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Abstract: A series of racemic, heteronuclear complexes [Zn2Nd(ac)2(HL)2]NO3·3H2O (1),
[Zn2Sm(ac)2(HL)2]NO3·3CH3OH·0.3H2O (2), [Zn2Ln(ac)2(HL)2]NO3·5.33H2O (3–5) (where HL
is the dideprotonated form of N,N′-bis(5-bromo-3-methoxysalicylidene)-1,3-diamino-2-propanol,
ac = acetate ion, and Ln = Eu (3), Tb (4), Dy (5), respectively) with an achiral multisite coordination
Schiff base ligand (H3L) were synthesized and characterized. The X-ray crystallography revealed
that the chirality in complexes is centered at lanthanide(III) ions due to two vicinally located
µ-acetato-bridging ligands. The presented crystals have isoskeletal coordination units but they
crystallize in monoclinic (1, 2) or trigonal crystal systems (3–5) with slightly different conformation.
In 1 and 2 the ZnII–LnIII–ZnII coordination core is linear, whereas in isostructural crystals 3–5 the
chiral coordination cores are bent and lie on a two-fold axis. The complexes 1, 3–5 show a blue
emission attributed to the emission of the ligand. For ZnII

2SmIII complex (2) the characteristic
emission bands of f-f* transitions were observed. The magnetic properties for compounds 1, 4 and 5
are characteristic for the paramagnetism of the corresponding lanthanide(III) ions.

Keywords: 3d-4f complexes; luminescence; chiral coordination core; Schiff base polynuclear
coordination compounds; linear conformation

1. Introduction

The synthesis and characterization of 3d-4f polynuclear coordination compounds are current
and intensively developing field of science. The studies cover diverse and fascinating structural
characteristics as well as potential application such as molecular magnets, catalysts, optical devices,
luminescent probes in biology or bioactive agents [1–9]. Schiff base ligands constitute a convenient
template for designing and synthesis of new heteronuclear 3d-4f coordination compounds. But there is
still a need to study the factors that influence the coordination architecture starting from coordination
modes of the ligand, through the preferential coordination number of the metal ions, ending with the
presence of solvent molecules in the inner coordination sphere, which is crucial for preventing from
quenching of luminescent properties due to the nonradiative energy loss processes.

We report here the heterotrinuclear coordination compounds ZnII–LnIII–ZnII of
N,N′-bis(5-bromo-3-methoxysalicylidene)-1,3-diamino-2-propanol (H3L) (Scheme 1).
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Scheme 1. Scheme of synthesis of trinuclear coordination compounds ZnII–LnIII–ZnII (Ln = Nd (1), Sm
(2), Eu (3), Tb (4), Dy (5)) of N,N′-bis(5-bromo-3-methoxysalicylidene)-1,3-diamino-2-propanol (H3L).

There is only one report in the Cambridge Structural Database (ver. 5.39 with updates) [10]
of a crystal structure of coordination compounds of this ligand. These are two homotetranuclear
coordination compounds of CoII and NiII and a homotrinuclear complex of CdII [11]. The trinuclear
complex of CdII is reported to have photoluminescent properties with luminescence decay of the
order of 102 ns. The presence of Br atom in the ligand structure (heavy halogen effect) often causes a
decrease of luminescence intensity and a shift in the ligand emission position [11,12], but sometimes
it may be beneficial for the luminescent properties as well as for the intermolecular interactions,
which can stabilize the crystal structure [13–15]. The ligand molecules with 1,3-diamino-2-propanol
bridge may undergo double or triple deprotonation forming N2O2 or N2O3 coordination pockets
(Table S1). The doubly deprotonated ligands form classic mono- up to tetranuclear coordination
compounds [11,16–29]. But only the triple deprotonation enables the higher nuclearity of complexes:
to hexa- [22,30] and heptanuclear units [31] with the use of additional anions such as nitrate or acetate.

The control over the diversity of coordination compounds is not a trivial problem. In the presented
here complexes 1–5 an issue of chirality arises. Around the lanthanide(III) cation is formed a stereogenic
center because of the vicinal arrangement of two µ-acetato-bridged ligands. The metal centered chirality
may provide compounds with very interesting features applicable in modern technology. We discuss
here the aspect of the linearity of the ZnII–LnIII–ZnII metal core in the molecular and crystal structure
as well as the luminescent properties registered in a solution and in a solid state of compounds 1–5
and the magnetic properties of 1, 4 and 5.

2. Results

2.1. Crystal Structure

The crystallographic details of structures 1–5 and the selected molecular geometric data are given
in Table 1 and Table S2 (in Supporting Materials). The complexes 1 and 2 crystallize in the monoclinic
space group P21/n (1, 2) but with different outer coordination spheres with general formulae
[Zn2Nd(ac)2(HL)2]NO3·3H2O (1) and [Zn2Sm(ac)2(HL)2]NO3·3CH3OH·0.3H2O (2). The trigonal
crystals 3–5 (space group R-3c) with formula [Zn2Ln(ac)2(HL)2]NO3·5.33H2O are isostructural (Ln
= Eu (3), Tb (4), Dy (5)). The coordination units in complexes 1–5 are isoskeletal but have different
conformations and different intermolecular interactions. The syntheses gave as a result cationic
trinuclear Zn2Ln coordination cores with a propeller like arrangement of the ligands (Figure 1) but
different from the one observed in the homotrinuclear complex of CdII [11]. The ZnII ion occupies
the N2O2 cavity of the doubly deprotonated Schiff base ligand HL2− from which the metal cation is
deviated by ca. 0.5 Å (parameter ∆ in Table 1). The square pyramidal geometry of ZnII is supplemented
by the acetate O atom at the apical position. The intermetallic distances ZnII–LnIII within the core are in
the ranges of 3.366(2)–3.556(1) Å (Table 1). The LnIII ion is ten-coordinated and has deformed bicapped
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anticube polyhedron (Figure 1). The dihedral angle σ between ZnO(phenoxo)2 and LnO(phenoxo)2 planes
and the valence angles Zn–O–Ln do not change much from monoclinic to trigonal structures (Table 1).
Although, the ligand molecules are achiral, 1–5 form chiral coordination units crystallizing as racemic
compounds in centrosymmetric space groups. The two acetate ions form bridges between ZnII and
LnIII ions. Their cisoid spatial arrangement results in the formation of complexes with the stereogenic
center located at the lanthanide(III) ion. The torsion angleω between the vectors along the attitudes
of the tetragonal pyramids O11–Zn1–Zn2–O14 in 1 and 2 is ca. 35◦ and the analogous torsion
O6–Zn1–Zn1i–O6i (symmetry code: i 1/3+x-y, 2/3-y, 1/6-z) in structures 3–5 is ca. 62◦ (Table 1,
Figure 2). The torsion between two N2O2 mean planes (ε in Table 1) is of ca. 42◦ for 1, 2 and 62◦

for 3–5.

Figure 1. Molecular structure of 2 (ZnII–SmIII–ZnII) with a propeller molecular shape and coordination
polyhedra around the ZnII and SmIII ions. The outer coordination sphere molecules were omitted
for clarity.

Figure 2. Overlay of coordination units in monoclinic structure of 2 (ZnII–SmIII–ZnII) (white) and in
trigonal structure of 3 (ZnII–EuIII–ZnII) (black)—view along the ZnII–LnIII–ZnII line.
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Table 1. Selected structural parameters a for complexes 1–5.

Parameter. 1 2 Parameter 3 4 5

Ln1–Zn1 3.513(1) 3.5268(7) Ln1–Zn1 3.458(1) 3.4242(9) 3.414(1)
Ln1–Zn2 3.556(1) 3.4915(7) Ln1–O1 2.354(5) 2.330(5) 2.367(4)
Ln1–O1 2.472(5) 2.414(3) Ln1–O2 2.409(5) 2.386(5) 2.303(4)
Ln1–O2 2.442(5) 2.414(3) Ln1–O3 2.637(6) 2.649(5) 2.879(4)
Ln1–O3 2.825(6) 2.650(4) Ln1–O4 2.856(5) 2.905(5) 2.612(5)
Ln1–O4 2.729(6) 2.704(3) Ln1–O7 2.375(5) 2.345(5) 2.324(4)
Ln1–O6 2.442(5) 2.412(3) Zn1–O1 2.056(6) 2.064(5) 2.094(4)
Ln1–O7 2.457(5) 2.440(3) Zn1–O2 2.082(5) 2.089(5) 2.054(5)
Ln1–O8 2.671(5) 2.689(4) Zn1–O6 1.997(6) 2.001(5) 1.988(5)
Ln1–O9 2.730(6) 2.803(4) Zn1–N1 2.082(7) 2.083(7) 2.034(6)

Ln1–O12 2.437(6) 2.369(4) Zn1–N2 2.035(7) 2.049(7) 2.092(6)
Ln1–O13 2.384(6) 2.407(4) Zn1–O1–Ln1 103.0(1) 102.2(2) 103.0(2)
Zn1–O1 2.067(5) 2.063(3) Zn1–O2–Ln1 100.4(1) 99.6(2) 99.7(2)
Zn1–O2 2.044(5) 2.077(3) ∆ b (Zn1) 0.48 0.49 0.48

Zn1–O11 1.996(6) 2.005(4) σ c (Zn1) 35.5 36.0 34.9
Zn1–N1 2.022(8) 2.075(4) ω d 62.4(4) 61.6(3) 62.2(2)
Zn1–N2 2.084(7) 2.069(4) ε e 62.0(3) 61.3(4) 62.0(3)
Zn2–O6 2.064(5) 2.059(4) φ f 173.3(2) 172.8(1) 172.9(1)
Zn2–O7 2.068(5) 2.077(3)

Zn2–O14 2.009(6) 1.993(4)
Zn2–N3 2.052(8) 2.079(5)
Zn2–N4 2.074(6) 2.050(4)

Zn1–O1–Ln1 101.1(2) 103.7(1)
Zn1–O2–Ln1 102.7(2) 103.3(1)
Zn2–O6–Ln1 103.9(2) 102.4(1)
Zn2–O7–Ln1 103.3(2) 100.9(1)

∆ b (Zn1; Zn2) 0.46; 0.50 0.51; 0.49
σ c (Zn1; Zn2) 34.7; 34.8 34.5; 35.7

ω d 36.2(4) 34.6 (3)
ε e 42.6(4) 42.1(3)
φ f 178.8(1) 178.8(3)

a Distances in Å, angles in deg, Ln = Nd (1), Sm (2), Eu (3), Tb (4), Dy (5), respectively; b ∆–deviation of ZnII ion
from the N2O2 mean plane; c σ—dihedral angle between ZnO(phenoxo)2 and LnO(phenoxo)2 planes; d ω—torsion angle
between two Zn–O vectors within the coordination unit O11–Zn1–Zn2–O14 in 1 and 2 and the analogous torsion
O6–Zn1–Zn1i–O6i (symmetry code: I 1/3+x-y, 2/3-y, 1/6-z) in 3–5; e ε—torsion angle between two N2O2 mean
planes in the coordination core; f φ—valence angle along the ZnII–LnIII–ZnII line.

Usually, the analogous angle in 3d-4f heterotrinuclear salen type Schiff base complexes bridged
by µ-acetato anions is in the range of 14–49◦ [32–40] which means they have chiral cores, or 180◦

when the structures are not chiral [41,42]. The coordination units in trigonal structures 3–5
have a unique structural conformation for such voluminous molecules. The complexes viewed
along the ZnII–LnIII–ZnII axis resembles a pseudohexagonal star (Figure 2) with planes formed by
4-bromo-2-(iminomethyl)-6-methoxyphenol molecular fragments and lying opposite to them acetate
ions repeated by ca. 60◦. Very important difference in geometry of monoclinic and trigonal structures
is the arrangement of metal ions ZnII–LnIII–ZnII in the coordination cores, which is linear in complexes
1 and 2 and bent one in structures of 3–5 with the valence angle φ being of about 173◦ (Table 1).
The hydrophilic pockets near the protonated hydroxyl groups at the propyl bridges are occupied:
one by NO3

− anion and the other one by a solvent molecule (water in 1 or by disordered water and
ethanol molecules in 2) (Figures S1 and S2). In structures 3–5 the both symmetrically equivalent
pockets are filled with substitutional disordered nitrate ions and water molecules (coordination units
lie on a twofold axis) (Figure S3). Additionally, in trigonal crystals the nitrate ions are located at the
three-fold rotoinversion axis in the tunnels running along the c crystallographic direction (Figure 3).
There are no π stacks in the analyzed crystal structures.
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Figure 3. Crystal packing in 3 (ZnII–EuIII–ZnII)—view along the c axis.

2.2. Luminescent Properties

The UV-VIS absorption spectra of the Schiff-base ligand (H3L) and its corresponding
ZnII–LnIII–ZnII heteronuclear complexes 1–5 were obtained in a MeOH solution at 298 K (Table 2).
The electronic spectra of ligand and complexes are shown in Figure 4. The ligand shows four absorption
bands with maxima (Table 2). The band with the greatest intensity at 229.0 nm is attributed to π-π*
transition in the benzene ring. The weak peaks at 292.5 and 341.5 nm correspond to the π-π* transition
of the phenol and C = N chromophore groups, whereas weak peak at 425.5 nm is ascribed to the n-π*
electron transition in the ligand [43–45].

Table 2. Photophysical data of H3L and complexes 1–5.

Compound λabs
a (nm) λex/λem

a (nm) λex/λem
b (nm)

H3L 229.0; 292.5; 341.5; 425.5 337/414.0 363/541.0
1 235.5; 267.0; 358.5 359/421.0 357/457.0
2 235.5; 268.0; 359.5 359/458.0; 561.0; 598.0; 644.0 357/460.0; 561.0; 598.0; 644.0
3 234.5; 267.5. 359.0 359/458.0 357/461.0
4 236.0. 267.0; 359.0 359/424.0 357/507.0
5 234.0; 267.5; 359.5 359/430.0 357/519.0

a in methanol solution, b in solid state.
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Figure 4. The absorbance spectra of H3L ligand and complexes 1 (ZnII–NdIII–ZnII) and 2
(ZnII–SmIII–ZnII) in methanol solution (~2·10−5 M).

The spectral profiles of the absorption spectra for the heterotrinuclear complexes are similar
(Figure 4 and Figure S4). A weak absorption band of the ligand observed at λ = 292.5 nm, in the
spectra of all complexes disappears. All complexes displayed three bands at ca. 234, 267 and 359 nm
due to ligand based or ligand to metal charge transfer (LMCT) [46]. The absorption peaks maxima of
complexes are red-shifted in the ZnII–LnIII–ZnII complexes which could be evidence of coordination
between the ligand H3L and metal atoms. The luminescence spectra of the free ligand and 1–5
complexes in a MeOH solution (2 × 10−5 M) were recorded in the UV-VIS region at room temperature.
As can be seen from Figure 4 and Figure S4, each of the ZnII–LnIII–ZnII complexes displays an
essentially identical absorption spectrum, with a broad peak at ca. 359 nm. The emission of LnIII ions
in complexes is observed, when energy absorbed by the ligand is transferred from a triplet state of the
ligand to a resonance state of the LnIII by an intramolecular energy transfer process.

Excitation of the Schiff-base ligand at λex = 337 nm produced luminescence with an emission
maximum at λem = 414 nm which can be assigned to the π-π* electronic transition in the ligand.
The corresponding emission spectra upon excitation at λex = 359 nm are shown in Figure 5 and
Figure S5. The emission spectra of 1 and 3–5 complexes present a broad emission band with an
emission maximum at 421, 458, 424 and 430 nm respectively. The H3L ligand plays an important role
in the emission spectra of these complexes (Figure 5 and Figure S5, Table 2). The emission spectra
of all complexes are red shifted compared to the emission spectrum of the free ligand H3L. This is
presumably attributed to the coordination effect of the ligand to the metal ions [42,46,47].

The emission spectra of complexes 3, 4 and 5 don’t exhibit characteristic emission bands of f-f
transition, implying that energy transfer from the ligand to EuIII, TbIII and DyIII ions was inefficient.
Moreover, emission intensity of the complex 3 decreased obviously under the same conditions, as it
was observed earlier [48]. It may be due to the thermal quenching of the 5D0 level of EuIII by an
intramolecular LMCT process [49].
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Figure 5. Luminescence spectra of H3L ligand and complexes 3 (ZnII–EuIII–ZnII), 4 (ZnII–TbIII–ZnII)
and 5 (ZnII–DyIII–ZnII) in methanol solution (~2·10−5 M).

Excited at λex = 359 nm (Figure 6, Table 2), complex 2 shows three characteristic emission bands
of SmIII ion at 561, 598 and 644 nm. The strongest emission was observed at 598 nm for a 4G5/2-6H7/2
transition [50,51]. Also, this spectrum shows a weak, broad band at 458 nm, which has been assigned
to the π-π* transitions of the ligand H3L. It indicates that the intramolecular energy transfer process
from the triplet state of the Schiff base ligand H3L to the emission levels of LnIII ions was efficient in
the SmIII complex (2) only [52–54].

Figure 6. Photoluminescent spectrum of 2 (ZnII–SmIII–ZnII) in methanol solution; the inset is the
excitation spectrum of the studied compound.

The luminescence properties of compounds 1–5 and the ligand H3L have been studied in the
solid state. The intense broad emission bands at 541 nm for H3L ligand is observed with excitation
wavelength of 363 nm (Figure 7 and Figure S6, Table 2). Upon excitation at 357 nm, compounds
3–5 show intense, broad emission bands, with the maximum peaks at 461, 507 and 519 nm for 3–5,
respectively, whereas for 1 and 2, low emission at 460 and 457 nm was observed. Compared with the
free H3L ligand, their emissions are blue shifted (similar as in Ref. [11]). These bands can be tentatively
assigned to intra ligand luminescence. A much more shifts of emission in 3 (in solution and solid
phase) may originate from the ligand-to-metal-charge transfer emission [48,49,52].
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Figure 7. Solid state emission spectra of H3L ligand and complexes 2 (ZnII–SmIII–ZnII) and 5
(ZnII–DyIII–ZnII).

The luminescence behavior of the complex 2 with a linear arrangement of the ZnII–SmIII–ZnII

core in solid state is similar to that of 2 in methanol solution. This may arise from the less evident
changes in the conformations between a solution and a solid state of 2 than in the compounds 3–5
crystallizing in trigonal space group with strained conformation of pseudo hexagonal symmetry and a
bent layout of the trinuclear metal core. Excitation of complex 2 results in the luminescence of SmIII at
561, 598 and 644 nm originating from the 4G5/2-level (Figure 7).

2.3. Magnetic Properties

Temperature-dependent of molar susceptibility measurements of samples were carried out in an
applied magnetic field of 0.1 T over the temperature range 1.8–300 K. The data are presented as plots of
χMT and χM

−1 versus T in Figure 8, Figures S7 and S8, where χM is the molar magnetic susceptibility
and T is the absolute temperature. The experimentally determined the χMT values of compounds 1,
4 and 5 at room temperature and χMT values theoretically calculated by the following equation [55]:

χMT = ((Nβ2/3k)[g2
Ln JLn(JLn + 1)]) (1)

where N is Avogadro constant, β is the Bohr magneton, k is Boltzman’s constant, gLn is the g factor
of the ground J terms of LnIII and is expressed as: gLn = 3/2 + [S(S + 1) − L(L + 1)]/2J(J + 1) are
summarized in the Table S3.

At 300 K the determined χMT values of 1.62 cm3Kmol−1 (1), 12.10 cm3Kmol−1 (4),
14.39 cm3Kmol−1 (5), respectively are compatible with those expected for NdIII (4I9/2, S = 3/2, L = 6,
J = 9/2), TbIII (7F6, S = 3, L = 3, J = 6), DyIII (6H15/2, S = 5/2, L = 5, J = 15/2) magnetically isolated metal
ions. As shown in Figure 8 there is a smooth decrease of the χMT product in the studied compounds
from about 50 K to about 2 K for 2, from 60 K to about 20 K for 4 and from 60 K to about 10 K for 5,
respectively. Finally, these values drop at 2.0 K down to 11.08 cm3Kmol−1 (4), and 10.28 cm3Kmol−1

(5), respectively. The reduction of χMT values at the low temperature could mainly arise from the
crystal field splitting of LnIII ions and/or a weak interaction between magnetic centers of neighboring
molecules [55–57]. In lanthanides the 4f orbitals are efficiently shielded and the influence of the
neighboring groups on the magnetic properties is less evident than in 3d paramagnetic compounds.
The magnetic properties of these ions are governed by strong orbital angular momentum contribution
and the spin–orbit coupling that splits the 2+1L multiplets of the 4f n ions into 2S+1LJ J-states. Usually,
for most of the trivalent rare-earths ions, the 2+1LJ free ion ground state is well separated from the
excited ones, thus at room and at lower temperatures the ground state is the only thermally populated
one. As lanthanide ions are placed in a crystal field, the 2+1LJ states are split into Stark components (up
to 2J + 1, n = even; J + 1/2, n = odd). The magnetic behavior will then be governed by the thermal
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population of these sets of levels, preventing the application of a spin-only Hamiltonian for quantitative
investigations of exchange interactions between lanthanide ions (only the GdIII ion exhibits a quenched
orbital momentum which can be therefore treated as a pure spin ground state) [55,56].

Figure 8. Temperature dependence of experimental χMT versus T for 1 (ZnII–NdIII–ZnII),
4 (ZnII–TbIII–ZnII) and 5 (ZnII–DyIII–ZnII).

3. Materials and Methods

3.1. Materials

The chemicals: 5-bromo-2-hydroxy-3-methoxybenzaldehyde, 1,3-diamino-2-hydroxypropane,
Zn(CH3COO)2·2H2O, Nd(NO3)3·6H2O, Sm(NO3)3·6H2O, Eu(NO3)3·5H2O, Tb(NO3)3·5H2O or
Dy(NO3)3·xH2O and CH3OH (solvent) were of analytical reagent grade. They were purchased
from commercial sources and used as received without further purification.

3.2. Synthesis of the H3L

N,N′-bis(5-bromo-3-methoxysalicylidene)-1,3-diamino-2-propanol H3L, was synthesized by the
2:1 condensation reaction between 5-bromo-2-hydroxy-3-methoxybenzaldehyde (2.31 g, 10 mmol) and
1,3-diamino-2-hydroxypropane (0.45 g, 5 mmol) in hot methanol (100 mL) following the procedure
reported in the literature [58]. The compound was separated as yellow needles and recrystallized
twice from methanol. The empirical formula and the molecular weight are C19H20Br2N2O5 and
516.18 g/mol, respectively. Yield 73%. Analytical data (%), Calcd: C, 44.21; H, 3.91; N, 5.43. Found: C,
44.10; H, 3.80; N, 5.10. IR (ATR); 3285 m, 2961 w, 1637 vs, 1518 s, 1478 s, 1460 s, 1438 m, 1373 w, 1338
w, 1248 vs, 1229 s, 1210 s, 1104 s, 1018 w, 970 m, 949 m, 924 m, 865 s, 845 s, 830 s, 760 s, 697 m, 637 s,
573 w. 1H NMR (500 MHz, CDCl3, δ): 3.76 (dd, J = 12.3, 6.6 Hz, 2H, CH2), 3.89 (dd, J = 12.6, 4.4 Hz,
2H, CH2), 3.90 (s, 6H, OCH3), 4.28 (m, 1H, CH), 7.00 (d, J = 2.2 Hz, 2H, CH), 7.03, (d, J = 2.2 Hz, 2H,
CH), 8.32 (s, 2H, CH), 13.65 (bs, 2H, OH). 13C NMR (126 MHz, DMSO-d6, δ): 56.06, 60.86, 68.93, 107.05,
116.82, 118.53, 124.89, 150.00, 154.22, 166.10.

3.3. Synthesis of the ZnII–LnIII–ZnII Complexes

The heterotrinuclear compounds 1–5 were prepared as follows: Zn(CH3COO)2·2H2O (0.4 mmol,
0.0878 g) dissolved in methanol (10 mL) was added dropwise to the stirred solution of the Schiff base
H3L (0.4 mmol, 0.2065 g) in methanol (100 mL) to produce a yellow coloured solution. The reaction
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mixture was stirred for 30 min at 45 ◦C. Next, the freshly prepared solution of Nd(NO3)3·6H2O
(0.2 mmol, 0.0877 g), Sm(NO3)3·6H2O (0.2 mmol, 0.0889 g), Eu(NO3)3·5H2O (0.2 mmol, 0.0856 g),
Tb(NO3)3·5H2O (0.2 mmol, 0.0870 g) or Dy(NO3)3·xH2O (0.2 mmol, 0.0875 g) in methanol (5 mL) was
added slowly to the mixture with constant stirring. The resulting deep yellow solution was stirred for
another 30 min and left undisturbed. Yellow crystals of a shape of prims (1, 2) or hexagonal plates
(3–5) suitable for single crystal X-ray diffraction formed at 4 ◦C after two weeks.

3.3.1. [Zn2Nd(ac)2(HL)2]NO3·3H2O (1)

C42H48N5O20Br4Zn2Nd, M = 1537.47 g/mol. Yield 32%. Analytical data (%), Calcd: C, 32.81; H, 3.15;
N, 4.56; Zn, 8.51; Nd, 9.38. Found: C, 32.50; H, 3.00; N, 4.20; Zn, 8.30; Nd, 9.10. IR (ATR); 3315 w,
1628 s, 1549 s, 1465 s, 1436 vs, 1402 s, 1344 w, 1293 vs, 1232 vs, 1213 vs, 1136 w, 1097 m, 1055 m,
951 m, 844 s, 786 s, 758 m, 690 s, 665 s, 614 m, 571 m, 556 w, 540 w. Crystal Data: monoclinic, space
group P21/n (no. 14), a = 9.9805(4) Å, b = 24.1307(11) Å, c = 22.9091(7) Å, β = 91.549(3)◦, V = 5515.4(4)
Å3, Z = 4, T = 293.0 K, µ(MoKα) = 4.763 mm−1, Dcalc = 1.852 g/cm3, 41616 reflections measured
(5.3◦ ≤ 2Θ ≤ 50.48◦), 9953 unique (Rint = 0.0806, Rsigma = 0.0852) which were used in all calculations.
The final R1 was 0.0593 (I >= 2σ(I)) and wR2 was 0.1544 (all data). CCDC No: 1849667.

3.3.2. [Zn2Sm(ac)2(HL)2]NO3·3CH3OH·0.3H2O (2)

C45H54.67N5O20.33Br4Zn2Sm, M = 1591.07 g/mol. Yield 30%. Analytical data (%), Calcd: C, 33.96; H,
3.46; N, 4.40; Zn, 8.22; Sm, 9.45. Found: C, 34.10; H, 3.50; N, 4.10; Zn, 8.00; Sm, 9.10.

IR (ATR); 3180 w, 1629 vs, 1570 m, 1554 s, 1464 m, 1438 s, 1402 m, 1290 s, 1234 m, 1214 s, 1100 m,
1055 m, 1035 w, 952 m, 846 s, 785 m, 755 s, 692 m, 669 m, 615 m, 570 w, 540 w. Crystal Data: monoclinic,
space group P21/n (no. 14), a = 10.26745(18) Å, b = 23.8581(3) Å, c = 22.5353(3) Å, β = 91.2611(13)◦,
V = 5518.94(14) Å3, Z = 4, T = 120.01(10) K, µ(CuKα) = 12.967 mm−1, Dcalc = 1.915 g/cm3, 38,779
reflections measured (7.42◦ ≤ 2Θ ≤ 152.88◦), 11,370 unique (Rint = 0.0548, Rsigma = 0.0444) which were
used in all calculations. The final R1 was 0.0481 (I >= 2σ(I)) and wR2 was 0.1384 (all data). CCDC
No: 1849666.

3.3.3. [Zn2Eu(ac)2(HL)2]NO3·5.33H2O (3)

C42H52.67N5O22.33Br4Zn2Eu, M =1587.23 g/mol). Yield 26%. Analytical data (%), Calcd: C, 31.78; H,
3.34; N, 4.41; Zn, 8.24; Eu, 9.57. Found: C, 31.90; H, 3.10; N, 4.20; Zn, 8.30; Eu, 9.30. IR (ATR); 3192 w,
1632 s, 1570 m, 1462 s, 1435 m, 1402 m, 1344 w, 1293 vs, 1232 vs, 1213 vs, 1136 w, 1097 m, 1055 m, 951 m,
844 s, 786 s, 758 m, 690 s, 665 s, 614 m, 571 m, 556 w, 540 w. Crystal Data: trigonal, space group R-3c
(no. 167), a = 19.8962(4) Å, c = 76.6553(19) Å, V = 26279.2(9) Å3, Z = 18, T = 119.99(10) K, µ(CuKα) =
12.414 mm−1, Dcalc = 1.805 g/cm3, 58409 reflections measured (8.88◦ ≤ 2Θ ≤ 135.34◦), 5291 unique
(Rint = 0.1573, Rsigma = 0.0539) which were used in all calculations. The final R1 was 0.0785 (I >= 2σ(I))
and wR2 was 0.2254 (all data). CCDC No: 1849668.

3.3.4. [Zn2Tb(ac)2(HL)2]NO3·5.33H2O (4)

C42H52.67N5O22.33Br4Zn2Tb, M = 1594.19 g/mol. Yield 26%. Analytical data (%), Calcd: C, 31.64;
H, 3.33; N, 4.39; Zn, 8.2; Tb, 9.97. Found: C, 31.40; H, 3.50; N, 4.20; Zn, 8.10; Tb, 9.70. IR (ATR);
3352 w, 1629 s, 1579 m, 1554 m, 1439 w, 1402 m, 1348 w, 1308 w, 1289 vs, 1236 s, 1216 s, 1139 w, 1099 w,
1056 m, 949 m, 846 m, 787 m, 755 s, 693 s, 670 s, 615 s, 577 w, 553 w, 540 w. Crystal Data: trigonal,
space group R-3c (no. 167), a = 20.0572(5) Å, c = 76.388(3) Å, V = 26613.4(12) Å3, Z = 18, T = 293.0
K, µ(MoKα) = 4.765 mm−1, Dcalc = 1.790 g/cm3, 70659 reflections measured (4.8◦ ≤ 2Θ ≤ 50.48◦),
5349 unique (Rint = 0.0860, Rsigma = 0.0376) which were used in all calculations. The final R1 was 0.0561
(I >= 2σ(I)) and wR2 was 0.1704 (all data). CCDC No: 1849669.
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3.3.5. [Zn2Dy(ac)2(HL)2]NO3·5.33H2O (5)

C42H52.67N5O22.33Br4Zn2Dy, M = 1597.77 g/mol. Yield 26%. Analytical data (%), Calcd: C, 31.57; H,
3.32; N, 4.38; Zn, 8.19; Dy, 10.17. Found: C, 31.70; H, 3.40; N, 4.20; Zn, 8.30; Dy, 10.40. IR (ATR); 3182 w,
1629 s, 1570 m, 1554 m, 1466 m, 1439 m, 1402 m, 1289 vs, 1234 s, 1214 s, 1100 m, 1055 m, 1035 m, 950 m,
846 s, 784 s, 754 s, 692 m, 669 s, 615 s, 571 w, 540 w. Crystal Data: trigonal, space group R-3c (no. 167),
a = 19.8706(5) Å, c = 76.007(2) Å, V = 25990.1(12) Å3, Z = 18, T = 119.95(10) K, µ(CuKα) = 11.701 mm−1,
Dcalc = 1.838 g/cm3, 35,163 reflections measured (8.9◦ ≤ 2Θ ≤ 135.36◦), 5229 unique (Rint = 0.0842,
Rsigma = 0.0405) which were used in all calculations. The final R1 was 0.0610 (I >= 2σ(I)) and wR2 was
0.1699 (all data). CCDC No: 1849665.

3.4. Methods

The contents of carbon, hydrogen and nitrogen in the complexes were determined by elemental
analysis using a CHN 2400 Perkin Elmer analyser. The contents of zinc and lanthanides were
established using ED XRF spectrophotometer (Canberra-Packard, Schwadorf, Austria). The infrared
spectra were acquired using a Thermo Scientific Nicolet 6700 FTIR with a Smart iTR diamond ATR
accessory. Data was collected between 4000 cm−1 and 520 cm−1, with a resolution of 4 cm−1 for
16 scans. The NMR spectra were recorded on Bruker Avance 500 MHz in CDCl3 and DMSO-d6

solutions. Magnetic susceptibility measurements were performed on finely ground crystalline samples
over the temperature range 1.8–300 K at magnetic field 0.1 T using a Quantum Design SQUID-VSM
magnetometer. Corrections are based on subtracting the sample—holder signal and contribution χD

estimated from the Pascal’s constants [55,59].
The electronic absorption spectra of the ligand H3L and complexes 1–5 were recorded with

a Shimadzu UV-2401 PC 2001 spectrophotometer, in 10 × 10 mm quartz cells, in methanol at
concentration about 2·10−5 mol/L. Excitation and emission spectra of the studied systems, in methanol
solution and in solid state, were measured at ambient temperature and UV-VIS range used a Hitachi
F-7000 fluorescence spectrophotometer. For accuracy of data, the solid state samples were measured
within the same sample holder to ensure the consistent amount of luminescent materials in all samples.
Excitation and emission spectra were corrected for the instrumental response. All measurements were
carried out under the same experimental conditions.

Diffraction data were collected at room temperature (1, 4) on Oxford Diffraction Xcalibur CCD
diffractometer with graphite-monochromated MoK α radiation (λ = 0.71073 Å) using the ω scan
technique and at 120(1) K (2, 3, 5) on SuperNova X-ray diffractometer equipped with Atlas S2 CCD
detector using the mirror-monochromatized CuKα radiation (λ = 1.54184 Å). The diffraction data
resolution was 0.79 Å for 2 and 0.83 Å for 1,3–5. Absorption effects were corrected with CrysAlisPro
1.171.38.46 [60] by empirical absorption correction using spherical harmonics, implemented in SCALE3
ABSPACK scaling algorithm for 1 and 4, and by analytical numeric absorption correction using a
multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid for 2, 3, 5 [61].
The structures were solved by direct methods using the ShelXT [62] structure solution program
using intrinsic phasing and refined with the Olex2.refine refinement package using Gauss-Newton
minimisation [63]. The lanthanide ions in 3–5 lie on a 2-fold axis with sof = 0.5. In 3–5 the nitrate
ion occupies a special position at a 3-fold rotoinversion axis with sof 1/3 and a position near the
coordination unit which is shared with a solvent molecule with sof’s 1/6. Therefore, for nitrate ions
in 3–5 the bond length restraints were applied by DFIX instructions to 1.22(1) and DANG 2.10(2) Å
for N–O and O–O distances, respectively. Non-hydrogen atoms with except of nitrate N and O atoms
and solvent molecules were refined with anisotropic displacement parameters. The C-bound H atoms
were positioned geometrically and the ‘riding’ model for the C–H bonds was used in the refinement.
The summary of experimental details and the crystal structure refinement parameters are given in
Table 1 and Table S2. The experimental details and final atomic parameters have been deposited with
the Cambridge Crystallographic Data Centre as supplementary material (CCDC: 1849665–1849669).
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Copies of the data can be obtained free of charge on request via www.ccdc.cam.ac.uk/data_request/cif,
or by emailing data_request@ccdc.cam.ac.uk.

4. Conclusions

A new family of trinuclear ZnII–LnIII–ZnII complexes have been synthesized and characterized by
single-crystal X-ray diffraction, IR and elemental analyses. The luminescent and magnetic properties of
the complexes were studied. The two µ-acetato anions arranged in a cisoid manner are responsible for
the chirality of the coordination units. All the studied crystals 1–5 are racemic compounds. The chirality
of the coordination units influences the structure of the outer coordination spheres. The hydroxyl
group at the propyl linkage does not participate in coordination in 1–5 but it forms hydrogen bonds
with anions or solvent molecules blocking the direct access to the metal ions. In this way there
are formed two hydrophilic pockets accessible for hydrogen bonded small molecules. There are no
inner-sphere-coordinated solvent molecules or nitrate anions, which is beneficial for luminescent
properties. Different conformation of coordination units in crystals 1, 2 and 3–5 influences the linearity
of the metal arrangement ZnII–LnIII–ZnII and the mutual orientation of Zn–Oapical vectors, which may
be important for the physicochemical properties.

The complexes 1, 3–5 containing NdIII, EuIII, TbIII and DyIII ions show a blue emission attributed
to the emission of the ligand H3L. The characteristic emission bands of f-f* transitions were observed
for the SmIII complex 2 with a linear arrangement of ZnII–SmIII–ZnII metal ions.

The magnetic properties for ZnII–LnIII–ZnII compounds 1, 4, 5 are characteristic for the
paramagnetism of the corresponding lanthanide(III) ions.

The results will be employed in the further investigation as a reference for the future studies
concerning structural versus luminescent and magnetic properties of homo- and heteronuclear
coordination compounds.

Supplementary Materials: The following are available online, Table S1. Selected coordination compounds
with Schiff base ligand having 2-hydroxypropyl bridge. Involvement of the 2-hydroxypropyl bridge in the
formation of coordination bond, Table S2. Crystallographic data for complexes 1–5, Figures S1–S3. Location of
hydrogen bonded NO3

− anion and water molecule in pockets formed by 2-hydroxypropyl groups in complexes
ZnII–NdIII–ZnII (1), ZnII–SmIII–ZnII (2) and ZnII–EuIII–ZnII (3), respectively, Figure S4. The absorbance spectra
of compounds ZnII–EuIII–ZnII (3), ZnII–TbIII–ZnII (4) and ZnII–DyIII–ZnII (5) in methanol solution (~2·10−5 M),
Figure S5. Luminescence spectrum of complex 1 (ZnII–NdIII–ZnII) in methanol solution (~2·10−5 M), Figure S6.
Solid state emission spectra of complexes 3 (ZnII–EuIII–ZnII) and 4 (ZnII–TbIII–ZnII), Figure S7. Temperature
dependence of the experimental χM

−1 versus T for compound ZnII–NdIII–ZnII (1), Figure S8. Temperature
dependence of the experimental χM

−1 versus T for compounds ZnII–TbIII–ZnII (4) and ZnII–DyIII–ZnII (5),
Table S3. Theoretical and experimental values of the χMT product for compounds 1, 4, 5 at the room temperature,
Figure S9. 1H NMR spectrum of ligand H3L in CDCl3 solution. Figure S10. 13C NMR spectrum of ligand H3L in
DMSO-d6 solution.
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