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Abstract: A high-performance liquid chromatography-tandem mass spectrometry method was estab-
lished for the simultaneous determination of mycophenolic acid, mycophenolate mofetil, tacrolimus,
rapamycin, everolimus and pimecrolimus in human whole blood by optimizing the QuEChERS
(Quick, Easy, Cheap, Effective, Rugged, and Safe) preparation method. Whole blood was extracted
into ethyl acetate, salted out with anhydrous magnesium sulfate, and purified with ethylenediamine-
N-propyl silane adsorbent. The supernatant was evaporated under nitrogen until dry and finally
reconstituted in methanol. Chromatographic separation was performed on an Agilent Poroshell 120
EC-C18 column in methanol (mobile phase A)-water (optimized for 0.1% acetic acid and 10 mM
ammonium acetate, mobile phase B) at a 0.3 mL·min−1 flow rate. Electrospray ionization and positive
ion multiple reaction monitoring were used for detection. The time for of analysis was 13 min. The
calibration curves range of tacrolimus, rapamycin, everolimus and pimecrolimus were in the range of
1–100 ng·mL−1, mycophenolate mofetil in the range of 0.1–10 ng·mL−1 and mycophenolic acid at
10–1000 ng·mL−1. All correlation coefficients were >0.993. The coefficients of variation (CV, %) for
inter-day and intra-day precision were less than 10%, while the spiked recoveries were in the range
of 92.1% to 116%. Our method was rapid, sensitive, specific, and reproducible for the simultaneous
determination of six immunosuppressants in human whole blood. Importantly, our approach can be
used to monitor drug concentrations in the blood to facilitate disease treatment.

Keywords: QuEChERS; immunosuppressants; whole blood; HPLC-MS/MS

1. Introduction

Allorejection is a significant issue during allotransplantation procedures. Many im-
munosuppressive drugs can be used to suppress a recipient’s immune response by in-
hibiting abnormal immune responses in the body [1]. Based on functionality, immuno-
suppressive drugs are divided into four categories. The first category is represented by
adrenocorticotropic hormones and includes prednisone and methylprednisone. The sec-
ond category area is characterized by tacrolimus (FK-506) and other cytokine synthesis
inhibitors. The third group includes immunosuppressants such as rapamycin (RAPA) and
mycophenolate esters, which inhibit relevant signaling pathways via synergistic effects
when combined with second-generation drugs. The fourth category includes monoclonal
anti-lymphocyte antibodies. FK-506, RAPA, everolimus (EVER) and mycophenolate mofetil
(MMF) are commonly used in clinical practice [2,3]. The widespread use of immunosup-
pressive drugs has not only improved the control of allogeneic rejection reactions but
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also greatly enhanced transplantation rates, thereby reinforcing their importance in the
treatment of autoimmune diseases and diseases caused by allergic reactions [4,5]. However,
significant adverse effects exist [6] including metabolic disorders, nephrotoxicity, and hyper-
lipidemia [7–9]. Therefore, the use of immunosuppressive drugs at adequate concentration
is essential to facilitate optimal blood levels in patients for accurate drug use [10].

Several analytical methods have been developed [10], including chemiluminescence
microparticle immunoassay [11], enzyme-multiplied immunoassay [12], microparticle en-
zyme immunoassay [13], enzyme-linked immune absorbent assay [14–16], high-performance
liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-
MS/MS) [1,3,17]. Immunoassays have several drawbacks despite simple operating methods
and specialized kit formats. Immunoassays do not identify analytes and their metabolites. In
addition to high detection values, insufficient limits of quantitation (LOQ) and poor specificity
are a cause for concern. Further, some drugs are extensively metabolized and cross-react with
other metabolites, thereby affecting the results. The LC-MS/MS method is specific, sensitive,
and reliable, and may eventually replace immunoassays as the primary monitoring method
for the monitoring of circulatory immunosuppressants. As immunosuppressants are typically
used in multiple drug combinations, rapid and effective LC-MS/MS techniques are required
to simultaneously analyze various immunosuppressants in the blood. For example, FK-506
is often treated with MMF in kidney transplantation. Based on individual differences, other
treatment regimens include FK-506/EVR/prednisolone (Perd), FK-506/mycophenolic acld
(MPA)/Perd triple regimens, and FK-506/EVR double regimens [18–21].

In this study, a quick, easy, cheap, rugged, effective and safe (QuEChERS) method was
used for sample preparation. Generated by Anastassiades and Lehotay [22], this method is
based on solid-phase extraction and matrix-solid phase dispersion techniques [23–25]. The
QuEChERS method is simple and rapid, requires less solvent for the extraction process, and is
associated with less environmental pollution. The procedure was originally used to analyze
pesticide residues in succulent fruits and vegetables [26,27]; however, technical improvements
have led to its widespread use in the analysis of drug residues, metabolites, and compounds
in blood. The modified method has three basic steps: (1) extraction of a homogeneous sample
in organic solvent; (2) addition of the extracted sample to inorganic salts and separation of
the organic layer; and (3) addition of sorbent to purify specific analytes [28]. When compared
with conventional extraction methods, the modified QuEChERS method is simple and cheap,
with a short processing time, low solvent consumption, and a high pigment purification rate.

Here, we combined the HPLC-MS/MS technique with the modified QuEChERS
method for the extraction and purification of immunosuppressants from whole blood
samples. Further, we developed a quantitative method to analyze the concentrations of
MPA, MMF, FK-506, RAPA, EVER and pimecrolimus (PIM) in human whole blood. The
method yielded a good limit of detection (LOD), LOQ, linear range, precision, accuracy,
and matrix effects (ME). Thus, the approach provides a reference method for the detection
of immunosuppressant concentrations and provides guidance for the clinical use of drugs.

2. Results
Validation of the Analytical Method

The HPLC-MS/MS method used in this research for the determination of six different
compounds in human whole blood was fully validated. The selectivity testing allowed us
to verify that no peaks from endogenous compounds during retention time correspond
to each analyte and the interferences were less than 20% of LOQ signals. For the blank
sample, there was no obvious interference peak in the enrichment detection of the analyte
in this experiment. The selective ion chromatograms of human whole blood spiked with
analytes are presented in Figure 1 (Agilent Poroshell 120 EC-C18 column). There was no
obvious interference near the selective ion chromatogram. The ME of MMF and FK-506
was <80% (78.95% for MMF in QC samples of medium concentration, and 78.97% for
FK-506 in high-concentration QC samples). RAPA and EVER showed significant matrix
inhibition effects in medium and high concentration QC samples, with a substantial ME of
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approximately 50%, so the ME was not ignorable (Table 1). All matrix-matched calibration
curves showed good linearity (r2 > 0.993) for all analytes (Table S1). The coefficients of
variation (CV, %) for inter-day and intra-day precision were less than 10%, while the spiked
recoveries were in the range of 92.1% to 116%, depending on the analyte. The method was
sensitive, with LOQs in the range of 0.06–7.60 ng·mL−1, whereas LODs were in the range
of 0.02–2.30 ng·mL−1. The results are shown in Table 2.
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and the analytical times were longer (Figure 2d). 

Figure 1. Typical selective ion chromatograms of blank plasma spiked reference compounds (FK-
506 and PIM at 100 ng·mL−1, RAPA and EVER at 500 ng·mL−1, MMF at 10 ng·mL−1 and MPA at
1000 ng·mL−1), (MPA = Mycophenolic acid, MMF = Mycophenolate Mofetil, FK-506 = Tacrolimus,
RAPA = Rapamycin, EVER = Everolimus, PIM = Pimecrolimus).



Molecules 2022, 27, 4087 4 of 12

Table 1. Intra-day and inter-day precision and ME of analytes (n = 3).

Analyte Spiked
(ng·mL−1)

ME (%)
Precision (RSD %)

Accuracy (%)
Inter-Day Intra-Day

MPA
20 101.99 3.52 1.13 107.79

500 85.78 2.94 3.44 114.95
800 103.19 6.73 2.31 110.75

MMF
0.2 112.69 6.44 2.78 109.56
5 86.25 1.29 7.71 109.60
8 78.95 3.76 1.33 106.42

FK-506
2 91.23 9.98 3.88 95.66
50 80.51 0.55 1.36 109.09
80 78.97 1.40 1.19 101.50

RAPA
2 94.08 4.31 5.49 109.43
50 92.29 5.40 0.54 113.47
80 47.81 3.05 4.94 113.09

EVER
2 106.65 14.92 4.59 92.24
50 51.42 5.02 3.20 102.22
80 50.26 2.07 1.61 102.44

PIM
2 91.17 7.02 2.98 85.07
50 84.21 0.23 4.79 99.30
80 85.20 0.86 1.01 92.07

Table 2. Validation parameters.

Analyte Inter-Day
(CV, %)

Intra-Day
(CV, %)

LOD
(ng·mL−1)

LOQ
(ng·mL−1)

Recovery
(%)

MPA 4.40 ± 2.0 2.29 ± 1.2 2.30 7.60 116 ± 3.6
MMF 3.83 ± 2.6 3.94 ± 3.3 0.02 0.07 109 ± 1.8

FK-506 3.98 ± 5.2 2.14 ± 1.5 0.03 0.09 102 ± 6.7
RAPA 4.25 ± 1.2 3.66 ± 2.7 0.05 0.20 112 ± 2.2
EVER 7.34 ± 6.7 3.13 ± 1.5 0.05 0.20 99.0 ± 5.8
PIM 2.70 ± 3.8 2.93 ± 1.9 0.02 0.06 92.1 ± 7.1

3. Discussion
3.1. Column and Mobile Phase Selection

The separation performances of four chromatographic columns were also assessed in
this study. (1) Phenomenex Luna Omega 3 µm PS C18 100 Å (2.1 mm × 150 mm); (2) Agilent
Eclipse Plus C18 (3.0 × 100 mm, 1.8 µm); (3) Agilent Poroshell 120 EC-C18 (3.0 × 50 mm,
2.7 µm), and (4) Agilent ZORBOX SB-C18 (4.6 × 150 mm, 5 µm). Columns were used to
compare the concentrations of target analytes for HPLC-MS/MS analysis (Figure 2).

The Phenomenex Luna Omega 3 µm PS C18 100 Å column showed poor separation
performance, low response values, and poor peak shapes (Figure 2a), probably due to small
differences in the polarity of analytes.

The performance of the Agilent Eclipse Plus C18 column was poor, even though peak
times were short and concentrated, and peak shapes were good (Figure 2b).

The Agilent Poroshell 120 EC-C18 column exhibited better retention of each compound,
resolution and peak shape (Figure 2c) despite the similarity to the Agilent Poroshell 120
EC-C18 column in terms of separation and peak shape.

The Agilent ZORBOX SB-C18 column was longer, and analytes were slow to peak, and
the analytical times were longer (Figure 2d).

Therefore, the Agilent Poroshell 120 EC-C18 column (Figure 2c) was the preferred
analytical column in this study.
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Figure 2. TIC of 6 analytes under four columns (a) Phenomenex Luna Omega 3 µm PS C18 100 Å;
(b) Agilent Eclipse Plus C18; (c) Agilent Poroshell 120 EC-C18; (d) Agilent ZORBOX SB-C18. (FK-
506 and PIM at 100 ng·mL−1, RAPA and EVER at 500 ng·mL−1, MMF at 10 ng·mL−1 and MPA at
1000 ng·mL−1).

To determine the optimal organic phase, we evaluated MeOH and ACN and showed
that analyte response values were higher when MeOH was used as the organic phase.
Moreover, the peak shape of the target was effectively improved when ammonium acetate
was added to the aqueous phase. In addition, the pH of the mobile phase also affected
the peak shape and analyte response. Studies were conducted with water (plus 10 mM
ammonium acetate)-MeOH, 0.1% acetic acid water (plus 10 mM ammonium acetate)-
MeOH, 0.1% formic acid water (plus 10 mM ammonium acetate)-MeOH, 0.2% formic acid
water (plus 10 mM ammonium acetate)-MeOH, and 0.5% formic acid water (plus 10 mM
ammonium acetate)-MeOH. The optimal mobile phase solution was 0.1% acetic acid water
(plus 10 mM ammonium acetate)-MeOH.

3.2. Selecting and Optimizing Preprocessing Conditions
3.2.1. Optimizing Extraction Conditions

The efficiency of commonly used extraction solvents, such as ACN, MeOH, acetone,
and EA was assessed by comparing the peak areas of target analytes in samples. For
analysis, 1.5 mL organic extraction solvent (described earlier) was added to target analytes
at similar concentrations. The precipitation of organic solvents is to reduce the dielectric
constant of water, leading to dehydration, mutual aggregation, and biomolecule precip-
itation within the surface water layer. Due to the complex matrix in whole blood and
associated influencing factors, EA displayed a more effective extraction efficiency, with
good peak shape and less interference (Figure 3a). To improve the extraction efficiency and
reduce the consumption of organic solvents, the extraction solvent levels were optimized.
When 1.5 mL, 2 mL, and 2.5 mL EA (Figure 3b) were compared, the 2 mL EA displayed the
highest detection peak area and had the best performance for target analytes. Therefore,
2 mL EA was used as the extraction solvent volume.
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Figure 3. Effect of extractant on the recovery peak area of analyte, (a): types of extractant; (b): dosage
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3.2.2. Optimization of Salinization Conditions

High water levels in blood samples may affect instrument response, reduce recovery
rates, and cause unnecessary losses in the column and mass spectrometry. We selected the
dose of MgSO4 as the water removal agent by comparing the detection peak area of the
target in the sample. Similar concentrations of the target analyte were treated with 300 mg,
350 mg, 400 mg, 450 mg, and 500 mg of MgSO4 (Figure 4). The peak target analyte area was
the largest at 350 mg MgSO4, while the response value of each target analyte decreased
when its dose was more or less than 350 mg. Therefore, 350 mg MgSO4 was selected as a
dehydration reagent.
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3.2.3. Optimization of Purification Conditions

Commonly used adsorbents include PSA, GCB, Florisil, C18 and NH2 [29–31]. Typi-
cally, whole blood samples are complex and contain not only water, proteins, fats, phospho-
lipids, and other substances, but also red and white blood cells and other blood constituents,
all of which impact drug detection. Thus, these five adsorbents were selected to assess
the effects of purification. Approximately 60 mg of each adsorbent was added at the same
target analyte concentration, and the peak area of the detected target analyte in the sample
was used to evaluate the purification effect. Except for MPA, all five target analytes were
optimally purified by PSA (Figure 5a). Since the amount of purifying agent also had a
large effect on the outcome, PSA concentrations of 40 mg, 50 mg, 60 mg, and 70 mg were
tested to select the optimal amount at similar concentrations of the target analytes. The
results showed that the target analyte responses differed little when the concentrations
of the purifying agent were 50 mg and 70 mg, and the MPA response value reached the
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highest at 50 mg (Figure 5b). Based on low reagent consumption and cost savings, 50 mg
PSA was selected as the ideal purification adsorbent.
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3.2.4. Comparative Analysis of QuEChERS and Solid-Phase Supported Liquid-Liquid
Extraction (SLE)

To extract target analytes from whole blood samples and reduce matrix effects, two
preparation methods, SLE and QuEChERS, were tested at the same target analyte concen-
tration. Pretreatment efficiency was compared using the detected peak area magnitude.
The optimal conditions for SLE were based on equal volumes of sample diluent pure water,
eluent and EA, and 1.5 mL EA was added in three aliquots of 500 µL each. The optimal
conditions for QuEChERS were characterized by 2.0 mL EA of extractant, 350 mg MgSO4
as the water removal agent, and 50 mg PSA as a purifying agent.

Three parallel samples from medium-level QC samples were tested and each sample
was measured in triplicate. The peak areas of analytes in each treatment group are shown
(Figure 6). Based on target analyte response, the QuEChERS method was significantly
better than SLE for FK-506, RAPA, EVER, and PIM. The pretreatment effect of MMF was
comparable and the extraction effect of QuEChERS was slightly lower than SLE for MPA.
Therefore, the optimized QuEChERS method was selected for sample preparation.
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3.3. Comparisons with Other Methods

Our method was compared with other methods reported in the literature in terms of
LOD and recovery (Table 3). The isolation and enrichment methods for immunosuppres-
sants reported previously show limitations. As immunosuppressants exhibit non-linear
binding to erythrocytes, whole blood samples are mostly used for analyses. Thus, when



Molecules 2022, 27, 4087 8 of 12

compared with whole blood samples, plasma or serum samples are easier to test but yield
inaccurate results [32]. The solid-phase extraction (SPE) and organic solvent extraction
preparation methods for precipitated proteins (PP) reported previously have lower detec-
tion limits or lower recoveries than the pretreatment methods in this study for MMF, FK-506,
RAPA, PIM, MPA and EVER [33–36]. Compared with whole blood, cerebrospinal fluid is
more difficult to collect in experiments, so our matrix used human whole blood [37]. The
current method is characterized by increased sensitivity and recovery advantage compared
with the previously published methods. The modified QuEChERS method is economical
and effective, with good recovery, precision, and accuracy.

Table 3. Comparison of the developed method to the other approaches used in the extraction of
immunosuppressors.

Method Solvent Sample Analytes Detection
System LOQ (ng·mL−1) RSD (%) Recovery

(%) Ref.

QuEChERS - Whole blood
MPA/MMF/FK-

506/
RAPA/EVER/PIM

LC-MS/MS 7.60/0.07/0.09/
0.20/0.20/0.06 0.23~14.92 85.07~114.95 this work

PP Methanol Plasma FK-506 LC-MS/MS 0.1 - 107% [32]

Online SPE ZnSO4 Plasma

MPA/
FK-506/
RAPA/
EVER

LC-MS/MS 7.0/7.5/
4.6/6.4 0.9~14.7 89.0~138.0 [33]

PP ACN/
MTBE Whole blood FK-506/

RAPA/EVER LC-MS/MS 0.5/0.5/
0.5 1.87~11.2 78.6~85.9 [34]

Online SPE
MeOH-
ZnSO4
(66:34)

Whole blood
FK-506/
RAPA/
EVER

LC-MS/MS 1.4/0.72/1.15 <5 92.8~95.9 [35]

PP ZnSO4/
ACN Whole blood FK-506 LC-MS/MS 1.0 - 94 [36]

SPE - Brain EVER LC-MS 4.0 3~19 82~102 [37]

4. Materials and Methods
4.1. Quantitative Analysis by UHPLC-MS/MS
4.1.1. Reagents and Chemicals

Standards: MMF, RAPA, EVER and PIM were purchased from Toronto Research
Chemicals (North York, ON, Canada); MPA and FK-506 were purchased from the Na-
tional Institute for Food and Drug Control (Beijing, China). Chromatographically pure
acetonitrile (ACN), methanol (MeOH), formic acid and acetic acid were purchased from
Dima Technology (Beijing, China); chromatographically pure acetone and ethyl acetate
(EA) were purchased from Safran Technology (Tianjin, China); octadecyl-bonded silica
gel (C18), N-propyl ethylenediamine adsorbent (PSA), Florisil, amino-bonded silica gel
(NH2), graphitized carbon (GCB) were purchased from Agela Technologies (Tianjin, China);
anhydrous magnesium sulfate (MgSO4) was purchased from Tianjin Damao Chemical
Reagent Factory (Tianjin, China).

4.1.2. Preparation of the Standard Stock Solutions and Working Solutions

The refined weighing MPA, MMF, FK-506, RAPA, EVER and PIM standard drugs
were dissolved in MeOH. A stock solution with a mass concentration of 500 µg·mL−1 for
each drug was stored in a −20 ◦C refrigerator. The standard curve working solution and
the quality control working solution were diluted proportionally with MeOH to mix the
6 drugs. The concentrations of standard curve solution of FK-506, RAPA, EVER and PIM
ranged from 1 ng·mL−1 to 100 ng·mL−1 (1, 5, 20, 50, 75 and 100 ng·mL−1 ); MPA ranged
from 10 ng·mL−1 to 1000 ng·mL−1(10, 50, 200, 500, 750 and 1000 ng·mL−1); MMF ranged
from 0.1 to 10 ng·mL−1 (0.1, 0.5, 2, 5, 7.5 and 10.0 ng·mL−1).

Low-, medium-, and high-concentration quality control (QC) samples were prepared
by adding different volumes (10 µL aliquots) of mixed standard solutions to 500 µL of blank
whole blood samples. Low, medium, and high FK-506, RAPA, EVER and PIM concentra-
tions were 2, 50, and 80 ng·mL−1, respectively. Similarly, the three MPA concentrations
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were 20, 500, and 800 ng·mL−1, respectively, and the three MMF levels were 0.2, 5, and
8 ng·mL−1, respectively.

4.1.3. Sample Preparation

Peripheral venous blood from volunteers was collected into disposable anticoagula-
tion blood collection tubes. The whole blood samples were pretreated with the optimized
QuEChERS method and stored at −20 ◦C. For analysis, blood was thawed at room temper-
ature and vortexed. Then, 500 µL blood and 2.0 mL EA were added to a centrifuge tube
and vortexed for 30 s, followed by the addition of 350 mg MgSO4 and 50 mg PSA adsorbent
for purification. The tube was vortexed for 60 s and centrifuged at 12,000 rpm for 10 min.
The supernatant was removed, dried under nitrogen, and re-dissolved in MeOH.

4.1.4. LC-MS/MS Analysis

Electrospray ionization (ESI), Positive ion mode, Multiple reaction monitoring (MRM),
Drying gas (Drying Gas) flow rate: 11 L·min−1, Drying gas temperature: 300 ◦C, Capillary
voltage: 4000 V. The analytes, the monitored ions, the retention time, collision energy and
fragmentation voltage are shown in Table 4.

Table 4. The MS/MS fragment ions, fragmentor voltage, collision voltage and retention time of the
6 immunosuppressors.

Analyte Precursor
Ion (m/z)

Product Ion
(m/z)

Fragmentor
Voltage (V)

Collision
Voltage (eV)

Retention
Time (min)

MPA
338.3 207.1 * 140 20

6.4338.3 302.9 140 10

MMF
434.2 114.2 * 145 28

7.2434.2 285.0 145 26

FK-506
821.5 768.2 * 165 18

9.8821.5 786.2 165 14

RAPA
931.5 864.4 * 155 15

10.3931.5 882.2 155 6

EVER
975.5 908.3 * 165 10

10.5975.5 926.2 165 6

PIM
827.4 774.2 * 170 20

11.2827.4 792.2 170 18
* Quantitative ion.

The chromatographic column was an Agilent Poroshell 120 EC-C18 column (3.0 × 50 mm,
2.7 µm) from Agilent ( CA, USA); mobile phase A was water containing 0.1% acetic acid and
10 mM ammonium acetate, and mobile phase B was MeOH. The gradient elution procedure
was as follows: 0~1.0 min, 5% B; 1.0~1.5 min, 5~45% B; 1.5~3.0 min, 45~90% B; 3.0~10.0 min,
90% B; 10~10.1 min, 90~5% B; 10.1~13 min, 5% B; the flow rate was 0.3 mL·min−1, the column
temperature was 40 ◦C, and the injection volume was 5 µL.

4.2. Method Validation

The following parameters were established: linearity, selectivity, precision, recovery
and ME. The selectivity was evaluated by analyzing different samples. Two blank whole
blood samples were taken, one of which was spiked with the control mixture solution
(FK-506 and PIM at 100 ng·mL−1, RAPA and EVER at 500 ng·mL−1, MMF at 10 ng·mL−1

and MPA at 1000 ng·mL−1). Both samples were processed and analyzed by HPLC-MS/MS.
Blank whole blood samples were added to the working solution of the control mix-

ture and processed to generate a standard mixture of whole blood at the following final
concentrations: FK-506, RAPA, EVER and PIM at 1, 5, 20, 50, 75, and 100 ng·mL−1; 0.1,
0.5, 2, 5, 7.5, and 10 ng·mL−1 for MMF, and 10, 50, 200, 500, 750, and 1000 ng·mL−1 for
MPA. Linear regression analysis was performed with the horizontal coordinate represented
by the mass concentration of each substance to be measured in whole blood (X), and the
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vertical coordinate indicated the peak area of the substance to be measured (Y). The LOD
was calculated at three times the signal-to-noise ratio (S/N), and LOQs were calculated at
ten times the S/N.

Blank whole blood samples were used to prepare QC low, medium, and high concentra-
tion samples, and processed. Three parallel samples were tested for each QC concentration
and measurements continued for 3 days. Method precision and recovery were deter-
mined by comparing the added mass concentration with the measured mass concentration
of samples.

An appropriate volume of blank human whole blood was processed to generate a
blank whole blood matrix solution (the reconstitution solution was methanol). To this, a
working solution of the control mixture of the six drugs was separately added to generate
three mass concentration levels: low, medium, and high. The measured peak area (A) of
the test substance was compared with the peak area (B) of the test substance obtained by
direct injection of the corresponding mass concentration of the standard solution, and the
ME (A/B × 100%) of this method was calculated. An ME between 80% and 120% indicated
that substrate enhancement/inhibition was acceptable and negligible.

5. Conclusions

We simultaneously detected six immunosuppressive drugs in human whole blood
using LC-MS/MS and a modified QuEChERS method. Compared with the conventional
QuEChERS method, our method optimized and improved extractant conditions, salting and
purifying agents. The validated method can be used for cost-effective immunosuppressant
detection in whole blood with good precision, accuracy, and within-range linearity. The
method is therefore ideal for the accurate detection of drug concentrations in patients with
autoimmune disease, diseases caused by hypersensitivity reactions, and those undergoing
transplantation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27134087/s1, Table S1: Intra-day and inter-day precision
and accuracy of analytes (n = 3); Table S2: Regression equations and limit of quantification of analytes.
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