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Abstract

The recurrent and recent global outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has turned
into a global concern which has infected more than 42 million people all over the globe, and this number is increasing in
hours. Unfortunately, no vaccine or specific treatment is available, which makes it more deadly. A vaccine-informatics
approach has shown significant breakthrough in peptide-based epitope mapping and opens the new horizon in vaccine
development. In this study, we have identified a total of 15 antigenic peptides [including thymus cells (T-cells) and bone
marrow or bursa-derived cells] in the surface glycoprotein (SG) of SARS-CoV-2 which is nontoxic and nonallergenic in
nature, nonallergenic, highly antigenic and non-mutated in other SARS-CoV-2 virus strains. The population coverage
analysis has found that cluster of differentiation 4 (CD4+) T-cell peptides showed higher cumulative population coverage
over cluster of differentiation 8 (CD8+) peptides in the 16 different geographical regions of the world. We identified 12
peptides ((LTDEMIAQY, WTAGAAAYY, WMESEFRVY, IRASANLAA, FGAISSVLN, VKQLSSNFG, FAMQMAYRF, FGAGAALQI,
YGFQPTNGVGYQ, LPDPSKPSKR, QTQTNSPRRARS and VITPGTNTSN) that are 80–90% identical with experimentally
determined epitopes of SARS-CoV, and this will likely be beneficial for a quick progression of the vaccine design. Moreover,
docking analysis suggested that the identified peptides are tightly bound in the groove of human leukocyte antigen
molecules which can induce the T-cell response. Overall, this study allows us to determine potent peptide antigen targets in
the SG on intuitive grounds, which opens up a new horizon in the coronavirus disease (COVID-19) research. However, this
study needs experimental validation by in vitro and in vivo.
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Introduction

History is witness to the fact that whenever a major disease
comes, it brings tremendous destruction with itself, and these
destructions are physical and economical. Previously, cholera,
smallpox, bubonic plague and influenza are some of the most
brutal killers in human history and killed millions of people all
over the world. Nowadays, the world is scared of the coronavirus
disease 2019 (COVID-19), and its outbreak continues to spread
from China to all over the world, and we do not yet knowwhen it
will stop. It is a contagious disease caused by a SARS family virus
named ‘severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)’,whichhas not been previously identified in humans.The
initial symptoms of COVID-19 are dry cough, throat infection,
fever, breath shortness, loss of taste or smell, rashes in skin,
conjunctivitis, tiredness,muscles pain and, diarrhea;most of the
individuals (about 80%) recover without any special treatment,
but older people and a person with preexisting medical condi-
tions or comorbidities (cardiovascular disease, diabetes, lungs
disease and cancer) are more likely to develop a serious illness.
The incubation period for the infection with SARS-CoV-2 ranges
from 2 to 14 days after its exposure [1]. The transmissibility of
the virus is shown by its reproductive number (R0), and it varies
from area to area. The World Health Organization (WHO) has
estimated R0 between 1.4 and 2.5, but some other studies have
estimated it as 2.24–3.58 for COVID-19 [2, 3].

In just 9 months, the COVID-19 that originally emerged from
the Wuhan province of China is posing major public health and
governance challenges. The cases have now spread in 213 coun-
tries and territories around the globe. Till 24 October 2020, more
than 42.5million infected individuals,with over 1 134 940 deaths
around the globe, have been reported to WHO (WHO COVID-19
Dashboard), and these numbers are rapidly increasing in hours.
At present, unfortunately, no vaccine or specific treatment is
available. However, theWHO listed (as per 19 October 2020) more
than 200 vaccines in development at various stages (preclinical
evaluation: 154, clinical evaluation: 44). The vaccine candidates
which are listed in the clinical evaluation stage seven have
reached phase III trial, including Ad5-nCoV (CanSino Biologics,
China), AZD1222 (The University of Oxford; AstraZeneca; IQVIA;
Serum Institute of India), CoronaVac (Sinovac), JNJ-78436735 or
Ad26.COV2-S (Johnson & Johnson), mRNA-1273 (Moderna) and
unknown vaccine [(no name announced by the Wuhan Institute
of Biological Products; China, National Pharmaceutical Group
(Sinopharm) and NVX-CoV2373 (Novavax)]. Further, the Univer-
sity of Melbourne and Murdoch Children’s Research Institute,
Radboud University Medical Center and the Faustman Lab at the
Massachusetts General Hospital’s BCG live-attenuated vaccine
are also in the phase II/III combined phase. The AstraZeneca/U-
niversity of Oxford vaccine candidate (AZD1222) looks the most
promising vaccine candidate, which is in the phase II/III com-
bined phase (WHO: Draft landscape of COVID-19 candidate vac-
cines).

Moreover, there are no chemotherapeutic agents available to
curb this menace; however, few agents are being used, including
natural compounds [4–6], western medicines [7, 8] and tradi-
tional Chinese medicines (TCN) [9, 10], which may have poten-
tial efficacy against the SARS-CoV-2. Moreover, other drugs like
interferon-α (IFN-α), lopinavir/ritonavir, chloroquine phosphate,
ribavirin, favipiravir, disulfiram, arbidol and hydroxychloroquine
are recommended as the tentative treatments for COVID-19
[11, 12]. Currently, there is no specific treatment/medicine or
vaccine to cure COVID-19, so there is an urgent need to develop
new vaccines or drugs against this deadly disease. In this way,

the integration of computational techniques provides a novel
approach to integrating the vaccine-informatics approach for
the development of vaccines. These methods had earlier been
used in the development of vaccines against several diseases,
including dengue [13], malaria [14], influenza [15], multiple scle-
rosis [16] and tumor [17].However, this approach generallyworks
through the identification of major histocompatibility complex
(MHC)-1 and II molecules and thymus cells (T-cell) epitopes
(CD8+ and CD4+) [18], which particularize the selection of the
potential vaccine agents related to the transporter of antigen
presentation (TAP) molecules [19, 20].

The beginning of 2020 has seen the emergence of the deadly
COVID-19 pandemic, and currently, we are drowning with an
enormous amount of articles, with their probable epitope-based
peptide vaccine for COVID-19 in which the bone marrow or
bursa-derived cells (B-cells) and T-cell epitopes have been ana-
lyzed, which have anticipated the possibility of antigenic epi-
topes which can be used to design a novel vaccine candidate
against the SARS-CoV-2 [21–23]. In the current study, we have
also predicted epitope-based vaccine candidates against the
SARS-CoV-2 using the systematic vaccine-informatics approach.
We considered surface glycoprotein (SG) of SARS-CoV-2 due to
its specific functions; SARS-CoV-2 uses surface spike protein to
mediate entry into the host cells. To fulfill its purpose, the SARS-
CoV-2 spike binds to the receptor ‘hACE2’ through its receptor-
binding domain (RBD) and is proteolytically triggered by human
proteases [24, 25]. Notably, we not only prognosticate the most
potential vaccine candidate but have also cross-checked the
resemblance, congruity and the compatibility of these selected
epitopeswith humans to circumvent any possible risk of autoim-
munity. Additionally, we had checked the resemblance of our
epitopes with those which are already experimentally verified
epitopes of different organisms, including SARS-CoV, which not
only makes our study more precise and noteworthy but also
expands our views for the vaccine-informatics approach in plan-
ning for the next global pandemic. Our work can save the time
needed to screen a large number of possible epitopes compared
with the experimental techniques and also guide the experimen-
tal work with high confidence of finding the desired results in
vaccine development.

Materials and methods

Sequence retrieval and analysis

The SG sequence (ID: QHO62112.1) was obtained from the NCBI
gene bank database (https://www.ncbi.nlm.nih.gov/gene/) in the
FASTA format. Additionally, we checked the sequence similarity
of peptide sequences with other SG proteins of other SARS-CoV-
19 isolates from different geographical regions using the Clustal
Omega tool [26] to analyze the variation in epitopes sequences,
which can determine whether the epitopes are conserved or
have altered peptide ligands.

T-cell peptides (epitopes) prediction

The NETCTL_1.2 server [27] was used to identify the CD8+ T-
cell peptides at a set threshold value of 0.95 to sustain the
sensitivity and specificity of 0.90 and 0.95, respectively. We used
all the expanded 12 MHC class-I supertypes (including A1, A2,
A3,A24,A26, B7, B8, B27, B39, B44, B58 and B62) and incorporated
the peptide prediction of MHC class-I binding molecules and
proteasomal C-terminal cleavage with TAP transport efficiency.

https://www.ncbi.nlm.nih.gov/gene/
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Figure 1. (A) The 3D structure of HLA molecules, including HLA-B∗53:01, HLA-B∗44:03 and HLA-DRB1∗01:01. (B) The peptide structure of three peptides for CD8+

T-cells (LTDEMIAQY, WTAGAAAYY and WMESEFRVY). (C). The structure of six CD4+ T-cells peptides, including FVSNGTHWF, IRASANLAA, FGAISSVLN, VKQLSSNFG,

FAMQMAYRF and FGAGAALQ.

These results were accomplished by the weighted TAP trans-
port efficiency matrix. Then MHC class-I binding and protea-
somal cleavage efficiency were used to obtain the total scores
and translate it into the sensitivity and specificity. We selected

peptides as the epitope candidate on the basis of the overall
score. Further, we checked the peptides binding to MHC class-I
molecules by using the MHC class-I binding predictions tool
[28]. The predicted output was given in units of IC50 nM (IC50
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Figure 2. Six Peptides are representing the B-cell epitopes which have highest antigenic propensity and are surrounded by six different colored lines, with each line

indicating the different analysis methods (Bepipred linear epitope prediction, Chou & Fasman beta-turn prediction, Emini surface accessibility prediction, Karplus &

Schulz flexibility prediction, Kolasker & Tongaonkar antigenicity prediction and Parker hydrophilicity prediction) with the maximum scores.

values < 50 nM = high affinity, IC50 < 500 nM moderate affinity
and IC50 < 5000 nM low affinity) [29]. The MHC-NP (Naturally
Processed) tool used for assesses the probability of naturally
processing and binding of peptides to the given MHC molecules.
This tool predicts naturally processed epitopes based on the
physiochemical properties and comparison of residual position
with experimentally verified epitopes [30]. Further,we identified
CD4+ T-cell peptides with IC50≤ 100 ((IC50 values < 50 nM = high
affinity, IC50< 500 nM moderate affinity and IC50 < 5000 nM low
affinity) by using MHC class-II binding predictions tool [31].

B-cell peptides (epitopes) prediction

The identification of B-cell peptides (epitopes) in the SG of SARS-
CoV-2 was accomplished to find the potent antigen, which gives
an assurance of humoral immunity. Here, we used Antibody
Epitope Prediction tool [32] to find the B-cell antigenicity with
classical propensity scale methods, including Bepipred Linear
Epitope Prediction 2.0 [33], Chou & Fasman Beta-Turn Prediction

[34], Emini Surface Accessibility Prediction [35], Karplus & Schulz
Flexibility Prediction [36], Kolaskar & Tongaonkar Antigenicity
[37] and Parker Hydrophilicity Prediction [38]. In this study, we
selected that region in the protein sequence, which was cross-
referenced, and common findings were considered as the B-cell
antigenic region based on the above six classical propensity
scale methods.

Epitope conservancy and immunogenicity analysis

The epitope conservation defined the degree of a resemblance
betwixt the peptide and query sequences. Hence, we used the
Epitope Conservancy Analysis (ECA) tool [39] to find the conser-
vancy of our peptides among the other SARS coronaviruses, bat
SARS-like coronaviruses and bat coronaviruses. Additionally, the
immunogenicity prediction can reveal the degree of efficiency
for individual peptides to produce an immunogenic response. In
our study,we used the Class I Immunogenicity [40] tool to predict
the immunogenicity of the MHC class-I binding peptides.
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Figure 3. Population coverage of the identified peptides in 16 geographical

regions of the world: (A) Population coverage represents the fraction of indi-

viduals expected to respond to a given epitope set, (B) average number of

epitope hits/HLA combinations recognized by the population and (C) minimum

number of epitope hits/HLA combinations recognized by 90% of the population

(PC_90).

Peptide structural modeling and retrieval of human
leukocyte antigen molecules

The structure of CD+8 and CD+4 T-cell peptides were modeled
by a biased modeling method using an online server, PEP-FOLD
3.5 server, at the RPBS MOBYL portal [41]. The crystal structure
of the SARS-CoV-2 spike glycoprotein (6VSB-A) was used as the
referencemodel togetherwith amask representing the structure
fragments for which the local conformation of this structure
has been imposed. Additionally, The structure of human leuko-
cyte antigen (HLA) molecules, including HLA-B∗53:01 (PDB ID:
1A1M) [42], HLA-B∗44:03 (PDB ID: 4JQX) [43] and HLA-DRB1∗01:01
(1AQD) [44] were retrieved from the Protein Data Bank (PDB) [45].
The structure of peptides and HLA molecules are depicted in
Figure 1.

Population coverage analysis

The population coverage analysis (PCA) tool [46] gives the idea
about the probable response of each peptide in different coun-
tries of the world based on peptide–HLA data genotypic fre-
quency. Our CD8+ T-cell (three peptides) and CD4+ T-cell (six
peptides) peptides and their respective HLA alleles were used
for PCA.We selected 16 geographical areas (115 countries and 21
different ethnicities grouped), which were East Asia, Northeast
Asia, South Asia, Southeast Asia, Southwest Asia, Europe, East
Africa, West Africa, Central Africa, North Africa, South Africa,
West Indies, North America, Central America, South America
and Oceania. These 16 geographical regions cover the HLA allele
frequencies and associated data for different individual popula-
tions from the most popular countries.

Predicted peptides versus epitope database and peptide
screening for autoimmune, allergic and toxic response

In this section, we used predicted peptides (including T- and
B-cell peptides) to search for homologous epitopes at 80–90%
identity in the Epitope database [47, 48]. The current limited
accessible data is not sufficient to recognize the antigenic
region in the spike proteins of SARS-CoV-2 by human immune
responses. Herein, the homologous epitopes (derived from
other pathogens) would expedite the evaluation of vaccine
candidate immunogenicity, as well as observing the possible
outcomes ofmutational events and epitope escape as the virus is
transmitted through human populations [49]. Based on initially
full-length genomic phylogenetic analysis, the precursory
studies suggested that SARS-CoV-2 is quite similar to SARS-CoV
and the putatively same cell entry mechanism and human cell
receptor usage.And due to conspicuous resemblance amid these
viruses, the previous study that gave us a basic understanding
of protective immune responses against SARS-CoV, which may
potentially be leveraged to aid vaccine development against the
SARS-CoV-2 [50]. This study also helps to check the peptides
identity with human proteome because there is a chance of an
autoimmune response due to any kind of molecular mimicry
between the predicted peptides (epitopes) and the human
proteome. Moreover, we checked the allergic and toxic nature
of the predicted peptides using AlgPred [51] and ToxinPred [52]
tools, respectively.

Molecular docking studies

In this study, molecular docking studies produced important
information regarding the orientation pattern of the peptides
in the binding groove of the HLA molecules as well as which
residues are actively involved in the binding. In this study, we
selected three CD8+ T-cell peptides (LTDEMIAQY, WTAGAAAYY
and WMESEFRVY) and five CD4+ T-cell peptides (IRASANLAA,
FGAISSVLN, VKQLSSNFG, FAMQMAYRF and FGAGAALQ) for
molecular docking against the HLA molecule, including HLA-
B∗53:01 (PDB ID: 1A1M), HLA-B∗44:03 (PDB ID: 4JQX) and
HLA-DRB1∗01:01 (PDB ID: 1AQD). We used the glide module
[53–55] of Schrödinger suite for peptides–HLA molecules
docking. All peptides were prepared using the LigPrep module of
the Schrodinger suite and docked in the binding site of protein
using the SP-peptidemode of Glide. Receptor grid was generated
using the receptor grid generation in the Glide application
by specifying the binding (active) site residues, which was
identified by the SiteMap tool [56]. The docked conformers were
evaluated using Glide (G) Score, and the best docked pose with
lowest Glide score value was recorded for each peptide.
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Figure 4a. Population coverage of selected peptides binding to the MHC class-I molecules in the 16 geographical regions of the world.

Results

Sequence retrieval and structure prediction

Viral glycoproteins have a major role in its pathogenesis. The
main goal of viral infection is to recognize and bind a receptor
on the cell surface of the host. It has been considered that
SG plays an important role in immunity and infection, So we
have retrieved the envelope SG of SARS-CoV-19 from the NCBI
gene bank database (ID: QHO62112.1). Moreover, the sequence
similarity of query proteins and peptides was done with the
other SG proteins of other SARS-CoV-19 isolates from the various
regions of theworld (including China,Columbia, Japan,Malaysia,
Israel, Iran, India, Sri Lanka, Vietnam, South Korea, Pakistan,
United States, Hong Kong, Taiwan, Spain, South Africa, Serbia,
Greece, Nederland, France and the Czech Republic), and it was
found that all the predicted peptides are conserved in all of
the isolates (As per 10 August 2020) (Supplementary table S1
available online at https://academic.oup.com/bib).

Identification of T-cell epitopes from SG protein of
SARS-CoV-19

The NETCTL server predicted several peptides in the SARS-CoV-
19 SG, but only nine most potent peptides were chosen, which
have a high combinatorial score. We considered only those alle-
les of MHC class-I for which the peptides showed higher binding

affinity (IC50 ≤ 400 nm
)

. Proteasomes played a key role in cleav-

ing the peptide bonds and converting the protein into a peptide.
The total score of each peptide–HLA interaction was taken into
consideration, and a greater score meant greater processing

efficiency. The three peptides LTDEMIAQY (P1), WTAGAAAYY
(P2) and WMESEFRVY (P3) among the nine were found to bind
with most of the MHC class-I molecules, including HLA-B∗15:01,
HLA-B∗53:01, HLA-A∗68:02, HLA-B∗44:03 and HLA-B∗57:01, but
peptides P1, P2 and P3 had a maximum probable value of 0.8203,
0.8185 and 0.7539for the HLA-B∗53:01, HLA-B∗44:03 and HLA-
B∗44:03, respectively. These peptides (P1, P2 and P3) also have
a maximum identity (100%) for the conservancy. Moreover, we
made the immunogenicity prediction of peptides and got the
highest pMHC-I immunogenicity scores of 0.02757 (P1), 0.15259
(P2) and 0.14153 (P3). The details are given in Table 1. Addi-
tionally, we identified 162 CD4+ T-cell peptides (epitopes) with
IC50 ≤ 100; however, only six peptides (FVSNGTHWF, IRASAN-
LAA, FGAISSVLN, VKQLSSNFG, FAMQMAYRF, and FGAGAALQ)
were found to interact with most of the HLA-DRB-1 molecules,
and the details are given in Table 2.

Identification of linear B-cell epitopes from SG protein
of SARS-CoV-19

The B-cell epitopes comprise of peptides which can easily be
used to take the place of antigens for immunizations and
antibody production. In this study, we used an amino acid
scale-based method in the B-cell antibody epitope prediction
tool in which we predict linear epitopes from the protein
sequence. We found six B-cell linear epitopes (including
LTPGDSSSGWTAG, YQAGSTPCNGV, YGFQPTNGVGYQ, VITPGT-
NTSN, QTQTNSPRRARS and LPDPSKPSKR) in the surface
glycoprotein of SARS-CoV-19, which may be capable of inducing
the desired immune response as B-cell epitopes (Figure 2).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa340#supplementary-data
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Figure 4b. Population coverage of selected peptides binding to the MHC class II molecules in 16 geographical regions of the world.

Population coverage analysis of T-Cell peptides

The population coverage analysis calculates the expected
response of the predicted peptides (including B- and T-cells)
in populations from different geographical areas. In this study,
PCA for 16 different geographical regions was carried out for
the predicted peptides by considering all the MHC class-I and II
molecules. These results suggested that the expected response
of these peptides is varying for populations residing in different
geographical regions, as shown in Figure 3. The tool predicted
average population coverage of 21.50% and 51.09% for MHC
class-I and II binding peptide fragments, respectively. The PCA
of MHC class-II binding peptide fragments of SARS-CoV-19 SG
revealed maximum population coverage, for example, 75.57%,
73.61% and 72.91% for North America, Europe and East Asia
populations (the details are given in Figure 4A and B).

Autoimmune, allergic and toxic response

In the past, many cases have been reported for the development
of autoimmune diseases, like systemic lupus anemia, mys-
themia gravis (hepatitis B), multiple sclerosis (swine flu), dia-
betes mellitus (mumps) and Gullian Barr syndrome (influenza
and oral polio vaccine) [57, 58]. To avoid autoimmunity, it
becomes important to discard those peptide agents which are
similar to the human proteome. So, we have mapped all the
predicted peptides sequences against the human and other
viruses, including SARS-CoV, which has a maximum sequence
identity to SARS-CoV-2 and is the best-characterized coronavirus

in respect to epitopic responses. We have identified most of the
peptide sequences (including B- and T-cell peptides) that were
found to be similarwith the experimentally determined epitopes
of SARS-CoV virus, except for two peptides (FVSNGTHWF and
LTPGDSSSGWTAG) which resemble with Mus musculus and
human’s proteome; these peptides were eliminated from further
study due to autoimmunity risk. The details of the identified
peptides and their resemblance with another organism’s
proteome are given in Table 3. Next, we have screened all
the peptides to check their allergic and toxic nature, and
all these peptides were found to be non-allergen as well as
nontoxic in nature (Supplementary table S2 available online at
https://academic.oup.com/bib).

Peptide–HLA interaction analysis

To ensure the interaction between the CD+8 T-cell pep-
tides (LTDEMIAQY, WTAGAAAYY and WMESEFRVY) and HLA
molecules [HLA-B∗53:01(1A1M), HLA-B∗44:03(4JQX) and HLA-
B∗44:03(4JQX), respectively], we performed molecular docking
analysis and found that the peptide LTDEMIAQY binds with HLA-
B∗53:01, having a good docking score of−9.54 kcal/Mol. Similarly,
WTAGAAAYY and WMESEFRVY bind with HLA-B∗44:03, having
a binding affinity of −8.80 kcal/Mol and −9.22 kcal/Mol,
respectively. Moreover, all the CD+4 T-cell peptides were binding
into the groove of HLA-DR molecules [HLA-DRB1∗01:01(1AQD)]
with a good docking score, for example, −10.63 kcal/Mol (with
IRASANLAA), −12.19 kcal/Mol (with FGAISSVLN), −8.74 kcal/Mol
(with VKQLSSNFG), −8.59 kcal/Mol (with FAMQMAYRF), and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa340#supplementary-data
https://academic.oup.com/bib
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Table 1. The three potential CD8+ T-cell epitopes along with their interacting MHC class-I alleles and NetCTL combine score, epitopes
conservancy hits and pMHC-I immunogenicity score

Peptide Position NetCTL combined
score

MHC-1 IC50
score< 400

MHC-NP
prediction result

pMHC-I
immunogenicity score

Epitope conservancy
hit (%)

LTDEMIAQY 865–873 A1=3.66
A2=1.06

3.37 (0.2) 0.9457
HLA-B∗57:01

0.02757 100

156 (0.74) 0.8907
HLA-B∗57:01

261 (0.54) 0.8203
HLA-B∗53:01

330 (0.79) 0.7935
HLA-B∗53:01

359 (0.81) 0.7806
HLA-B∗53:01

376 (0.87) 0.7793
HLA-B∗15:01

WTAGAAAYY 258–266 A1=3.11
A26=2.00

68.6 (0.18) 0.9404
HLA-B∗44:03

0.15259 100

48.4 (0.44) 0.873 HLA-B∗53:01
132 (0.66) 0.8287

HLA-B∗44:03
93.7 (0.6) 0.8185

HLA-B∗44:03
91.8 (0.59) 0.7519

HLA-B∗57:01
89.9 (0.55) 0.7412

HLA-A∗68:02
WMESEFRVY 152–160 A1=1.92

B62=1.24
49.7 (0.29) 0.8901

HLA-B∗57:01
0.14153 100

265.7 (0.55) 0.8378
HLA-B∗44:03

142.2 (0.43) 0.8341
HLA-B∗57:01

63.8 (0.33) 0.7539
HLA-B∗44:03

179 (0.47) 0.734 HLA-B∗57:01

−9.28 kcal/Mol (with FGAGAALQ), and all the interactions are
shown in Figures 5 and 6, and the docking details are given in
Table 4.

Discussion

The development of vaccines refers to one of the most effective
and cost-effectivemedical and public health achievements of all
time. It is a very lengthy, complex and costly process and requires
the collaborative involvement of public and private sectors. In
each year, vaccination programs save over 3million lives globally.
The peptide, as a choice of vaccine agent, has made the aston-
ishing move toward vaccine design against the viruses, bacteria
and cancer. The peptide vaccine is often synthetic and mimics
naturally occurring proteins from pathogens, and these peptide-
based vaccines have shown promising successful results in the
past for diseases like malaria, dengue, multiple sclerosis and
influenza. Besides these diseases, the peptide-based vaccines
have also been developed against several types of cancer like
colorectal cancer, myeloid leukemia and gastric cancer [59–61].
The identification and design of immunogenic peptides (epi-
topes) are expensive as well as time consuming process. So
the vaccine-informatics approach has made it easy to identify
potent peptides. In the present study,we have identified CD8+ T-
cell (three peptides), CD4+ T-cell (six peptides) and B-cell linear

peptides (six peptides) from the SARS-CoV-19 SG; however, we
weremore emphasized to study T-cell peptides because vaccines
against the T-cell epitopes are more promising as they evoke
a long-lasting immune response, with antigenic drift, and an
antigen can easily escape the memory response of antibody [62,
63].

For the MHC class-I binding peptides, the immune responses
for the top five different geographical regions (highest pop-
ulation coverage range 30–34%) were: South Africa: 33.78%
(South Africa), West Indies: 33.12% (Cuba, Jamaica, Martinique,
Trinidad and Tobago), East Africa: 32.25% (Kenya, Uganda,
Zambia and Zimbabwe), Central Africa: 30.70% (Cameroon,
Central African Republic, Congo, Equatorial Guinea, Gabon,
Rwanda and Sao Tome and Principe) and East Asia: 30% (Japan,
South Korea and Mongolia). Similarly, for the MHC class-II
binding peptides, the excepted immune response was found to
be remarkable (PCA range: 60–76%) for North America (Canada,
Mexico and the United States), Europe (Austria, Belarus, Belgium,
Bulgaria, Croatia, Czech Republic, Denmark, England, France,
Georgia, Germany, Greece, Ireland Northern, Ireland South, Italy,
Macedonia, Netherlands, Norway, Poland, Portugal, Romania,
Russia, Scotland, Serbia, Slovakia, Spain, Sweden, Switzerland,
Turkey, Ukraine, United Kingdom and Wales), East Asia (Japan,
South Korea and Mongolia), South Asia (India, Pakistan and Sri
Lanka), North Africa (Algeria, Ethiopia,Mali,Morocco, Sudan and
Tunisia) and West Indies (Cuba, Jamaica, Martinique, Trinidad
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Table 2. The selected six most potential CD4+ T-cell epitopes along with their interacting MHC class-II alleles with affinity IC50< 100

S. No. Epitopes Position Interacting MHC class-II allele IC50 values (<100)

1 FVSNGTHWF 1095–1103 HLA-DRB1∗01:01 21.43
HLA-DRB1∗13:02 93.35
HLA-DRB1∗07:01 89.95
HLA-DRB1∗13:02 47.25
HLA-DRB1∗09:01 98.31

2 IRASANLAA 1018–1026 HLA-DRB1∗01:01 19.9
HLA-DRB1∗04:01 97.67
HLA-DRB1∗13:02 42.12
HLA-DRB1∗07:01 84
HLA-DRB1∗09:01 88.15

3 FGAISSVLN 970–978 HLA-DRB1∗01:01 20.2
HLA-DRB1∗04:01 98.03
HLA-DRB1∗04:05 96.39
HLA-DRB1∗07:01 86.61
HLA-DRB1∗09:01 88.46

4 VKQLSSNFG 963–971 HLA-DRB1∗01:01 22.84
HLA-DRB1∗15:01 91.6
HLA-DRB1∗04:01 85.68

5 FAMQMAYRF 898–906 HLA-DRB1∗01:01 12.49
HLA-DRB1∗07:01 42.09
HLA-DRB1∗09:01 53.55
HLA-DRB1∗11:01 48.76
HLA-DRB1∗15:01 50.31

6 FGAGAALQI 888–896 HLA-DRB1∗01:01 16.21
HLA-DRB1∗09:01 24.83
HLA-DRB1∗07:01 48.18

Figure 5. Peptide LTDEMIAQY (yellow) binds in the groove of the HLA-B∗53:01. While other two peptides WTAGAAAYY (magenta) and WMESEFRVY (blue) bind in the

groove of the HLA-B∗44:03. All H-bonds and other type of interactions are represented in dotted lines with bond length (in À).

and Tobago). Thus, our results suggested that the MHC class-
II binding peptides may be potent vaccine agents for different
populations of the globe.

We know that vaccination is the utmost prevention of epi-
demiologic infectious diseases, but it has a low incidence of
serious systemic adverse effects (like autoimmune diseases).We

have predicted a total of 15 peptides (B- and T-cells),and among
those, 12 peptides are very important, including LTDEMIAQY,
WTAGAAAYY, WMESEFRVY, IRASANLAA, FGAISSVLN, VKQLSS-
NFG, FAMQMAYRF, FGAGAALQI, YGFQPTNGVGYQ, LPDPSKPSKR,
QTQTNSPRRARS and VITPGTNTSN because their peptide frag-
ments are matching with the experimentally identified epitopes
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Table 3. List of peptides which are resembled with other organisms’ proteome (homologous epitopes at 80–90% identity), including SARS-CoV,
human herpesvirus 4, Leishmania infantum, Bordetella pertussis, Homo sapiens and Mus musculus. The similar fragments of peptides are shown in
underline and bold letter along with their source epitopes (epitope ID), antigen and organism

Peptides (epitopes) Epitope ID Antigen Organism

MHC Class-I

1. LTDEMIAQY

VLPPL LTDEMIAQY T 1075094 Spike glycoprotein SARS-CoV
GFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL

LTDEMIAQY T

1074907 Spike glycoprotein SARS-COV

2. WTAGAAAYY

WTAGAAAYY VGY 1075117 Spike glycoprotein SARS-CoV
TLLALHRSYLTPGDSSSG

WTAGAAAYY VGYLQPRTFLLKYNEN

1075077 Spike glycoprotein SARS-COV

ATIASSGIEWT AGAA 693949 Major DNA-binding protein Human herpesvirus 4
EW TAGAA RDFLEGVW 694386 Major DNA-binding protein Human herpesvirus 4
SSGIEW TAGAA RDFL 696497 Major DNA-binding protein Human herpesvirus 4
3. WMESEFRVY

KS WMESEFRVY 1074961 Spike glycoprotein SARS-CoV
KVCEFQFCNDPFLGVYYHKNNKS

WMESEFRVY SSANNCTFEYV

1074963 Spike glycoprotein SARS-CoV

MHC Class-II

1. FVSNGTHWF

RG VSNGTH V 834339 Oncoprotein-induced transcript 3 protein Mus musculus (mouse)
REGV FVSNGTHW 1075025 Spike glycoprotein SARS-CoV
2. IRASANLAA

AE IRASANLA 999 Spike glycoprotein SARS-CoV
ASANLA ATK 4321 Spike glycoprotein SARS-CoV
QLIRAAEIRASANLAAT 51379 Spike glycoprotein SARS-CoV
QQLIRAAE IRASANL 52057 Spike glycoprotein SARS-CoV
RASANLAA TKMSECVLG 53202 Spike glycoprotein SARS-CoV
QLIRAAE IRASANLAA TK 100428 Spike glycoprotein SARS-CoV
AE IRASANLAA TK 1074838 Spike glycoprotein SARS-CoV
3. FGAISSVLN

AISSVLN DILSRLDKVE 2092 Spike glycoprotein SARS-CoV
KQLSSNF GAISSVLN DI 33032 Spike glycoprotein SARS-CoV
SSNF GAISSVLN DIL 61229 Spike glycoprotein SARS-CoV
NF GAISSVL 923559 Spike glycoprotein SARS-CoV
4. VKQLSSNFG

QALNTL VKQLSSNFG AI 50311 Spike glycoprotein SARS-CoV
KQLSSNFG AISSVLNDI 33032 Spike glycoprotein
LNTL VKQLSSNFG AI 38353 Spike glycoprotein SARS-CoV
5. FAMQMAYRF

AMQMAYRF 3176 Spike glycoprotein SARS-CoV
GAALQIP FAMQMAYR 18514 Spike glycoprotein SARS-CoV
GAALQIP FAMQMAYRF N 18515 Spike glycoprotein SARS-CoV
P FAMQMAYRF NGIGVTQ 47479 Spike glycoprotein SARS-CoV
QIP FAMQMAYRF NGI 51112 Spike glycoprotein SARS-CoV
GAALQIP FAMQMAYRF 100048 Spike glycoprotein SARS-CoV
LQIP FAMQMAY 1074986 Spike glycoprotein SARS-CoV
MIAQYTSALLAGTITSGWTFGAGAALQIP

FAMQMAYRF NGIGV

1074998 Spike glycoprotein SARS-CoV

6. FGAGAALQI

GWT FGAGAALQI PFA 23293 Spike glycoprotein SARS-CoV
TAGWT FGAGAALQI PFA 62872 Spike glycoprotein SARS-CoV
GWT FGAGAALQI PFA 23293 Spike glycoprotein SARS-CoV
GAALQI PFAMQMAYRFN 18515 Spike glycoprotein SARS-CoV
GAALQI PFAMQMAYRF 100048 Spike glycoprotein SARS-CoV
GAALQI PFAMQMAYR 18514 Spike glycoprotein SARS-CoV
SGP GAGAAL 230418 Other Leishmania infantum protein Leishmania infantum
B-cell linear epitope

1. LTPGDSSSGWTAG

G GDSSSG PQRLV 616721 Transmembrane protein 199 Homo sapiens (human)
GDSSSG PQRLV 690393 Transmembrane protein 199 H. sapiens (human)
KG GDSSSG PQRLV 691072 Transmembrane protein 200 H. sapiens (human)

(Continued)
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Table 3. Continue

Peptides (epitopes) Epitope ID Antigen Organism

GYD GDSSSG SGR 760719 Tight junction protein ZO-3 H. sapiens (human)
TLLALHRSY

LTPGDSSSGWTAG AAAYYVGYLQPRTFLLKYNEN

1075077 Spike glycoprotein SARS-CoV

2. YGFQPTNGVGYQ

PTNGVGYQ PYRVVVLSFELLHAPATVCGPKK

STNLVKNKCVNF

1075016 Spike glycoprotein SARS-CoV

F QPTNGVGY 1087346 Spike glycoprotein SARS-CoV
3. VITPGTNTSN

GVS VITPGTN ASSEV 23158 Spike glycoprotein SARS-CoV
ISPCAFGGVS VITPGTN 28643 Spike glycoprotein SARS-CoV
PCSFGGVS VITPGTN 47041 Spike glycoprotein SARS-CoV
VITPGTN ASSEVAVLY 69129 Spike glycoprotein SARS-CoV
VS VITPGTN ASSEVAVL 71189 Spike glycoprotein SARS-CoV
4. QTQTNSPRRARS

AGCLIGAEHVNNSYECDIPIGAGICASY

QTQTNSPRRARS VAS

1074840 Spike glycoprotein SARS-CoV

SY QTQTNSPRRARS VA 1075070 Spike glycoprotein SARS-CoV
5. YQAGSTPCNG

No Hit No Hit No Hit No Hit

6. LPDPSKPSKR

PSKPSKR SFIEDLLFNKV 1071808 Spike glycoprotein SARS-CoV
I LPDPSKPSK 1074928 Spike glycoprotein SARS-CoV
KDFGGFNFSQI

LPDPSKPSKR SFIEDLLFNKVTLADAGFIKQY

1074948 Spike glycoprotein SARS-CoV

Table 4. The details of molecular docking results, including docking score (kcal/Mol), interacting amino acids, and various types of interactions
involved in the binding of potential Peptides (epitopes)to HLA molecules.

Peptides+HLA molecules Docking score (kcal/Mol) Interacting residues Interaction types

CD+ 8 T-cell peptides interactions
LTDEMIAQY+HLA-B∗53:01 −9.54 LYS-146, TYR-84, ASN-77, GLU-76,

THR-73, ASN-70, ARG-97 and
TYR-99

Salt bridges, hydrogen bond,
Pi-cation, Pi-anion, Pi-Pi stacked
and Akyl

WTAGAAAYY+HLA-B∗44:03 −8.80 GLU-76, THR-80, ALA-81, ILE-95,
ASP-116, TYR-123, LYS-146, TRP-147,
ALA-158, LEU-163 and GLU-166

Salt bridges, hydrogen bond,
Pi-cation, Pi-anion, Pi-Pi stacked,
Amide-Pi stacked and Pi-Akyl

WMESEFRVY+HLA-B∗44:03 −9.22 THR-73 GLU-76 ARG-83, TYR-84,
ARG-97, ASP-114, ASP-116, LYS-146
TRP-147, ALA-149, ALA-150 and
LEU-156

Hydrogen bond, Pi-Pi stacked and
Pi-Akyl

CD+ 4 T-cell peptides interactions
IRASANLAA+HLA-DRB1∗01:01 −10.63 GLN-09, PHE-32, PHE-54, ASN-62,

LEU-67,GLN-70,ARG-71 and TYR-78

Hydrogen bond, Pi-Sigma, Akyl
and Pi-Akyl

VKQLSSNFG+ LA-DRB1∗01:01 −8.74 GLN-09, PHE-13, GLY-58, TYR-60,
TRP-61, ASN-62, GLN-64, VAL-65,
ASN-69, ARG-71 and TYR-78

Hydrogen bond, Akyl and Pi-Akyl

FAMQMAYRF+HLA-DRB1∗01:01 −8.59 PHE-13, PHE-24, SER-53, GLY-58,
ASN-62, VAL-65, GLN-70, ARG-71,
THR-77, TRY-78, ASN-82 and VAL-85

Hydrogen bond, Pi-cation,
Pi-sulfur, Pi-Pi T-shaped and
Pi-Akyl

FGAGAALQ+HLA-DRB1∗01:01 −9.28 ILE-07, GLN-09, ILE-31, SER-53,
ASN-62, VAL-65, GLN-70, ARG-71,
ALA-74 and ASN-82

Salt bridges, hydrogen bond, Akyl
and Pi-Akyl

FGAISSVLN+HLA-DRB1∗01:01 −12.19 GLN-09, PHE-13, PRO-56, TYR-60,
TRP-61, ASN-62, LEU-67, ASN-69,
GLU-71, ALA-74, LYS-75, LYS-75,
ATG-76 and TYR-78

Salt bridges, hydrogen bond, Pi-Pi
stacked, Pi-Pi T-shaped and Akyl
and Pi-Akyl

of the glycoprotein of SARS-CoV [64–68]; thus, these peptides are
seemingly amore rational set of potential vaccine agents against
the SARS-CoV-2.

Moreover, the other two peptides LTPGDSSSGWTAG and
FVSNGTHWF, which resemble with the Homo sapiens (human)

and Mus musculus proteomes, were eliminated from the study
to avoid autoimmunity risk. Besides, we did not find any
resemblance of one peptide (YQAGSTPCNG) with any organism’s
proteome. Hence, this unique peptide can also be proposed
as a candidate for further studies in the area of vaccines
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Figure 6. Five peptides including IRASANLAA (green), FGAISSVLN (magenta), VKQLSSNFG (pale yellow), FAMQMAYRF (blue) and FGAGAALQI (red) bind in the groove of

HLA-DRB1∗01:01. All H-bonds and other type of interactions are represented in dotted lines with bond length (in À).

development, therapeutic antibodies and diagnostic tools
against the SARS-CoV-2.

As we know that HLA alleles are polymorphic in nature;
so peptides can interact with them. In our study, MHC class-I
binding peptides (8–9 residues long) are bound in thewide groove
(∼1.25À) of HLA molecules (HLA-B∗53:01 and HLA-B∗44:03).
Among them, the peptide LTDEMIAQY bound with HLA-B*53:01
molecule by. ILE-66, THR-69, ASN-70, THR-73, GLU-76, ASN-
77, TYR-84, ARG-97, TYR-99, TYR-123, THR-143, TRP-147, TYR-
159 residues and other surrounding residues, which gives it
polymorphic nature lie at the interface of this helix and the
bottom of the peptide-binding site. In docking with HLA-B∗44:03,
the peptidesWTAGAAAYY (interactedwithGLU-76,THR-80,ALA-
81, ILE-95, ASP-116, TYR-123, LYS-146, TRP-147, ALA-158, LEU-163
and GLU-166) and WMESEFRVY (interacted with THR-73 GLU-

76 ARG-83, TYR-84, ARG-97, ASP-114, ASP-116, LYS-146 TRP-147,
ALA-149, ALA-150 and LEU-156) got expanded conformation
within the same trench, and both peptides were surrounded
by the polymorphic region. Further, we checked the interaction

of MHC class-II binding peptides with HLA-DR molecules and
noted that all the five peptides are buried by interactions with
the most important pocket residues, for example, GLN-09, PHE-
13, ASN-62, VAL-65, GLN-70, ARG-71, TYR-78, etc., and are the
preferred bind in the groove of HLA-DR molecules. The docking
studies suggested that these peptides are preferably bound into
the groove of respective alleles and can induce the CD+8 and
CD+4 T-cell immunity.

In our study, integrated computational approaches have
identified a total of 15 peptides (T- and B-cells) from SARS-
CoV-19 SG, of which 12 peptides have resemblance with
experimentally identified epitopes of SARS-CoV and other
pathogens. There is no vaccine or specific treatment currently
available for COVID-19, and vaccine development is a long
way from being translated into practical applications. So at
this crunch situation, we have suggested that the predicted
peptides (epitopes) would be capable to prompt an effective
immune response as a peptide vaccine against the SARS-CoV-2.
Consequently, these peptides may be used for synthetic vaccine
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design to combat the emerging COVID-19. However, in vivo and
in vitro, experimental validation is needed for their efficient use
as a vaccine candidate.

Key Points

• As we aware, the COVID-19 infection is the current
global health epidemic, with very high infection and
spreading rate, which is changing the deadly global
figure, hour by hour. Unluckily, no vaccines or specific
treatment is available, which makes it more deadly.

• This study provides knowledge about the involve-
ment of SARS-CoV-2 spike glycoprotein in the immune
pathogenesis of the virus as well as induced the pro-
tective immune response.

• In this study, we have identified 15 antigenic peptides
(epitopes) in SARS-CoV-2 spike glycoprotein. These
epitopes are capable of evoking the T-cell immune
response via interacting with the MHC class-I and
II molecules, and few epitopes are also capable of
inducing the B-cell immune response.

• Notably, we found 12 peptides (epitopes) that have
80–90% identity with experimentally identified epi-
topes of SARS-CoV, and this will likely be beneficial for
a quick progression of the vaccine design.

• All peptides are nontoxic and nonallergenic in nature,
highly antigenic and non-mutated in other SARS-CoV-
2 virus strains.

• Our study provides the knowledge and boosts the
ongoing and struggling scientific society for designing
an effective vaccine to stop the current global health
emergency.
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