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Epitel has developed Epilog, a miniature, wireless, wearable electroencephalography

(EEG) sensor. Four Epilog sensors are combined as part of Epitel’s Remote EEG

Monitoring platform (REMI) to create 10 channels of EEG for remote patient monitoring.

REMI is designed to provide comprehensive spatial EEG recordings that can be

administered by non-specialized medical personnel in any medical center. The purpose

of this study was to determine how accurate epileptologists are at remotely reviewing

Epilog sensor EEG in the 10-channel “REMI montage,” with and without seizure detection

support software. Three board certified epileptologists reviewed the REMI montage

from 20 subjects who wore four Epilog sensors for up to 5 days alongside traditional

video-EEG in the EMU, 10 of whom experienced a total of 24 focal-onset electrographic

seizures and 10 of whom experienced no seizures or epileptiform activity. Epileptologists

randomly reviewed the same datasets with and without clinical decision support

annotations from an automated seizure detection algorithm tuned to be highly sensitive.

Blinded consensus review of unannotated Epilog EEG in the REMI montage detected

people who were experiencing electrographic seizure activity with 90% sensitivity and

90% specificity. Consensus detection of individual focal onset seizures resulted in a

mean sensitivity of 61%, precision of 80%, and false detection rate (FDR) of 0.002

false positives per hour (FP/h) of data. With algorithm seizure detection annotations,

the consensus review mean sensitivity improved to 68% with a slight increase in FDR

(0.005 FP/h). As seizure detection software, the automated algorithm detected people

who were experiencing electrographic seizure activity with 100% sensitivity and 70%

specificity, and detected individual focal onset seizures with a mean sensitivity of 90%

and mean false alarm rate of 0.087 FP/h. This is the first study showing epileptologists’

ability to blindly review EEG from four Epilog sensors in the REMI montage, and the

results demonstrate the clinical potential to accurately identify patients experiencing

electrographic seizures. Additionally, the automated algorithm shows promise as clinical

decision support software to detect discrete electrographic seizures in individual records

as accurately as FDA-cleared predicates.
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INTRODUCTION

Epilepsy affects 1% of the population or ∼70 million people

worldwide (1). For people who are experiencing seizure-like

activity in their daily lives, the current acceptable method for
differential diagnosis requires a visit to an epilepsy monitoring

unit (EMU), for which there only exists∼245 Level III/IV centers
out of ∼6,200 hospitals across the U.S (2). Most commonly,
this requires a limited multi-day stay in the EMU where video
and high-channel-count wired electroencephalography (EEG)
are recorded (19+ EEG channels). A diagnosis of epilepsy is
determined only after epileptologist review of the video-EEG
record for electrographic epileptiform events and clinical seizure
activity. EMU visits require time away from home, potentially
large travel distances, can be very costly even with insurance,
require restricted movements due to the wired and tethered EEG
systems, and can be traumatizing (3, 4). During these limited
EMU stays, adults are commonly taken off their medications
with the intent to record seizures. It is common for some
people to feel overwhelmed by the entire process and leave early
without any recording of seizures or concrete diagnosis of a
seizure disorder (4). Additionally, many people do not have any
electrographic seizure activity during their EMU stay for various
reasons including the rarity of events that do not occur during a
limited EMU stay (3, 5).

Better electrographic seizure recordings and clinical decisions
could be made if the EEG was recorded at home in a person’s
normal daily environment (6). Ambulatory EEG systems (AEEG)
have been used by epileptologists for diagnostic purposes when
an in-EMU visit is not possible. The AEEG systems allow people
to wear the wired AEEG in their home environment, but have
substantial limitations including: the EEG electrodes must be
positioned and glued to the person’s scalp by a trained EEG
technician, the long wired tethers create obfuscating motion
artifacts in the EEG record especially during convulsive seizures
and other movements, the bulky system is restrictive which
prevents the person from many normal daily activities like
exercise or bathing, and the cumbersome system can be socially
stigmatizing if worn out in public (Figure 1) (7, 8). Sub-scalp
EEG systems, such as UNEEG’s SubQ (9) and EpiMinder’s
MinderTM (10) offer potential solutions for long-term, at-home
EEG recording, though they are invasive. A discreet, wireless,
easily applied, wearable EEG system would have the potential to
make home EEG recording more widely available, less restrictive,
and provide EEG with no wired tether artifacts that can obscure
the electrographic seizure activity.

To fill this need, Epitel has developed Epilog (Figure 2), a
miniature, wireless, wearable EEG sensor capable of recording
high-fidelity EEG throughout a person’s daily life. Epilog is
smaller than a cochlear implant, is designed to be aesthetically-
pleasing while worn on the scalp below the hairline, and allows
unrestricted mobility. The Epilog sensor records a single channel
of EEG through a differential electrode pair spaced 18mm
center-to-center, similar to high-density EEG (11). Because all
components are self-contained, Epilog data is less susceptible to
wired movement artifacts or antenna noise that plague wired
EEG systems. Epilog sensors are robust, water-resistant, and

FIGURE 1 | Typical wired ambulatory EEG (with permission from Kelly Falk).

FIGURE 2 | Epilog uses one-piece disposable “stickers,” that are both the

adhesive and conductive hydrogel that serve as the interface between Epilog

and the scalp when used below hairline.

designed to meet the rigorous needs of everyday use while
providing consistent recording performance.

Epitel has developed REMI R©, a Remote EEG Monitoring
platform. REMI is intended to be used in any clinical situation
where near real-time and/or remote EEG is warranted, using
four Epilog sensors placed bilaterally below the hairline on the
forehead and behind the ear, at the approximate F7/F8 and T5/T6
locations based on the standard International 10–20 system
(12). Epitel intends to extend the use of REMI for ambulatory,
outpatient EEG recordings, where any physician can prescribe
the system for a person suspected of seizures. Their patient
would wear the sensors for a specific prescribed duration with
no mobility restrictions in their normal daily lives. The EEG
data from the four Epilog sensors are directly uploaded to an
HIPAA-compliant database, converted into a 10-channel REMI
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montage that includes the four individual sensor recordings and
six sensor-to-sensor differential channels (herein referred to as
“REMI montage”). The REMI montage is accessible for review
by a remote epileptologist through REMI’s Persyst R© Mobile
interface. An example of a 30-s focal onset seizure evolving
to bilateral tonic-clonic recorded and presented in the REMI
montage can be seen in Figure 3.

Reviewing long duration EEG recordings can be a very time-
consuming processes for epileptologists and having more at-
home EEG recordings via wearable systems, such as REMI,
would likely become overly burdensome. Automated seizure
detection algorithms may be used as Clinical Decision Support
Software (CDSS), where the algorithm highlights specific time
periods in an EEG record when seizure activity is likely.
Epileptologists could use the markers to guide and speed up
their EEG review. A wide variety of signal processing and
machine learning algorithms have been studied for seizure
detection purposes (13–16). There are clinically cleared CDSS
that reduce the time required to review EEG in the hospital
with high sensitivity and low false detection rates (FDR) (17–
23). The most commonly used clinically-cleared software for
all types of seizure detection is Persyst R©. The Persyst 12
software is the most commonly cited predicate for scalp EEG
seizure detection software with a mean sensitivity of 81%
and FDR of 0.21 false detections per hour. However effective,
automated scalp EEG seizure detection software is currently only
clinically available for use on in-hospital, high-channel-count,
wired-EEG recordings.

To demonstrate feasibility for long-term ambulatory use of
REMI, it is necessary to first determine how accurate remote
epileptologist reviewers are at identifying spontaneous, recurrent,
electrographic seizures in the REMI montage, and if automated
algorithms can be used as CDSS to support expert review. With
this study, we hypothesize that (a) Epileptologists can accurately
detect focal-onset electrographic seizures in REMI montage data,
(b) Automated seizure detection algorithms can be used to
detect focal-onset electrographic seizures in REMI montage data
with sensitivity and false detection rate similar to FDA-cleared
predicates, and (c) Automated seizure detection algorithms can
be used as CDSS to guide epileptologist review without a loss
in performance.

METHODS

Electroencephalography was recorded by Epilog sensors
alongside standard-of-care 19-channel, full-montage, video-EEG
(herein referred to as “wired-EEG”) in adults during EMU stays
at the University of Colorado Anschutz Medical Center. The
subjects’ wired-EEG included a full array of 19 wired electrodes
in the standard International 10–20 system, including T1, T2,
and eye leads.

General Methods
All protocols were approved by the Institutional Review Board
of the University of Colorado. Adults entering the EMU for
long-term EEG evaluation were called prior to their appointment

FIGURE 3 | A 30-s recording from four Epilog sensors during a focal-onset seizure evolving to bilateral tonic-clonic (TP10 focal onset), displayed in the 10-channel

REMI montage.
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FIGURE 4 | Epilog sensor placement locations with the standard International

10–20 system as reference. For the forehead locations, LF is left-forehead

closest to F7, RF is right-forehead closest to F8, and the Epilog sensors were

placed as far from forehead/eye muscles as possible. For the behind-the-ear

locations, LE is behind left ear closest to T5, and RE is behind right ear closest

to T6, and the Epilog sensors were placed as high up as possible over the

mastoid while still being below the hairline, making sure placement was not

directly over the neck muscles.

to discuss the study objectives. Each subject was consented
in the EMU. Epilog sensors were placed by the trained study
coordinator after the full-montage wired-EEG electrodes were
affixed by an EEG technician. Each subject wore four Epilog
sensors, placed at scalp locations below the hairline on the
forehead and behind each ear, using an adhesive sticker with
embedded conductive hydrogel (see Figure 2 for hydrogel sticker
and see Figure 4 for sensor proximity to 10–20 locations). The
IRB approval allowed for up to 7 days of continuous EEG
recording. The Epilog sensor can be worn continuously for up
to 7 days in a normal EMU environment and required no daily
maintenance from the subject or medical staff. Routine video-
EEG review and associated seizure identification was part of the
standard patient care.

EEG Recordings
Epilog records a single channel of EEG through two gold
electrodes Ø6mm, spaced 18mm center-to-center, and data is
extracted from the sensor’s onboard memory into the European
Data Format Plus file type (EDF+). Epilog data were recorded
at 10-bit, 512Hz with an amplifier passband of 0.8–92Hz. The
full-scale signal amplitude was ± 175 µV. The Epilog sensor
uses a primary battery that supports continuous EEG recording
for 7 days without replacement or recharging. Video-EEG in the

EMUwas recorded with standard clinical equipment and settings
(Nihon Khoden Neurofax EEG-1200, 200 Hz sampling).

Workflow
The study coordinator working with the on-service epileptologist
pre-contacted all subjects, consented all subjects upon arrival,
placed each Epilog sensor after the EEG Technician had placed
wired-EEG electrodes (using training material provided by
Epitel), and managed the reporting and data retrieval. The Epilog
EEG and wired-EEG were time-synced using a sequence of “taps”
on both the Epilog sensor and the Fp1 wired-EEG electrode.
During standard-of-care video-EEG review, the epileptologist
determined the electrographic start and stop time for each seizure
event. The clinical data management specialist then uploaded
de-identified subject data and Epilog EEG records to a HIPAA-
compliant database. The EEG data from the four Epilog sensors
was converted into the 10-channel REMImontage (Figure 3) and
uploaded into a Persyst 14b server with Persyst Mobile access.

Automated Seizure Detection Algorithm
Prior to designing the algorithm for this study, Epitel began
developing a seizure detection algorithm for single-channel EEG
recorded with Epilog sensors. Epilog EEG data from patients at
clinical partner epilepsy centers were used to determine which
specific features, machine learning model types, and machine
learning model hyperparameters are most likely to yield the best
results for focal seizure detection in Epilog sensor EEG. This
was done using common grid search, feature importance, and
stratified k-folds cross-validation methods. This early analysis
can be considered the train-test data for feature and model
determination. The single-channel Epilog EEG data used in the
train-test design of the algorithm was from patients who did
not wear Epilog sensors at all four scalp locations as in this
present study. While the design of the single-channel algorithm
is ongoing, the preliminary knowledge supported the use of the
specific features and machine learning model and parameters
used in the present study.

EEG data is commonly separated into short, seconds-long
segments for seizure detection algorithms that use machine
learning (15, 16). The 10-channel REMI-montage data was
segmented into 2-s windows for scoring and feature extraction.
Data segments that occurred during known electrographic
seizure times were scored as “ictal” segments; segments that
occurred within 15min before and after known seizure times
were scored “near-ictal”; and all other segments were scored
“non-ictal.” The reasoning behind the “near-ictal” scoring is
that there was some pre-ictal evolution in the EEG prior to
the noted electrographic onset as well as some post-ictal EEG
activity that might confound a machine learning classifier. The
15-min “near-ictal” timing was chosen based on internal review
of the Epilog EEG data and knowledge that no known seizure
event timings were within <15min of each other. For each 2-
s segment, features were extracted in the time domain (e.g.,
variance), frequency domain (e.g., power in delta band), time-
frequency domain (e.g., wavelet convolutions), and complexity
domain (e.g., entropy). Because seizures are known to evolve over
time, historical information about each feature was determined as
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a weighted average of prior segments’ feature values and added to
the overall feature set. Cross-channel correlations for all features
were determined and added to the overall feature set for each
2-s segment.

For each of the 20 subjects, a training feature set was created
by combining the segmented and scored features from all other
19 subjects, essentially a leave-one-out method that occurs 20
independent times. The ratio of non-ictal to ictal data was quite
high, even for those who experienced seizures, which would
bias any machine learning classifier. Thus, the training set was
reduced to keep all of the ictal segments and randomly chosen
non-ictal segments in a 3:1 non-ictal:ictal ratio. No “near-ictal”
segments were included in the training set. A random forest
machine learning classifier was trained using an ensemble of
500 trees, where bootstrapping (sample with replacement) was
allowed, and trees were extended to full splits. The trained
classifier was then applied to the held-out subject’s complete
feature set including “near-ictal” segments, and an ictal class
likelihood was determined for each 2-s segment.

In most literature, this is when a threshold is applied to
classify each segment as ictal or not, and metrics such as receiver
operating characteristic curve area-under-the-curve or F1-score
can be determined to see how well the classifier performed in
out-of-sample segmented data. For seizure detection, this is not
enough, as what is necessary is whole seizure start and stop times,
where a complete seizure can be between 10 s and 15min in
duration. This has been demonstrated in some recent literature
using the classifier likelihood output and an integrate-and-fire
neuron (24). For our algorithm, a leaky, weighted integrator
was applied to the classifier likelihood output. Using a fixed
threshold for all subjects, when the integrated ictal likelihood
went above the threshold for five continuous segments (10 s), a
seizure start marker was set. The exact time point of the start
marker was set based on the start time of the first segment
above threshold and accounted for the duration of the integrator.
Similarly, when the integrated ictal likelihood went below the
threshold for five continuous segments, a seizure stop marker
was set. This threshold was set low so that the sensitivity of the
machine learning algorithmwould be high (≥90% on the training
data) at the expense of a possibly high FDR. Some additional
processing was done on these whole-seizure detection events:
(1) Any events that occurred within 2min of each other were
concatenated into a single event, and (2) After the concatenation,
any event that lasted longer than 15min was discarded. The
sensitivity, precision, and FDR of the automated algorithm were
determined for each of the 20 subjects, where a true positive (TP)
event occurs if there is any overlap between the known the seizure
electrographic onset/offset time and the algorithm determined
one (25). For TP events, the percent of overlap was determined as
the amount of time of the known seizure event that the detection
event encompassed.

Blinded Expert Review With Persyst Mobile
Three independent, board certified epileptologists not affiliated
with University of Colorado Anschutz Medical Center, and who
have never reviewed Epilog EEG in the REMI montage before,
were recruited for this study. Each epileptologist was provided

the REMI montage from 40 subjects who wore four Epilog
sensors, to remotely review through Persyst Mobile. The 40
records consisted of randomized data from: (a) unannotated EEG
from 10 subjects who had focal-onset electrographic seizures
during their EMU stay, (b) unannotated EEG from 10 subjects
who had no electrographic seizures or epileptiform activity
during their EMU stay, (c) algorithm-determined seizure-
detection start/stop annotated EEG from the same 10 subjects
who had focal-onset electrographic seizures during their EMU
stay, and (d) algorithm-determined seizure-detection start/stop
annotated EEG from the same 10 subjects who had no
electrographic epileptiform activity during their EMU stay. The
epileptologists were blinded to (a) how many of the 40 subjects
were known to have seizures, (b) that the same 20 subjects’
EEG was the data that was processed to create the algorithm-
determined annotated EEG, and (c) the randomized order that
the data was presented in. There were no algorithm-determined
seizure events for some of the 10 subjects who did not have
electrographic activity, and thus no annotations in the EEG
record. Because of this, the 20 EEG records where automated
seizure detection was applied were noted in their subject ID with
“ML,” visible in Persyst Mobile. As far as the epileptologists knew,
there were 40 independent data sets, some of which contained
focal-onset seizures, and 20 of which had CDSS algorithm-
determined events annotated.

The epileptologists were asked to review the non-ML records
in their entirety and annotate any sections of the EEG data that
they believed to be indicative of electrographic seizure activity.
The epileptologists were also asked to review the algorithm-
annotated records and annotate electrographic seizure activity,
using the algorithm-determined events as CDSS. The reviewers
were told that these records were processed with an automated
seizure-detection algorithm that was tuned so that the sensitivity
would be high across all subjects with possibly high FDR. The
reviewers were told to use their judgement as to how much
they relied on the algorithm annotations or lack thereof. A
majority consensus (best 2 out of 3) was used due to the well-
known inter-rater variability in blinded EEG review, even among
expert neurologists (26). Sensitivity, precision, and FDR [false
positives per hour (FP/h)] were determined for each subject
for both algorithm-annotated and unannotated records, using
the “any-overlap” method discussed earlier. For TP events, the
percent of overlap was determined using the method previously
discussed. For all known seizure times, the inter-rater reliability
was measured with Cohen’s Kappa for pair-wise reviewers and
Fleiss’ Kappa for group reliability.

RESULTS

As part of a larger study, a total of 40 adult subjects (ages 18–
64) were enrolled, and 22 (55%) had at least one seizure in the
EMU. For this specific piece of the study, data from 20 subjects
(ages 18–64) were used: 10 subjects who had focal-onset seizures
as classified according to ILAE (27) and 10 subjects who were
determined to have no seizure events or epileptiform activity in
their wired-EEG (Figure 5). A total of 24 focal onset seizures were
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FIGURE 5 | Complete subject demographics and results. Subjects in light green are those that had focal-onset seizures during their EMU stay. “Naive Review” results

are consensus epileptologist review of the REMI montage without algorithm-detection annotations. “Review with CDSS” results are consensus epileptologist review

with algorithm-detection annotations. “Algorithm” results are for the REMI automated seizure detection algorithm. TP, true positive; FN, false negative; FP, false

positive; FDR, false detection rate; BL TC, bilateral tonic-clonic.

recorded in the 10 subjects (min 1, mean 2.4, median 2, max 6).
The 20 subjects had EMU stays between 0.5 and 5 days (mean
of 2.2 days). Figure 5 details the demographics and results for
all subjects. Table 1 is a summary of sensitivity, precision, and
FDR. Table 2 is a summary of the inter-rater reliability. Table 3
is a summary of the results based on seizure type. Table 4 is a
summary of the overlap between known seizures and reviewer-
and algorithm-detected TP seizures.

Blinded Consensus Epileptologist Review
of Unannotated Data
The consensus review identified at least one electrographic
seizure for 9 out of the 10 subjects who had known
electrographic seizures during their EMU stay (90% Sensitivity)
and identified no false events for 9 out of the 10 subjects who
had no electrographic seizures during their EMU stay (90%
Specificity). Consensus detection of individual electrographic
seizures resulted in a mean sensitivity of 61% across the 10
subjects (100% for 5 out of 10 subjects, Figure 5—Naive Review,
Figure 6—unfilled blue star, Table 1). The range of the per-
reviewer mean sensitivity was 57–73% (Table 1; Figure 6—
unfilled green markers). The consensus mean precision, or
positive predictive value (PPV), was 80% across all subjects, with
a per-reviewer mean PPV range of 58–78%. The consensus mean
FDR was 0.002 FP/h of data, with a per-reviewer mean FDR

TABLE 1 | Summary of sensitivity, precision, and false detection rate results.

Reader Sensitivity Precision False detection rate

% ± SD [range] % ± SD [range] FP/h ± SD [range]

R1—Naive 58 ± 46 [0–100] 75 ± 42 [0–100] 0.006 ± 0.016 [0.0–0.062]

R2—Naive 57 ± 47 [0–100] 58 ± 47 [0–100] 0.031 ± 0.044 [0.0–0.109]

R3—Naive 73 ± 40 [0–100] 78 ± 37 [0–100] 0.006 ± 0.013 [0.0–0.038]

Consensus—

Naive

61 ± 42 [0–100] 80 ± 35 [0–100] 0.002 ± 0.007 [0.0–0.026]

R1—CDSS 58 ± 47 [0–100] 70 ± 48 [0–100] 0.007 ± 0.019 [0.0–0.076]

R2—CDSS 53 ± 50 [0–100] 42 ± 44 [0–100] 0.020 ± 0.054 [0.0–0.244]

R3—CDSS 75 ± 41 [0–100] 73 ± 37 [0–100] 0.010 ± 0.020 [0.0–0.072]

Consensus—

CDSS

68 ± 43 [0–100] 73 ± 44 [0–100] 0.005 ± 0.012 [0.0–0.040]

Algorithm 90 ± 22 [33–100] 60 ± 38 [6–100] 0.087 ± 0.238 [0.0–1.069]

Naïve results are for epileptologist review without algorithm detection support. CDSS

results are for epileptologist review with algorithm detection support. Algorithm results

are for the REMI automated seizure detection algorithm (SD, standard deviation; FP,

false positive).

range of 0.006–0.031 FP/h. The inter-rater reliability (Table 2)
ranged from 0.52 (moderate) to 0.71 (good) for the pair-wise
comparison as measured with Cohen’s Kappa statistic and 0.59
(moderate) for the group as measured with Fleiss’ Kappa statistic.
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TABLE 2 | Inter-rater reliability for known seizure events.

Naive CDSS

R1 vs. R2 0.71 0.44

R1 vs. R3 0.59 0.53

R2 vs. R3 0.52 0.53

Group 0.59 0.49

The values shown are Cohen’s Kappa statistic for pair-wise (e.g., Reviewer R1 vs.

Reviewer R2) and Fleiss’ Kappa statistic for the group.

TABLE 3 | Electrographic seizures ending in a convulsion (convulsive) vs. seizures

that did not end in a clinical convulsion (non-convulsive).

Naive review Review with CDSS Algorithm

Consensus All 3 Consensus All 3

TP FN TP FN TP FN TP FN TP FN

Conv. 8 5 6 2 6 8

Non-conv. 3 13 10 3 13 11 13 3

The Consensus review is best 2 out of 3 and the “All 3” is when all three reviewers agree.

The consensus, all three reviewers, and the algorithm all performed better for detecting

seizures that ended in a convulsion. TP, true positive; FN, false negative.

TABLE 4 | Percent of overlap between known seizures and true positive events

marked by reviewers and the automated algorithm.

Min Max Mean SD

R1—Naive 43 96 80.8 17.3

R2—Naive 54 100 83.5 18.2

R3—Naive 48 100 86.1 15.6

R1—CDSS 64 100 87.2 11.9

R2—CDSS 63 100 90.6 12.5

R3—CDSS 49 100 85.1 15.4

Algorithm 44 100 92.1 13.8

SD, standard deviation.

The consensus review was able to accurately mark 8 out of 8 focal
onset seizures that ended in a clinical convulsion (Type IA1—
Focal Aware w/Motor and Type IC—Focal Evolving to Bilateral
Tonic Clonic) with all three reviewers marking 5 of 8 (Table 3).
The minimum overlap between known seizures and TP reviewer
determined events ranged from 43 to 54%, with means ranging
80.8–86.1% (Table 4).

Blinded Consensus Epileptologist Review
With Algorithm-Detection as CDSS
When the reviewers were provided algorithm seizure-detection
annotations in the EEG record as CDSS, the consensus review
identified at least one electrographic seizure for 8 out of the
10 subjects who had known electrographic seizures during their
EMU stay (80% Sensitivity) and identified no false events for
8 out of the 10 subjects who had no electrographic seizures
during their EMU stay (80% Specificity). The mean sensitivity

FIGURE 6 | Sensitivity vs. false detection rate. The sensitivity (%) and false

detection rate (FDR—FP/h) are shown for the individual reviewers [green x

(R1), square (R2), and circle (R3)], the consensus review (blue star), and the

automated algorithm (black diamond). The unfilled markers denote the naive

epileptologist review and the filled markers denote review with automated

algorithm annotations as clinical decision support software (CDSS). Reviewers

R1 (green x), R3 (green circle), and the consensus (blue star) showed improved

sensitivity with CDSS at the expense of a higher FDR, while reviewer R2 (green

square) had a reduced sensitivity and FDR with CDSS. The REMI automated

seizure detection algorithm (black diamond) had a higher sensitivity than any

one reviewer or consensus, with a higher false detection rate. The error bars

are 95% confidence intervals using a bias-corrected and accelerated method

(BCa, N = 1,000).

for consensus detection of individual electrographic seizures
improved to 68% across the 10 subjects (100% for 6 out of 10
subjects, Figure 5—Reviewwith CDSS, Figure 6—filled blue star;
Table 1). The range of the per-reviewer mean sensitivity was 53–
75% (Table 1; Figure 6—filled green markers). The consensus
mean precision (PPV) was reduced to 73% across all 20 subjects,
with a per-reviewer mean PPV range of 42–73%. The consensus
mean FDR increased to 0.005 FP/h, with a per-reviewer mean
FDR range of 0.007–0.020 FP/h. The inter-rater reliability was
reduced (Table 2) and ranged from 0.44 (moderate) to 0.53
(moderate) for the pair-wise comparison as measured with
Cohen’s Kappa statistic and 0.49 (moderate) for the group as
measured with Fleiss’ Kappa statistic. The consensus review
accurately marked 6 out of 8 focal onset seizures that ended
in a clinical convulsion (Type IA1—Focal Aware with Motor
and Type IC—Focal Evolving to Bilateral Tonic Clonic) with
all three reviewers marking 6 of 8 (Table 3). The minimum
overlap between known seizures and TP reviewer determined
events ranged from 49 to 64%, with means ranging 85.1–90.6%
(Table 4).

Automated Seizure Detection
Epitel’s automated seizure detection algorithm was able to detect
21 of 24 known focal-onset seizures (out-of-sample), providing a
mean sensitivity of 90% across all subjects (100% for 8 out of 10
subjects, Figure 5—Algorithm, Figure 6—filled black diamond;
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Table 1). The three missed events were all Type IB—Focal Onset
with Impaired Awareness (Table 3). The mean precision (PPV)
of the algorithm was 60% and the mean FDR was 0.087 FP/h
across all subjects. The FDR was 0.22 FP/h for subjects who had
electrographic seizures during their EMU stay and 0.04 FP/h for
subjects who did not have seizures. Subject #6 had an outlier
FDR of 1.07 FP/h (99 false detections during the 93-h EMU
stay), while the maximum FDR for all others was 0.17 FP/h.
The algorithm mean sensitivity was higher than any individual
reviewer or consensus review, with or without CDSS, but with a
higher FDR (Figure 6). The algorithm detected at least one TP
seizure event for all 10 subjects who had electrographic seizures
(100% sensitivity) and detected no false positives (FP) for 7 of the
10 subjects who had no seizures (70% specificity). The number
of FP and FDR for the other three non-seizure subjects was
one event, 0.02 FP/h (ID #3), 16 events, 0.17 FP/h (ID #9), and
three events, 0.11 FP/h (ID #17). The minimum overlap between
known seizures and TP algorithm-determined events was 44%
with a mean of 92.1% (Table 4).

DISCUSSION

This study sought to answer if epileptologists could accurately
detect focal-onset electrographic seizures with a remote,
wireless, reduced-channel EEG system, and whether automated
algorithms could assist with that task.

Blinded Epileptologist Review of
Unannotated Data
This is the first study to analyze epileptologists ability to
blindly review remote EEG data from four Epilog sensors in
the 10-channel REMI montage. There are only a few studies
assessing the performance of individual reviewers and consensus
review for blind seizure identification in EEG. In a large ICU
study using standard clinical wired-EEG, Tu et al. reported a
consensus sensitivity of 75% and individual reviewer FDR of
0.085 FP/h (26). Other studies have shown individual reviewer
sensitivities between 70 and 85% with FDR between 0.016
and 0.043 FP/h (20). Epileptologists are trained on, and are
most commonly experienced with, reviewing 19+ channels
of video-EEG in multi-channel montages. Therefore, it is not
surprising that they might have some difficulty with the 10-
channel REMI montage, especially on their first experience.
With no prior training or experience with Epilog EEG in the
REMI montage, the reviewer consensus successfully achieved a
sensitivity of 61%, precision (PPV) of 80%, and FDR of 0.002
FP/h for identifying spontaneous recurrent electrographic focal-
onset seizures (Figure 6; Table 1). As might be expected, the
reviewers were very conservative in marking seizures, including
a very low FDR when compared to prior studies. While the
reviewers had difficulty determining focal-onset seizures that
did not result in a clinical convulsion, they were very good at
detecting events that did end in a clinical convulsion where the
consensus review found all eight events with all three reviewers
finding 5 of the 8 (Table 3). The overlap between known seizure

timings and reviewer-determined events was generally high, with
means above 80% (Table 4).

Blinded Epileptologist Review With CDSS
Annotations
The reviewers were also provided with randomized copies of
the REMI montage records with annotations of seizure event
markers determined by an automated algorithm with high
sensitivity. The consensus review improved from 61 to 68% on
these records, with a slight increase in FDR (0.005 FP/h up from
0.002 FP/h) (Table 1).While the results are an improvement, they
are not statistically different (Figure 6). The reviewers were only
told that the algorithm had a high sensitivity with a possible high
FDR, but not what the exact values would be, and no training
was provided on how to use the algorithm event annotations as
CDSS. During a post-analysis debrief, the reviewers mentioned
they evaluated the EEG in its entirety and then checked their
review against the algorithm-detected events for overlap. The
reviewers felt the algorithm “overcalled” events. There were a
high number of algorithm-detected FPs for three subjects (4,
6, and 9). Two of the four TP markers and none of the 16
FP markers for Subject 4 were noted by the consensus review,
an improvement of 1 TP over blind review without algorithm-
annotations (Figure 5). None of the 16 FP markers for Subject
9 were noted by the consensus review. None of the 6 TP or 99
FP markers for Subject 6 were noted by the consensus review,
though one of the true events was found by consensus in the EEG
record without algorithm-determined markers. Only one of the
131 FP markers for these subjects was noted as an electrographic
seizure by just one of the reviewers overall. It’s possible that the
large number of algorithm-annotation markers for these subjects
led to a disbelief by the reviewers that any of these markers were
valid. It is well-known since Aesop that credibility of a detection
system is intricately intertwined with sensitivity and false alarms.
Effectiveness of the system depends on this credibility. Yet,
each false alarm reduces credibility that in turn affects response
to future alarms, known as the false alarm effect (28), or the
“cry wolf effect.” Paradoxically, the more sensitive a system, the
greater the credibility of the system is affected by the false alarm
effect due to the false alarm rate. Furthermore, as the credibility
of the system is reduced by the false alarm effect, the credibility
of the danger simultaneously increases. This is especially the case
for sparse events, such as low seizure rates.

The intended benefit of automated algorithm detections as
CDSS is to reduce the time it takes an epileptologist to review
long-duration recordings while improving the sensitivity for
finding relevant electrographic seizures. It is possible and likely
that, with epileptologist experience and trust in the algorithm,
CDSS could reduce the time it takes to review the REMImontage,
as well as improve the sensitivity for detecting electrographic
seizure events.

Automated Seizure Detection Software
The results show that the automated algorithm can detect discrete
focal-onset seizures in the REMImontage with a mean sensitivity
of 90% and mean FDR of 0.087 FP/h across all subjects, on
par with the Persyst P12 predicate of 81% sensitivity and FDR
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of 0.21 FP/h. There are a wide variety of commercially- and
clinically-available software for EEG seizure detection. The most
widely used software is Persyst and their P12 software is the
most common benchmark for predicate comparison. Persyst
has FDA-clearance for their most recent P13 and P14 seizure
detection software, where the most notable difference is in the
FDR. Recent studies have shown the P13 algorithm to have
similar sensitivity to the P12 clearance, but higher FDR [0.5 FP/h
in Scheuer et al. (20) and 0.9 FP/h in Koren et al. (18)]. The very
recently released P14 seizure detection software has been shown
to again have similar sensitivity to both P12 and P13, but with a
much reduced FDR [0.04 FP/h, Scheuer et al. (20)]. Other FDA-
cleared EEG seizure detection software show similar performance
characteristics to the predicate P12 software, including the Nihon
Kohden QP-160AK with 77% sensitivity and 0.45 FP/h (22) and
Encevis [75% sensitivity and 0.29 FP/h in USFDA (23) and 78%
sensitivity and 0.2 FP/h in Koren et al. (18)]. The sensitivity and
FDR of the REMI automated algorithm outperforms the P12
predicate characteristics and remains on par with the best results
of the other clinical EEG seizure detectors. The overlap between
known seizure timings and algorithm-determined events was
generally very high, with 92.1% mean overlap (Table 4).

The automated algorithm missed three known seizure events,
all Type IB—Focal with Impaired Awareness (one for Subject #11
and two for Subject #20). For Subject #11, the one missed event
occurred because the integrated ictal likelihood never crossed the
seizure event threshold during the known seizure event timing.
While there was a spike in the integrated ictal likelihood at this
time, the threshold would have to be lowered by∼3% for an event
to be detected at the known event time, though this would lead
to a much higher FDR across all subjects. For Subject #20 it is
more difficult to speculate why the two events were missed. A few
possible reasons exist in that both events were short in duration
(<30 s) and both events were noted in the clinician notes and
wired-EEG to have strong motor content and some of this was
picked up in the Epilog sensor EEG, especially in the sensor
located at the right forehead. Thus, the duration of electrographic
signal in the REMI montage may have been very short compared
to movement-related artifact. None of the individual blinded
reviewers noted seizures at the time of these three events.

Subjects 4, 6, and 9 can be considered outliers based on
their much higher rate of FP when compared to the other 17
subjects. This is especially evident for the 99 FP found by the
automated algorithm for Subject #6. Subjects 4 and 6 were known
to have focal-onset seizures with impaired awareness, both with
right hemisphere and mainly temporal localization. While not
shown here, some of the algorithm-detected FP events for these
subjects look very similar to known true events in evolution and
localization. In the clinical notes, subject 6 was noted to have
“several seizures many of which were subclinical and short in
duration.” Six of these events occurred while the subject was
wearing Epilog sensors and the subject had an additional five
events outside the timeframe when the Epilog sensors were worn.
It is possible that some or many of the FP events were short
duration subclinical events that did not reach the initial expert
reviewer’s definition of a seizure and were not included in the
seizure report. For Subject 9, whose wired-EEG “did not show

any abnormalities,” there were a couple of FP events that look
similar to known seizure events in other subjects, but most of
the 16 FP events appear to be because one or more of the Epilog
sensors were recording data with poor signal quality for unknown
reasons (see channels TP9 and TP10 in Figure 7).

There are a number of ways that the REMI automated
algorithm can be improved. A larger training data set will
improve any bias or variance that the small data set used here
contained. Larger training data sets can be created by enrolling
more subjects in future studies as well as using data augmentation
methods on current training data. Artifact rejection (e.g.,
muscular EMG contamination) and poor signal quality rejection
can be added to the detection algorithm to improve the training
data ground truths and seizure detection FDR.

Ruling-In Electrographic Seizures
It is very common for someone to have no epileptic events
during their EMU stay, simply because their epileptiform activity
is rare and may not occur during a brief EMU stay. Of note
are people who experience psychogenic non-epileptic seizures
(PNES) that account for ∼25% of all patients who enter the
EMU (29). One potential application of REMI would be home
monitoring for people experiencing seizures before an EMU visit
and diagnosis. In this system, a person could wear Epilog sensors
as part of REMI for long durations during their normal daily lives
where the data could be remotely analyzed for electrographic
seizures. This could help as an early mechanism to provide a
better understanding of a patient’s EEG before a costly, time-
consuming, and possibly unnecessary visit to an EMU. If an EMU
stay is warranted, REMI could be used to establish chronicity to
an individual patient’s electrographic events such that scheduling
of the EMU stay could coincide with a higher probability of
having a seizure (30, 31). When looking at their ability to rule-
in subjects who experience electrographic seizures, the consensus
review noted at least one TP seizure event for 9 out of the 10
subjects who had a known seizure event in their record (90%
sensitivity). Similarly, the consensus review noted no events for
9 out of the 10 subjects who did not have any noted events
in their record (90% specificity). The automated algorithm was
tuned for high sensitivity and detected at least one true seizure
event for all 10 known seizure subjects (100% sensitivity) and
did not detect any false events for 7 of the 10 subjects that did
not experience any seizures (70% specificity). For those who are
experiencing very sparse epileptiform events, having an at-home,
longer-duration EEG recording (as may be provided by REMI),
would allow for more efficient and cost-effective electrographic
diagnostics to rule them in for electrographic seizures.

LIMITATIONS

This study was limited to EEG seizure data only from subjects
who had focal-onset seizures. Focal-onset seizures (ILAE Type
I) account for ∼56% of all seizure types (32). Because focal-
onset seizures may only show electrographic seizure activity
in a very small region of the brain, their EEG correlates may
not be captured by reduced-channel EEG systems, though
some of these seizures evolve into bilateral tonic-clonic events
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FIGURE 7 | Poor signal quality is shown for the Tp9 and Tp10 Epilog sensors on Subject #9 during a false positive algorithm detection event.

where the electrographic activity becomes generalized across
most regions of the brain (17% in this study). REMI is
limited to four Epilog sensor placements (eight electrodes) on
the scalp below the hairline, bilaterally on the forehead and
behind each ear. The current clinical practice of high-channel-
count wired electrodes is done to ensure complete spatial
coverage of all brain regions and increase the likelihood of
being able to differentiate very focalized epileptiform activity.
The International Federation of Clinical Neurophysiology has
recently recommended a minimum of 25 electrodes and up
to 256 if necessary, in both adults and children (33), whereas
the American Clinical Neurophysiology Society recommends a
minimum of 16 channels (34). REMI does not have the spatial
coverage of high-channel count systems and therefore may not
be appropriate for seizure onset zone localization. However, EEG
recorded from these four locations have been shown to detect
100% of electrographic seizures of both focal and generalized
onset (35) due to volume conduction. The REMI montage may
be useful for long-term seizure detection and chronicity. It will be
important to show that both expert review of the REMI montage
and use of detection algorithms can provide electrographic
seizure detection in a broader range of seizure types, including
those that have a generalized-onset.

Perhaps the greatest limitation of this study was that none
of these reviewers had ever seen or reviewed Epilog EEG in
the 10-channel REMI montage in the past, and longer-term
experience and/or trainingmay improve results. There were a few
FP found and false negatives missed by all three reviewers and the
automated algorithm. Epileptologists are trained to review video-
EEG from EMU patients for the purpose of diagnosing seizure
disorders. While these experts are well-trained at reviewing EEG,
they can miss some seizures during standard waveform review
(26, 36). In most studies on seizure detection, three or more
expert reviewers are often relied upon to determine a consensus
“ground truth” set of seizure events in the EEG record, and this
was not done for the wired-EEG in this study. It may have been
advantageous to review the wired-EEG for the FP found and false
negatives missed here by the detection algorithm and blinded
reviewers. However, EMUs do not typically keep complete wired-
EEG records for more than a few months due to their large file
size and storage limitations, and the complete wired-EEG records
for these subjects were no longer available during this analysis.

There were only a limited number of subjects (20) and seizure
events (24) used in this study. Better statistical power would be
achieved through a much larger dataset. The long-term intent for
the REMI system is for use in a person’s everyday environment,
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yet the data studied here was collected only in the EMU, where
subjects and the environment are very controlled. It will be
necessary to show that the accuracy of review and software
remains consistent in EEG recorded with REMI during a person’s
normal daily life.

The preferred method for this type of study would be to
have a single, locked algorithm that was previously trained on a
large independent data set, and then validated on all 20 of the
patient’s data included here. The EEG used in this study are the
only data sets currently available where patients wore four Epilog
sensors concurrently. Thus, the only way to train the automated
algorithm was to use the largest data set available, which for each
of the 20 patients was the independent data from all other 19
patients. A four-fold validation scheme was initially considered,
instead of the 20-fold validation done here, where randomized
data from five patients is held out of training, the training data
would come from the remaining 15 patients, and then a single
algorithm would be validated on five independent patient’s data.
The decision was made to not do this because it is possible and
likely that a large number of seizure events would be held-out
from one or more of the four-folds, likely making that fold’s
algorithm ineffective. Future work will include a single, locked
algorithm trained on a large data set, and then validated on a
separate set of multiple independent patients. It can be expected
that those results would fall somewhere in the range of results
described herein.

FUTURE WORK

There are multiple ongoing and planned studies to continue
the work described herein. Most importantly, a broader set of
data encompassing all seizure types is currently being collected
through collaboration with multiple clinical centers. This will
allow a more rigorous analysis of which seizure types can
be accurately reviewed from Epilog sensor EEG in the REMI
montage. Collection and storage of the complete wired-EEG is
a key part of these ongoing studies, so that any FP can be re-
reviewed later from the wired record. The automated seizure-
detection algorithm development is ongoing and future work
involves expansion for all seizure types and any intricacies that
their differences entail (e.g., absence seizures are very different
in evolution and duration and how the algorithm handles these
requires more complexity). Because Epilog sensor data can be
captured over long durations, it will be critical to determine how
long it takes for an epileptologist to blindly review the data, and
if automated algorithm-detection annotations can reduce that
time without affecting performance. Future studies will compare
the automated algorithm performance on the REMI montage
with FDA-cleared detection software that will be run on the
simultaneously acquired wired-EEG. The Epilog sensors used
in this study are intended as single-use, and the current study
allowed for up to 7 days of Epilog sensor wear in the EMU.
The ambulatory version of the Epilog sensor uses a rechargeable
battery that is designed to be recharged once daily. A person
would have multiple Epilog sensors, allowing them continuous
EEG recording throughout their daily life. There are upcoming

studies where Epilog sensors will be worn alongside AEEG
systems in home environments to demonstrate the intended
effectiveness of REMI for use in a person’s normal daily life.
Additionally, there are upcoming studies were Epilog sensors will
be worn for months in the home environment to demonstrate the
intended long-term effectiveness with a rechargeable version of
the sensors.

CONCLUSION

Epileptologists, without any REMI training or prior experience,
reviewed EEG from just four Epilog sensors in the 10-channel
REMI montage and accurately ruled-in subjects experiencing
focal onset electrographic seizures with 90% sensitivity and
90% specificity. Consensus detection of individual spontaneous
recurrent focal-onset seizures resulted in a mean sensitivity
of 61% and mean FDR of 0.002 FP/h. Automated seizure
detection algorithms used as Clinical Decision Support Software
improved this sensitivity to 68% with little change to FDR (0.005
FP/h). The automated algorithm accurately ruled-in subjects
experiencing electrographic seizures with 100% sensitivity and
70% specificity, and detected individual seizures with a very
high mean sensitivity of 90% and low mean FDR of 0.087
FP/h, on par with current FDA-cleared software. Blinded
epileptologist and automated algorithm review of the REMI
montage showed strong potential to delineate patients who
experience electrographic seizures. Such a system, when used in
a person’s everyday environment, could reduce the burden on
EMUs to only those who truly need a differential diagnosis of a
seizure disorder. Remote EEG systems and support software, as
demonstrated here, will be critical to providing seizure diagnostic
services to people in their normal daily lives, no matter where
they live.
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