depressed during their animal
testing. Coniine caused reportorial stimulation and depression at dosages of 1–4 mg/kg, whereas for
γ-coniceine a lower dosage of only 0.3–1 mg/kg was sufficient. N-Methylconiine had no stimulatory
effect; only depression was recorded in high doses due to neuromuscular block. Small dosages of
coniine (20–30 µg) or γ-coniceine (10–20 µg) slowly increased the respiratory rate and depth, larger
dosages caused depression of respiration and later respiratory failure.

Coniine blocks transmission through the superior ganglion and the neuromuscular junction [113].
It blocks acetylcholine in nictitating membrane. In frog neuromuscular endplate, coniine first reduces
the amplitude and then causes depolarization of the membrane. In cat’s spine, the alkaloid causes
depression and excitement. The depression is manifested by a decrease of monosynaptic response and
the depression of post-tetanic potentiation. The excitement is the production of spontaneous waves and
discharges recorded from the ventral root and blockade of direct and recurrent postsynaptic inhibition.

Coniine’s half maximal inhibitory concentration (IC50) is 314 µM in rat diaphragm, 70 µM in chick
leg muscle, 1100 µM in maternal rat brain, 820 µM in fetal rat brain and 270 µM in chick brain [114].
Its binding to neuroreceptors and acetylcholine-related enzymes is in the adrenergic receptor Alpha2

260 µM, in the serotonin receptor 5-HT2 492.7 µM, and in the acetylcholine receptors muscarinic AChR
2071 µM and nAChR 19 µM, and butylcholine esterase 327.5 µM [115].

Coniine, γ-coniceine and N-methylconiine block or reduce the response of muscle to
acetylcholine [109] due to alkaloid binding to the nicotinic receptor of neuromuscular cells [114,116].
Coniine also exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic
transmitter response in rat anococcygeus muscle via the inhibition of presynaptic nAChR [117].
When compared to different alkaloids in nAChR of fetal rat muscle, the efficiency is, from the highest
to the lowest: nicotine > coniine > tubocurarine > lobeline [118]. The toxicities of coniine enantiomers
on human tumour cell line TE-671 expressing human foetal nAChR are, in order from the highest to
the lowest: γ-coniceine > (−)-coniine > (−)-N-methylconiine > (±)-coniine > (±)-N-methylconiine >
(+)-coniine > (+)-N-methylconiine [116,119]. The exact values for different coniine enantiomers are
presented in Table 3. (−)-Coniine elicits more effectively electrical changes in TE-671 cells. It also
inhibits fetal movement in goats [120].
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Table 3. The half maximal effective concentration (EC50) of cell lines expressing nAChR in vitro for
different alkaloids and their enantiomers [110,119].

EC50 of the Cell Line Expressing nAChR

Alkaloid TE-671 SH-SY5Y
(−)-coniine 115 µM 9.6 µM
(±)-coniine 208 µM 51.4 µM
(+)-coniine 900 µM 10.2 µM
γ-coniceine 1.3 µM -

(−)-N-methylconiine 105 µM -
(±)-N-methylconiine 405 µM -
(+)-N-methylconiine 3000 µM -

The hemlock alkaloids’ effects partly resemble those of curare [110,121] and nicotine in both the
central and peripheral nervous systems [111]. Coniine potentiates morphine’s analgesic activity [122].
Hemlock alkaloids have analgesic (pain relieving) and anti-inflammatory activity in rats at 200 mg/kg
(total alkaloids) [123]. Coniine has antinociceptive activity (preventing transmission of harmful
signals in the nervous system) via nicotinic receptors at a dosage of 20 mg/kg in mice [122].
Conmaculatin has a strong peripheral and central antinociceptive activity in mouse over a dosage
range of 10–20 mg/kg [34].

Little is known about how hemlock alkaloids are metabolized in the mammalian system(s) [86].
The microsomes of rat and chick liver did not biotransform coniine during testing (15 min). In insects,
cytochrome P450 is involved when piperidine alkaloids are detoxified [124]. Another route to remove
coniine is excretion (via urine or feces) rather than biotransformation (metabolism or catabolism) [114].
In rats, piperidine alkaloid piperine is excreted via feces (3%) and the rest of it via catabolism in the
liver in the form of conjugated uronic acids, sulfates and phenols which are excreted via urine [125].

5.2. Pharmacology of Poison Hemlock and Hemlock Alkaloids

Poison hemlock has been used as a medicine externally to treat herpes, erysipelas (also known as
Ignis sacer, holy fire, and St. Anthony’s fire; a bacterial skin infection caused by Streptococcus pyogenes
Rosenbach) and breast tumors. The Greek and Arabian physicians used the plant to cure indolent
tumors, swellings and pains in the joints. Poison hemlock was used in antiquity to wither testicles and
to shrink breasts [126]. The juice of poison hemlock together with seeds of betony (Stachys officinalis (L.)
Trevis. ex Briq.) and fennel (Foeniculum vulgare Mill.) mixed into wine were used for the treatment
of the bite of a mad dog (rabies). The plant has been the last resort antidote for strychnine and other
virulent poisons. Religious sects in the 1400s and 1500s used roasted roots to relieve pains of gout.
From the 1760s onwards the plant was used as a cure for cancerous ulcers. Tinctures and extracts
made from hemlock have been used as a sedative and an anodyne (analgesic). Its antispasmodic
effects were used to treat tetanus, asthma, epilepsy, whooping cough, angina, chore and stomach
pains [9,45,47,122,123,127]. In Finnish folk medicine, poison hemlock has been used as a powder,
plaster and poultice to treat hardened glands, cramp and malignant wounds [128].

Dried leaf and juice of poison hemlock were part of the official London and Edinburgh
pharmacopeias of 1864–1898. The last official recognition of the medical use of poison hemlock
was in 1938 in the British Pharmaceutical Codex [111]. The reason for discontinuation appears to be the
difficulty of manufacturing a medicine with even quality: different preparations varied in potency [86].
If poison hemlock is used internally it must be carefully administrated, as narcotic poisoning with
paralysis and loss of speech may result from overdosage [9,47].

The coniine alkaloids could serve as a starting point for the synthesis of specific and less toxic
spinal relaxants [111,121]. Bowman and Sangvi [111] noted that the hemlock alkaloids do not have a
local anesthetic effect, or it is very weak. However, later research has found that coniine has a local
anesthetic effect in mice and rats [122,123].
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5.3. Toxicity to Animals

Poisoning of various mammals has been reported after feeding on poison hemlock:
cattle (Bos taurus L.) [129–132], pigs (Sus scrofa domesticus Erxleben) [41,133–139], horses
(Equus ferus caballus L.) [140–142], deer [132], tule elks (Cervus canadensis nannodes) [143], goats (Capra
aegagrus hircus L.) [17,144], sheep (Ovis aries L.) [41,145] and rabbits (Oryctolagus cuniculus L.) [146].
Coniine is deadly to several birds: quails (Coturnix corturnix L.), chickens (Gallus gallus L.) and turkeys
(Meleagris gallopavo L.) [147]. General signs of poison hemlock toxicosis on mammals are muscular
weakness, incoordination, trembling, nervousness, ataxic gait, knuckling at the fetlock joints, excessive
salivation, bloating, intestinal irritation, rapid and weak pulse, loss of appetite, cyanotic membranes,
dilating pupils, initial central nervous system stimulation, then depression and finally death from
respiratory paralysis (all symptoms not always present) [54,141,142]. Some of these signs appear
within 1 h of consumption, followed by respiratory paralysis in 2–3 h, and some of the symptoms
come later (in 3–4 days) [141,142]. The treatment for animals includes nerve and heart stimulants with
large doses of mineral oil and purgatives to empty the digestive tract [142].

Different species have different reactions to coniine. Its toxicity varies from the lowest to the
highest tolerance as follows: cows < mares < ewes [141]. For example, to cows, coniine is toxic in a
daily dosage of 3.3–6.6 mg/kg [141] and about 1 kg of poison hemlock is deadly [142]. The lethal level
for pigs is 1 g/kg of seeds and 8 g/kg of the plant [136]. Coniine, piperidine, and 2-ethylpiperidine are
toxic to cattle, with classic symptoms of hemlock poisoning. 2-Methylpiperidine, 2-piperidine-ethanol,
conyrine, 3-methylpiperidine and N-methylpiperidine are not toxic. Inhalation of coniine or crushed
green plant material does not cause toxication [148]. The primary toxicants to livestock are coniine and
γ-coniceine [54].

Animal toxications happen when there is no other vegetation available [57,149]. It has been
observed that animals feeding on poison hemlock return to feed on other plants [8,144]. Even though,
it is possible that hemlock alkaloids can be addictive to surviving animals.

5.4. Teratogenicity to Animals

Coniine and hence poison hemlock are teratogenic to animals (from the most intense to the least):
cows > sows > ewes [145]. Piperidine, 2-methylpiperidine, 2-ethylpiperidine, 2-piperidineethanol,
conyrine, 3-methylpiperidine and N-methylpiperidine are not teratogenic [148]. For a piperidine
alkaloid to become teratogenic it must have at least three carbons in the ‘tail’ and only one or
no double bonds in the ring structure [148]. The reason behind the teratogenic malformations is
alkaloid-induced fetal immobilization [150]. The malformations sometimes resolve spontaneously
after birth in 8–10 weeks. Poison hemlock plant material causes multiple congenital contractures and
cleft palate. Multiple congenital contractures include torticollis, scoliosis, lordosis, arthrogryposis, rib
cage anomalies, overextension, flexure and rigidity of joints [151].

5.5. Toxicity to Humans

A historic poem of koneion (hemlock) intoxication by Nicander of Colophon (204–135 B.C.) in
Alexipharmaca [126] describes how the effects progress in the human body:

“Take note of the noxious draught which is hemlock, for this drink assuredly loses disaster upon
the head bringing the darkness of night: the eyes roll, and men roam the streets with tottering steps
and crawling upon their hands; a terrible choking blocks the lower throat and the narrow passage of
the windpipe; the extremities grow cold; and in the limbs the stout arteries are contracted; for a short
while the victim draws breath like one swooning, and his spirit beholds Hades”.

Reese’s [152] description is as follows: a headache, “imperfect vision”, pharyngeal pain, vomiting,
drowsiness, gradual paralysis of extremities and death at last “from apnea”. Other symptoms may
be convulsions, coma, violent delirium, salivation and involuntary discharges from the bladder
and bowels. Modern major clinical effects on humans are irritation of oral mucosa, salivation,
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nausea, emesis, slight abdominal pain, diarrhea (uncommon), bradycardia, miosis, hypertension
to tachycardia, hypotension, mydriasis, seizures following ascendant muscle paralysis and respiratory
failure. Diagnosis uses blood gases, electrolytes and a plant sample. First-aid and management
procedures are immediate gastric lavage or emesis following activated charcoal with a purgative drug.
Treatment is mainly to ensure adequate respiratory function [45]. The important factor is to get the
patient quickly into hospital care, as the poisoning symptoms appear quite rapidly. With the help of
artificial breathing such as intubation, it is possible to save the patient’s life.

Coniine is toxic to humans and 3 mg produce symptoms. Up to 150–300 mg coniine can be
tolerated, which translates to 6–8 leaves (6 g) [45,153,154]. Accidental ingestion of poisonous plants
(e.g., poison hemlock) can also be sourced to herbal medication that has been incorrectly prepared or
an incorrect plant has been used due to misidentification [155].

5.6. Socrates

Socrates died in 399 B.C. He was sentenced to death because of corrupting the youth of Athens
and failing to recognize the city’s traditional gods. The sentencing was passed with only a small
majority. The execution was carried out with a dose of poison potion called pharmakon according to the
tradition. The death of Socrates is described in Plato’s Socratic dialogue, Phaedo [127,156].

Often the poison that killed Socrates has been suggested to have been poison hemlock [157].
Plato’s description of the death of Socrates might be true based on the results of research by
Arihan et al. [122], according to which coniine has antinociceptive activity. It may have been a
mixture of koneion (poison hemlock) and for example opium, myrrh, and wine [121,122,126,127,156,157].
Correctly performed the poison, as in Plato’s description, would speed the death [127]. Theophrastus’
Enquiry into Plants describes how to prepare hemlock for quick and painless death; poppy and other
similar herbs are mixed with it. However, there is no information concerning which hemlock plant the
recipe uses, poison hemlock (C. maculatum), water hemlock (Cicuta sp.) or water dropwort (Oenanthe
crocata L.) [158].

There are several factors supporting the theory that poison hemlock was one of the components of
the poison administered to Socrates. The paralysis started from the feet, death was due to respiratory
failure, the feeling of “cold” and “stiffness” was in the calves and spread upwards to the chest, the loss
of feeling in the legs and the fact that death appears to have been quite quick on the basis of the dialogue.
The contradictions for poison hemlock are that there was no abdominal pain, nausea, vomiting or
diarrhea [157]. A Scottish physician, John Harley, tested poison hemlock on himself in the 19th
century and his description agrees rather well with Plato’s [126]. When coniine and opium are used
together and tested on rats, the effects of the mixture are quicker than either alone. The symptoms are
depression of respiration, very strong cyanosis, paralyzed skin sensitivity, almost absent convulsions,
strong muscle paralysis, pronounced paralyzing action of coniine and lowered anesthetic power of
opium. Opium and poison hemlock were used together to speed up the death of Socrates according
to de Boer [121]. It could explain the skin effects in the legs and the last-minute speaking of Socrates.
Poison hemlock alone would have needed administration of quite a large amount of the plant to reach
the necessary dose [121].

Nevertheless, it is possible that the description of Socrates’ death has some artistic license and is
not entirely accurate [127], or there might be some confusion in the description of symptoms, as Plato’s
writing is in fact a quotation of Crito [156,157]. It is possible that Plato wanted to present a beautified
picture of Socrates’ passing without all the gruesome details [156]. Bloch [126], however, concluded
that Plato described the poisoning of Socrates correctly once all the confusing layers are peeled away.
Sullivan [158] supported the notion that poison hemlock was behind the poisoning of Socrates without
a poetic license, as the description in Phaedo is quite clear.
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6. Ecological Role of Hemlock Alkaloids

Coniine is one of the floral scent compounds in poison hemlock [51]. Nitao [159] noted that flies
(Diptera) pollinate poison hemlock flowers in large numbers, and thus could be attracted by coniine.
Volatile alkaloids are part of the host plant recognition of the hemlock moth [160]. The larvae of the
hemlock moth also need coniine in order to develop properly [160]. As attacked plants produce more
alkaloids, moth larvae must therefore have a peculiar strategy to handle the alkaloids [8,38].

An important question is the function of coniine in Sarracenia sp., since the plants live in
nutrient-poor environments, and nitrogen-consuming compounds would be costly without benefits.
However, Butler and Ellison [161] studied nitrogen acquisition of S. purpurea and observed that
actually the plant’s pitchers are quite efficient in prey capture, and thus could greatly enhance the
available nitrogen for the following growth season. Mody et al. [6] postulated that coniine could
be an insect-paralyzing agent because S. flava, in which they found coniine, paralyzed fire ants, and
Harborne [73] suggested that coniine attracts insects into the pitcher. When insect attracting and
paralyzing are taken into account, investment in coniine biosynthesis by a Sarracenia plant could
indicate that coniine is an enhancing mechanism for prey capture due to its dual role.

7. Conclusions

All in all, there has been tremendous progress in the research on hemlock alkaloids;
especially recent advances in the biosynthetic pathway elucidation have helped to clarify the carbon
backbone formation. Now, almost all pathway enzymes are identified except for one critical reduction
step. This putative polyketide reductase would remove the C-5 keto group from the polyketide
intermediate. It is expected that the gene encoding this enzyme as well as the genes for the known
enzymes in the pathway will be soon revealed by sequencing approaches. The renewed interest in the
pharmaceutical utilization of hemlock alkaloid derivatives would make these efforts worthwhile.
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