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Abstract

Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the
alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci
employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B
Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based
vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting
the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain
showed that fH bound to a ,17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a
meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion
mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on
intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-
expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide
(LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while
expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific
and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and
resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism
with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its
components.
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Introduction

The complement system forms an important arm of innate

immune defenses against Neisseria meningitidis. The presence of

antibody-dependent complement-mediated serum bactericidal

activity predicts protection against invasive disease [1]. Individuals

deficient in components of the alternative or terminal complement

pathways are predisposed to recurrent episodes of meningococcal

infection [2,3,4,5]. In order to survive in its human host, the

meningococcus must evade killing by complement (either direct

lysis by the terminal pathway or complement-dependent opsono-

phagocytosis).

Capsular polysaccharide expression is probably the most

important determinant of meningococcal virulence. Expression

of capsular polysaccharide renders the organism more serum

resistant [6,7], although the molecular basis for capsule-mediated

serum resistance remains undefined. In addition, scavenging host

complement inhibitors by meningococcal membrane proteins

constitutes an important mechanism of subverting complement

attack. Opc has recently been shown to bind to vitronectin [8]

and contribute to serum resistance [9]. Porin (Por) A (PorA) binds

to C4b-binding protein, although binding is best observed under

hypo-osmolar conditions [10]. The molecule that has received

much attention in recent literature is factor H-binding protein

(fHbp; also known as LP2086 [11] or Genome-derived Neisserial

Antigen (GNA) 1870 [12]) that binds to the alternative pathway

inhibitor, factor H (fH) [13,14]. FH acts as a cofactor in the factor

I-mediated cleavage of C3b to the hemolytically inactive

molecule iC3b [15], prevents the association of factor B with

C3b thereby retarding the formation of the alternative pathway

C3 convertase (C3b,Bb) and irreversibly dissociates the alterna-

tive pathway C3 convertase once it is formed [16,17]. Based on

its amino acid sequence, fHbp has been classified into 3 variants

[12], or into 2 subfamilies [11], or more recently, into seven

modular groups [18,19]. Despite the fairly extensive fHbp

sequence variation among strains, representative strains from

each variant family bind to fH [13]. The co-crystal structure of

variant 1 (subfamily B) fHbp with a fragment of fH revealed an

extensive interaction surface of ,2,860 Å2 [14]. fHbp is currently

being evaluated as protein vaccine candidate against group B

meningococcal disease and has shown promise in Phase III

clinical trials [20].
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In light of the use of fHbp as a vaccine, it is important to define

alternative means of complement evasion that the meningococcus

may employ, in particular scavenging fH. fHbp expression levels

vary markedly across strains. Additional mechanisms to bind to

host fH could undermine the efficacy of fHbp-based vaccines. In

this report we have characterized Neisserial surface protein A

(NspA) as a second acceptor molecule for fH on meningococci and

have established its role in enhancing meningococcal serum

resistance. It is noteworthy that NspA has received attention as a

possible group B meningococcal vaccine; identification of a novel

function for this protein highlights the potential utility of microbial

fH binding molecules as vaccine antigens.

Results

fH binds to fHbp deletion mutants: evidence for an
alternate fH ligand on meningococci

Human fH binds to the meningococcal surface molecule, fHbp

and meningococcal strains, such as H44/76, do not show any

detectable binding of fH by flow cytometry following deletion of

fHbp ([13] and Figure 1A). However, we observed a small but

reproducible, albeit statistically insignificant, binding of fH to

fHbp mutants of some meningococcal strains, such as A2594,

BZ198 and Z2087 by flow cytometry (grey shaded histograms,

Figure 1A) relative to control histograms (Figure 1A, histograms

depicted by broken lines). The amount of fH that bound to the

fHbp deletion mutants of these strains was reduced compared to

their wild-type fHbp expressing parents (histograms depicted by

solid lines, Figure 1A). By contrast, fH binding to the fHbp

deletion mutant of strain H44/76 was below the level of detection

by FACS. These data indicate that some strains of meningococci

may express a second molecule that binds to human fH.

Expression of capsular polysaccharide decreases binding
of fH to fHbp-negative meningococci

Capsule expression in N. meningitidis is subject to phase variation

[21]. Down-regulation of capsule expression occurs during certain

stages of pathogenesis, for example, while traversing the epithelial

barrier [22]. Further, constitutively unencapsulated strains are

commonly found as carriage isolates [23,24,25] and may contribute

to the development of naturally acquired immunity. We have

previously demonstrated that expression of capsule in group B

meningococcal strain H44/76 reduces binding of the complement

regulatory binding protein, C4b-binding protein (C4BP) by about

50% [10]. To determine if the expression of capsular polysaccharide

similarly affects binding of fH to meningococci that lack fHbp

expression, we assessed binding of fH to meningococcal strains in

which capsule production had been abrogated. Deleting capsule from

the fHbp mutants of strains A2594, Z2087, BZ198 and H44/76

revealed that isogenic capsule negative (Cap2) fHbp mutants bound

more fH than their corresponding capsule expressing (Cap+)

counterparts (Figure 1B). Consistent with previous observations

[13,26], deletion of capsule from meningococcal strains that expressed

fHbp did not significantly alter binding of fH to meningococci (data

not shown). While the fHbp mutants of A2594, Z2087 and BZ198

showed a marked increase in fH binding with loss of capsule, only a

minimal increase in fH binding was seen in unencapsulated (Cap2)

fHbp mutant of H44/76, suggesting that the second acceptor for fH

was expressed in variable amounts across strains. These data show that

meningococcal strains possess a molecule distinct from fHbp that

serves as a ligand for human fH and that binding of fH to this

molecule is inhibited, to some extent, by capsule expression.

LOS HepI chain length is inversely proportional to fH
binding to fHbp-negative meningococci

LPS length can affect binding of complement inhibitors such as

fH to bacteria [27]. In Neisseria, many of the genes involved in

synthesis of lipooligosaccharide (LOS) are subject to reversible

phase variation and a consequence is that the length of glycan

extensions from HepI varies [28]. Previous work in our laboratory

has shown that altering the length of glycan extensions from HepI

affects binding of the complement inhibitor, C4BP, to gonococci

[29]. To determine if HepI glycan extensions similarly affect

binding of fH to its second ligand on meningococci, we studied the

effects of truncating the glycan residues from HepI on fH binding to

meningococci that lack fHbp. Wildtype strain A2594 expresses a

lacto-N-neotetraose (LNT) extension from HepI and the wildtype

LOS is not modified with sialic acid (LNT LOS sia-/Figure 2A,

blue). Mutants that express a lactose extending from heptose I (lgtA

mutants/L8 LOS/Figure 2A, green) or no saccharides off HepI

(lgtF mutants/unsubstituted HepI LOS/Figure 2A, red) were

created in the background of strains A2594 encapsulated (Cap+)

and A2594 Cap2. As seen in Figure 2B, truncation of the HepI

chain of LOS results in a progressive increase of fH binding to both

Cap+ (left panel) and Cap2 (right panel) meningococci. For a given

LOS phenotype, the Cap+ mutant bound less fH than the

corresponding Cap2 mutant, confirming the observation above

(Figure 1B) that capsule expression negatively impacted fH binding

to the second receptor. In both Cap+ and Cap2 backgrounds, the

trend of increasing fH binding as the length of LOS HepI chain

length decreases was statistically significant (Supplementary Table

S1; p-value for trend test = 0.007). The inhibitory influence of

capsule on fH binding to the second meningococcal fH receptor

decreased as HepI LOS chain length decreased. For example, the

differences in fH binding between the Cap+ and Cap2 isogenic

mutants were least apparent when the HepI of LOS was

unsubstituted (red graphs in Figure 2B).

LOS sialylation enhances fH binding to fHbp-negative
meningococci

In N. gonorrhoeae the modification of LNT LOS with sialic acid

dramatically enhances the binding of fH [30], probably by

Author Summary

Neisseria meningitidis is an important cause of bacterial
meningitis and sepsis worldwide. The complement system
is a family of proteins that is critical for innate immune
defenses against this pathogen. In order to successfully
colonize humans and cause disease, the meningococcus
must escape killing by the complement system. In this
study we show that meningococci can use one of its
surface proteins called Neisserial surface protein A (NspA)
to bind to a host complement inhibitory protein called
factor H (fH). NspA is a protein vaccine candidate against
group B meningococcal disease. Binding of fH limits
complement activation on the bacterial surface and
enhances the ability of the meningococcus to resist
complement-dependent killing. Capsular polysaccharide
expression decreases fH binding to NspA, while truncation
of the core glycan chain of lipooligosaccharide increases fH
binding to meningococcal NspA. Loss of NspA results in
enhanced complement activation on the bacterial surface
and increased complement-dependent killing of menin-
gococci. Our findings have disclosed a novel function for
NspA and sheds further light on how this pathogen evades
killing by the complement system.

Neisserial NspA Binds Factor H
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increasing the access of fH to porin [31]. However, LOS

sialylation has not been reported to enhance binding of fH to

meningococci [26,31]. Meningococcal strains that belong to

groups B, C, W-135 and Y can endogenously sialylate their

LNT LOS [32]. Group A strains do not have the capacity to

synthesize 59-cytidinemonophospho-N-acetylneuraminic acid

(CMP-NANA; the donor molecule for sialic acid) and thus cannot

endogenously sialylate their LNT LOS [33,34]. However, they

can scavenge CMP-NANA from the host to sialylate their LNT

LOS. To determine if LOS sialylation affects binding of fH to

fHbp negative meningococci we analyzed fH binding to fHbp2

and Cap2 mutants of group A strains A2594 and Z2087. The use

of group A strains, that cannot endogenously sialylate their LOS,

permitted us to study the effects of increasing amounts of LOS

sialylation on fH binding by varying the amount of CMP-NANA

added to growth media. As seen in Figure 3A, growth of both

strains in CMP-NANA-containing media increased fH binding.

Z2087 Cap2 fHbp2 was then grown in increasing amounts of

CMP-NANA (Figure 3B); fH binding increased as CMP-NANA

concentrations in the growth media were increased and maximal

fH binding was achieved at 5 mg/ml of CMP-NANA. Taken

together, the data presented thus far indicate that binding of fH to

the putative meningococcal second fH receptor is enhanced by

truncation of HepI glycan extensions, sialylation of LNT LOS or

loss of capsule expression.

Identification of NspA as the ligand for fH on fHbp-
negative meningococci

Our studies indicate the presence of a second meningococcal

receptor for human fH, distinct from the previously described

Figure 1. FH binding to fHbp mutants of select N. meningitidis strains and their isogenic capsule deficient mutants. A. fH binding to wild-
type meningococcal strains H44/76, A2594, BZ198 and Z2087 and their fHbp deletion mutants was examined by flow cytometry. Bacteria were
incubated with purified human fH at a concentration of 20 mg/ml and bound fH was detected with polyclonal sheep anti-human fH. Representative
controls with the wild-type strains where fH was omitted from the reaction mixture are shown by the broken line. The x-axis represents fluorescence on a
log10 scale and the y axis is the number of events. Median fluorescence is indicated to the right of each histogram. B. Capsule expression hinders fH
binding to fHbp deletion meningococcal mutants. fHbp deletion mutants of encapsulated strains H44/76, A2594, BZ198 and Z2087 and their isogenic
unencapsulated mutants were incubated with fH at a concentration of 20 mg/ml and bacteria-bound fH was detected with sheep anti-human fH. fH
binding to the encapsulated (Cap+) strains is shown by the shaded histogram and binding to the isogenic unencapsulated (Cap2) mutant is shown by
the solid line. Representative controls with the wild-type strains where fH was omitted from the reaction mixture are shown by the broken line. The x-axis
represents fluorescence on a log10 scale and the y axis the number of events. Median fluorescence is indicated to the right of each histogram.
doi:10.1371/journal.ppat.1001027.g001

Neisserial NspA Binds Factor H
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fHbp. A Far Western ligand immuno-blotting assay was used to

identify the putative second receptor molecule(s) present on fHbp

deletion mutants of N. meningitidis. Membrane proteins prepared

from strains A2594 (binds fH when its fHbp is deleted) and H44/76

(fHbp deletion mutant does not bind detectable amounts of fH by

FACS) were separated on a 4–12% Bis-Tris gel and transferred to

a PVDF membrane. Proteins that bound to fH were identified by

probing the membrane with purified human fH and detecting

bound fH with an anti-fH Ab (Figure 4A, right). An fHbp deletion

mutant of each strain was used as a control. We focused on fH-

reactive bands that were present in A2594 and A2594 fHbp2, but

were either absent or expressed in reduced amounts on H44/76

and H44/76 fHbp2. A prominent fH-binding band of ,17 kD

was apparent in A2594 and A2594 fHbp2. This band was

detected, but with lower intensity, in H44/76 and its fHbp deletion

mutant (Figure 4A, right). This ,17 kD band was not considered

in our previous study where strain H44/76 was employed to

identify fHbp as a fH binding molecule [13] because strain H44/

76 expresses very low levels of this protein; we focused on the more

prominent 29 kD fH-reactive band (fHbp) that was subsequently

validated as the fH ligand on intact bacteria. A Coomassie blue

stained gel showing the total membrane protein profile of each

strain is shown for reference (Figure 4A, left).

To determine the identity of the ,17 kD fH binding molecule,

the region corresponding to the location of the ,17 kD band was

excised from a parallel Coomassie stained gel (indicated by the

asterisk, Coomassie blue stained gel, Figure 4A) and this sample

was subject to in-gel trypsin digestion and MALDI-TOF analysis

followed by peptide mass fingerprinting that was compared with

the Neisseria proteome. The protein band was defined as

Figure 2. Inverse relationship between fH binding to fHbp mutants and length of HepI glycans extensions. A. Schematic depicting the
LOS HepI glycan extensions of the strains used in this study. B. Binding of fH (10 mg/ml) increases as LOS HepI chain length decreases. fH binding to
Cap+ (left panel) and Cap2 (right panel) isogenic mutants of A2594 that express either unsialylated LNT LOS (blue graphs), L8 LOS (green graphs) or
unsubstituted HepI LOS (red graphs) was measured by flow cytometry. Numbers represent median fluorescence of fH binding from a single
representative experiment; color corresponds to the color of the graph. Median fluorescence from three independent experiments was used to
perform a Cuzick’s nonparametric test for trend across ordered groups. The trend of fH binding increasing as HepI chain length decreases is
statistically significant (p-value for trend test p = 0.007). The control (dashed histogram) represents a reaction mixture in which fH was excluded;
controls with all mutants yielded similar results and a representative control obtained using the LNT LOS-expressing strain is shown. Axes are as
described for Figure 1A.
doi:10.1371/journal.ppat.1001027.g002

Neisserial NspA Binds Factor H
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Neisserial surface protein A (NspA) using the Peptide Mass

Fingerprint program for MS data and the MS/MS Ion Search

program for CID data. The peptide ions covered 43% of the total

protein sequence and no other statistically significant matches

were identified. The data suggest that NspA could bind to human

fH.

Figure 3. Sialylation of lacto-N-neotetraose (LNT) LOS enhances binding of fH to fHbp-negative meningococci. A. fH (10 mg/ml)
binding to fHbp deletion mutants of unencapsulated (Cap2) derivatives of strains A2594 (upper panel) and Z2087 (lower panel) grown either with
(sia+) or without (sia2) CMP-NANA (5 mg/ml) added to the growth media was measured by flow cytometry using anti-fH mAb 906. Binding to
sialylated (sia+) strains is shown by the shaded graphs and binding to strains without LOS sialic acid (sia2) by the solid line. Controls (no fH added)
are shown by the dashed line. Numbers represent the median fluorescence of the corresponding histogram. B. fH binding to fHbp2 LNT-bearing
meningococci is dose dependent and saturatable. Z2087 mynB fHbp (Cap2, fHbp2, LNT LOS) was grown in media containing increasing
concentrations of CMP-NANA ranging from 0 to 10 mg/ml. Bacteria were incubated with fH (20 mg/ml) and fH bound to bacteria was detected by flow
cytometry using mAb 906. The average median fluorescence from 3 independent experiments is plotted. Error bars represent standard deviations.
The increases in fH binding were statistically significant (p-value,0.05) for all CMP-NANA concentrations prior to saturation. Controls and axes are as
described in Figure 3A.
doi:10.1371/journal.ppat.1001027.g003
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One caveat of a Far Western assay is that proteins presented in

non-native conformations may interact in artificial ways with the

ligand, in this case fH, and lead to the detection of ‘‘false positive’’

interactions. The data presented below indicate that NspA is likely

the only additional fH ligand present in these strains and

additional fH reactive bands present on the Far Western blot

(Figure 4A, right) were not analyzed by MALDI-TOF.

Consistent with our previous observations [13], PorA and PorB

also bound to fH on the western blot (Figure 4A, right). Purified

H44/76 PorB3 binds to human fH by ELISA [35], but neither

Figure 4. Identification of NspA as a meningococcal ligand for fH. A. Membrane extracts from strains A2594 and H44/76 and their fHbp
deletion mutants (fHbp2) were separated on a 4–12% Bis-Tris gel, transferred to a PVDF membrane by western blotting and probed with pure
human fH (1 mg/ml). Bound fH was detected with sheep polyclonal anti-human fH. The locations of PorA, PorB and fHbp are indicated. A ,17 kD
molecule that also bound fH is indicated by the arrow. This protein was identified by MALDI-TOF analysis of the co-migrating band on a Coomassie
blue stained gel (indicated by the asterisk) as NspA (see text). B. PorA and PorB are not ligands for fH on intact meningococci. porA and porB3 were
deleted from the background of A2594 Cap2 (right panel) and A2594 Cap2 (left panel), respectively, and fH (10 mg/ml) binding was measured by
flow cytometry using anti-fH mAb 906as the detecting Ab. The shaded graph represents fH binding to the porin deletion mutants and the solid line
represents fH binding to the parent strain. Controls and axes are as described in Figure 1A.
doi:10.1371/journal.ppat.1001027.g004
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PorB3 nor PorA bind to fH in the context of intact H44/76

bacteria [13,26], and we therefore did not anticipate these

meningococcal porins to serve as ligands for fH on whole bacteria.

The putative surface exposed loops of PorA and PorB show

considerable variation across strains [36,37,38,39] and thus it

remained possible that the porin molecule(s) of A2594, but not

H44/76, served as a ligand for fH. Deleting PorA or PorB3 from

the background of A2594 Cap2 did not diminish fH binding

compared to the respective isogenic Por sufficient parent strains

(right and left graphs of Figure 4B, respectively). This suggests that

neither Por molecule contributed to fH binding to intact A2594

organisms and that the interaction of these proteins with fH in the

Far Western assay is a ‘‘false positive’’.

NspA shares structural similarities with the Neisserial opacity

proteins (Opa) and we sought to determine if Opa might also bind

fH. fH binding to an unencapsulated Z2087 strain that expressed

Opa and its isogenic Opa negative mutant was indistinguishable

(Supplementary data Figure S1), indicating that the Opa proteins

were not ligands for fH.

NspA is a ligand for fH on intact meningococci
Several lines of evidence were used to independently verify that

NspA is a ligand for fH on live, intact meningococci.

i) Deleting NspA abrogates fH binding to intact fHbp-

negative bacteria. To determine the role of NspA in binding to

human fH on intact fHbp-negative meningococci we constructed

nspA deletion mutations in strains BZ198 and A2594. The BZ198

mutants were constructed in a Cap+ strain that expressed either

sialylated LNT LOS (BZ198 is able to endogenously sialylate its

LOS) or L8 LOS. The A2594 mutants were constructed in a Cap2

strain expressing L8 LOS, to maximize binding of fH. All mutations

were constructed in both fHbp+ and fHbp2 backgrounds to

compare the relative contribution of each of these ligands to fH

binding. The expression of fHbp and NspA was verified in all strains

by western blot using polyclonal anti-variant 1,2 and 3 fHbp

antiserum and anti-NspA mAb Me-7, respectively (Figure 5A).

Binding of fH to the nspA deletion mutants of BZ198 and A2594 was

measured by flow cytometry and, as seen in Figure 5B, deleting nspA

uniformly decreased fH binding to all strains. No residual fH

binding to any of the strains was detected when both fHbp and

NspA were deleted. These data, taken together with the direct

binding of fH to NspA observed in the Far Western assay,

confirmed that NspA served as a ligand for fH on intact bacteria. In

addition, these data suggest that the increased fH binding observed

in strains that express truncated (L8) LOS also occurred to NspA

(i.e., no additional fH ligands were exposed).

LNT LOS sialylation enhanced binding of fH to fHbp-negative

meningococci (Figure 3). To determine if the enhanced fH binding

observed in sialylated fHbp-negative meningococci was dependent

on NspA expression, we examined fH binding to an fHbp nspA

double mutant. A2594 Cap2 fHbp2 NspA2 with LNT LOS was

grown in media containing CMP-NANA and, despite LNT LOS

sialylation, there was no increase in fH binding noted by flow

cytometry (data not shown). This upholds that the increased fH

binding seen when the LNT LOS of the group A fHbp deletion

mutants was sialylated (Figure 3A) was not because of fH binding

to LOS sialic acid directly, but that the enhanced binding was

dependent on the concomitant expression of NspA.

ii) Recombinant NspA expressed in E. coli binds to fH and

binding of fH to NspA can be inhibited by an anti-NspA

mAb. Microvesicles prepared from an E. coli strain expressing

recombinant NspA [40] were used to demonstrate direct binding of

fH to NspA by ELISA (Figure 6A). Dose-dependent binding of fH to

NspA-containing vesicles was observed. In contrast, no binding of

fH was observed to vesicles prepared from an E. coli strain harboring

the plasmid without nspA at any of the fH concentrations tested. The

specificity of fH binding to NspA containing vesicles was further

validated by the ability of the anti-NspA mAb 14C7 to block

binding of fH to vesicles containing NspA (Figure 6A).

Additional evidence that NspA was an acceptor molecule for fH

on the meningococcal surface was provided by the ability of the

anti-NspA mAbs Me-7 and 14C7 to block binding of fH to strain

A2594 Cap2 fHbp2 (Figure 6B). A control mAb (mAb P1.9)

directed against the class I outer membrane protein porin A (PorA)

did not affect fH binding to bacteria. Similar surface binding of the

mAbs used, in the absence of fH, is shown in Figure 6B. Binding of

fH in the absence of any added mAb was similar to that seen with

mAb P1.9 (shaded grey histogram, left panel, Figure 6B).

iii) Increasing NspA expression enhances fH

binding. NspA expression levels vary among meningococcal

strains [41] and it appeared that the amount of fH binding

mirrored expression levels. Consistent with the high levels of fH

binding seen to their fHbp deletion mutants, strains BZ198, A2594

and Z2087 were also high NspA expressers as seen on western blot

analysis of whole bacterial lysates (Figure 7A). Of the strains tested,

H44/76 expressed the lowest levels of NspA, while C2120, W171

and Y2220 all expressed intermediate levels of NspA (Figure 7A).

The results obtained by western blotting were confirmed by flow

cytometry using anti-NspA mAb Me-7 (data not shown).

Expression level of fHbp also varies among meningococcal

strains [12] and fHbp expression in several strains is shown

(Figure 7B). As noted previously, H44/76 is a high fHbp-

expressing strain [13,42] while fHbp expression in Y2220 barely

exceeds the level of detection. The expression of fHbp and NspA

did not vary within a strain in response to the genetic

manipulations described herein (Supplementary Figure S2).

We hypothesized that increasing NspA expression would

enhance fH binding. NspA expression was upregulated by

placing nspA under control of the porA promoter in the

background of wild-type strain Y2220 expressing sialylated

LNT LOS (Cap+/LNT LOS sia+) and Y2220 Cap+/L8 LOS

(Y2220 lgtA::kan). Strain Y2220 was chosen because it expresses

very low levels of fHbp [13]. Thus, the effects of NspA over-

expression on fH binding could be studied with minimal

confounding background fH binding to fHbp. Enhanced NspA

expression by the porA promoter was confirmed by western

blotting (Figure 7C). Increased NspA expression was associated

with increased fH binding (Figure 7D). Again, the strain that

expressed the shorter (L8) LOS bound more fH that the isogenic

mutant with LNT LOS.

Meningococcal strains such as, H44/76, C2120, W171 and

Y2220 express low or intermediate levels of NspA, but do not bind

fH when fHbp is deleted (data with H44/76 shown in Figure 1A

and reference [13], Y2220 shown by solid black histogram in left

panel of Figure 7D; data with C2120 Cap+ and W171 Cap+ are

not shown). The Cap2 mutants of these strains also show minimal

fH binding when they express LNT LOS and when fHbp is deleted

(Supplementary Figure S3). We speculated that further truncation

of LOS in these strains would disclose fH binding. In accordance

with this hypothesis, truncating LOS (lgtF mutants; HepI

unsubstituted) resulted in increased fH binding (Supplementary

Figure S3).

NspA mediates binding of fH to meningococci through
interactions with fH short consensus repeats (SCRs) 6
and/or 7

FH comprises 20 short consensus repeat (SCR) domains arranged

as a single chain [43]. Recently, the cocrystal complex of variant 1
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Figure 5. Deleting NspA decreases binding of fH to N. meningitidis. A. Expression of fHbp and NspA in BZ198 and A2594 derivatives as
determined by western blotting of whole cell lysates followed by detection with polyclonal anti-fHbp (variant 1,2 and 3) or anti-NspA mAb Me-7 as
indicated. After transfer, proteins migrating above ,50 kD were stained with Coomassie blue and served as a loading control, proteins migrating
between ,20 kD and 40 kD were probed to detect fHbp and proteins migrating below 20 kD were probed to detect NspA. NspA migrates with an
apparent molecular mass of approximately 15 kD when 4–12% Bis-Tris gels are used with MES running buffer. Also, of note, NspA is a heat-modifiable
protein and the second larger anti-NspA-reactive band seen in some lanes is the result if incomplete heat denaturation. B. Strains BZ198 Cap+/LNT
sia+, BZ198 Cap+/L8 LOS and A2594 Cap2/L8 LOS, and their fHbp, nspA or fHbp nspA double mutants were examined for their ability to bind to fH
(20 mg/ml) by flow cytometry. The boxed numbers accompanying each histogram represents the median fluorescence of fH binding of the entire
bacterial population. Controls (shown by the broken lines) represent fluorescence where fH was omitted from the reaction mixture; all strains yielded
similar background binding and, for simplicity, only tracings obtained with the parent strains have been shown. Axes are as described for Figure 1A.
doi:10.1371/journal.ppat.1001027.g005
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fHbp with fH SCRs 6–7 showed an extensive area of interaction of

fHbp with fH SCR 6 and minor points of contact with SCR 7 [14].

Site-directed mutagenesis studies also localized the fHbp binding

domain in fH to SCR 6 [44]. To determine the fH SCRs involved in

binding to NspA, we utilized fusion proteins that contain contiguous

fH SCRs fused at their C-terminus to the Fc portion of IgG2a

[44,45]. The Fc fragment served as a ‘tag’ for symmetric detection

of all fusion proteins. The ability of five fH/Fc fusion constructs

(SCR 1–5/Fc, SCR 1–7/Fc, SCR 6–10/Fc, SCR 11–15/Fc and

SCR 16–20/Fc) to bind to meningococcal strain A2594 Cap2 L8

Figure 6. Recombinant NspA expressed in E. coli vesicles binds to fH. A. Binding of fH to microvesicles prepared from an E. coli strain expressing
recombinant NspA (squares) or to vesicles prepared from the same E. coli strain transformed with the plasmid without the nspA gene (circles) was
measured by ELISA. Binding of fH to vesicles harboring recombinant NspA was blocked by the anti-NspA mAb 14C7 (triangles). Each data point
represents the arithmetic mean of the OD405nm reading from three independent experiments and error bars represent the standard deviation. B. Binding
of fH to A2594 Cap2 fHbp2 LNT LOS sia2 was measured in the presence of anti-NspA mAb Me-7 (purple shaded histogram), anti-NspA mAb 14C7 (pink
shaded histogram) or anti-PorA mAb P1.9 (green shaded histogram); all mAbs were used at a concentration of 30 mg/ml and fH binding was detected
using sheep anti-human fH. The control (histogram depicted by a dashed line) represents bacteria incubated with mAb Me-7, followed by addition of
anti-fH and anti-sheep IgG FITC. A control where fH binding was measured in the absence of any added mAb is shown by the grey shaded histogram in
the left panel. Surface binding of each mAb (shading as described above) to A2594 Cap2 fHbp2 LNT LOS sia2 is also shown. The control (dashed line)
represents bacteria incubated with anti-mouse IgG FITC. Median fluorescence is indicated to the right of each histogram.
doi:10.1371/journal.ppat.1001027.g006
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LOS and its isogenic fHbp2, NspA2 and fHbp2 NspA2 double

negative mutants, was examined by flow cytometry. Only those fH/

Fc proteins that contained SCRs 6 and 7 (SCR 1–7/Fc, and SCR

6–10/Fc) bound to the NspA expressing strains that lacked fHbp.

This result indicates that like fHbp, NspA binds to SCR 6 and/or 7.

As expected, the SCR 6/7 containing constructs bound to fHbp

expressing strains while none of the fH SCR/Fc constructs bound to

mutants lacking both fHbp and NspA.

Factor H-like molecule 1 (FHL-1) comprises fH SCRs 1–7 plus

four unique additional C-terminal amino acids (SFTL) [46]. FHL-

1 also bound to Cap2 fHbp2 A2594 (Supplementary Figure S4),

supporting the conclusion that SCRs 6 and/or 7 play a role in

binding of fH to NspA. This finding is consistent with the NspA

binding site residing in fH SCRs 6 and/or 7.

Together, these data suggest that SCR 6 and/or SCR 7 are

important for binding of fH to NspA. Although less likely, these

Figure 7. fH binding increases with increasing NspA expression. A. Comparison of NspA expression in Cap2 derivatives of strains A2594,
Z2087, H44/76, C2120, W171, Y2220 and BZ198 by western blotting of whole cell lysates followed by detection with anti-NspA mAb Me-7. After
transfer, proteins migrating above 50 kD were stained with Coomassie blue and served as a loading control. B. Comparison of fHbp expression in
strains A2594, Z2087, H44/76, BZ198 and Y2220 by western blotting of whole cell lysates followed by detection with polyclonal anti-variant 1, 2 and 3
fHbp. After transfer, proteins migrating above 40 kD were stained with Coomassie blue and served as a loading control. C. Overexpression of NspA.
The porA promoter was used to increase NspA expression in the backgrounds of Y2220 Cap+/LNT sia+ and Y2220 Cap+/L8 LOS. Bacterial lysates were
subject to western blotting and probed with mAb Me-7. Similar loading of parent and mutant strains was confirmed by Coomassie staining as
described in A. D. Overexpression of NspA enhances fH binding to Y2220 Cap+/LNT sia+ and Y2220 Cap+/L8 LOS. fH binding to the parent strain,
expressing wildtype levels of NspA, is shown by the solid line and binding to the NspA overexpressing isogenic mutant is shown by the grey shaded
histogram. A representative control (no added fH) is shown by the dashed line. Axes are as described in Figure 1A.
doi:10.1371/journal.ppat.1001027.g007
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data do not unequivocally exclude a role for SCRs 8, 9 and 10 in

binding of fH to NspA; studies to precisely localize the NspA

binding region in fH are underway.

Species-specificity of fH binding to N. meningitidis
expressing NspA

N. meningitidis and N. gonorrhoeae are exclusively human pathogens

and the ability of these pathogens to evade complement-mediated

killing in a species-specific fashion may contribute to the narrow

host range of infection [45,47,48]. We have shown previously that

gonococci bind specifically to human C4BP (and in some

instances, chimpanzee C4BP) [48] and human fH [45]. Likewise,

binding of fH to meningococcal fHbp is specific for human fH

[47]. To determine if fH binding to NspA is also species specific we

examined binding of fH from different primate species to N.

meningitidis strain A2594 Cap2 L8 LOS and its isogenic fHbp2,

NspA2 and fHbp2 NspA2 double-negative mutants by Western

blotting (Figure 9A). Strains were incubated with 10% heat-

inactivated human or primate sera to assess direct binding of fH to

bacteria. Heat inactivation destroys heat labile complement

components while leaving fH intact; inactivation of complement

is necessary to prevent detection of complement C3b-mediated

binding of fH to meningococci. Bound fH was detected by

Western blot using polyclonal goat anti- human fH Abs. This Ab

reacts with fH in the primate sera tested (Figure 9B) and as

previously reported, detection of rhesus fH was slightly weaker

[45]. Human fH bound well to all strains that expressed NspA

(Figure 9A), but only weakly to strains that expressed fHbp but

lacked NspA, which is consistent with the fH binding data present

in Figure 6B. Very weak binding of chimpanzee fH to strains

expressing NspA was also noted (Figure 9A). None of the strains

tested bound rhesus fH when incubated with heat-inactivated

rhesus sera (Figure 9A). The fHbp2 NspA2 strain showed barely

detectable binding to human fH, and as expected, did not bind fH

from the other primate species tested (Figure 9A).

NspA expression enhances serum resistance and inhibits
C3 deposition

fH functions to down-regulate the alternative pathway of

complement and bacteria that bind to fH would be expected to

be more resistant to the bactericidal action of serum than those

that do not bind to fH. To determine the relative roles of fHbp and

NspA in serum resistance we examined strains BZ198 Cap+ and

A2594 Cap2 each expressing L8 LOS and their isogenic mutants

that lacked either fHbp or NspA or both for their ability to resist

killing by normal human serum. The concentration of serum used

was determined based on the survival of each parent strain in

serum (Supplementary Figure S5). Loss of NspA expression in

both instances resulted in greater sensitivity to complement-

dependent killing (Figure 10A). It is noteworthy that in these high

NspA-expressing strains, deleting fHbp did not negatively impact

survival. Deleting fHbp from the high fHbp-expressing strain H44/

76, which expresses low levels of NspA, results in decreased serum

resistance [13,42].

Figure 8. Binding of fH/Fc fusion proteins to N. meningitidis fHbp and NspA mutants of A2594. Binding of fH/Fc fusion constructs to
A2594 Cap2 L8 LOS and to its fHbp2, NspA2 and fHbp2 NspA2 double mutants was assessed by flow cytometry using anti-mouse IgG FITC to
disclosure the bound constructs. Strains that expressed either fHbp, NspA or both bound only to fH/Fc fusion constructs that contained SCR 6 and
SCR 7 (SCR 1–7/Fc and SCR 6–10/Fc) of fH. In all graphs, the x-axis represents fluorescence on a log10 scale and the y-axis represents the number of
events. No fusion protein is present in the control tube. One representative experiment of at least three independent experiments is shown.
doi:10.1371/journal.ppat.1001027.g008
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fH limits C3 deposition by virtue of its ability to act as a cofactor

in the factor I-mediated cleavage of C3b [15] and irreversibly

dissociate alternative pathway C3 convertases (decay-accelerating

activity) [16,17]. As expected, mutant strains that lacked NspA

bound more C3 than their NspA-sufficient ‘parent’ strains. The

median fluorescence of C3 binding was ,5-fold more with A2594

Cap2/L8 LOS/NspA2 and ,2.5-fold more with BZ198 Cap+/

L8 LOS compared to their respective isogenic parent strains

(Figure 10B). fH binding (Figure 5B) mirrored survival of bacteria

in serum (Figure 10A) confirming that complement regulation by

NspA occurred at the level of C3 deposition. Similarly, C3

deposition on BZ198 Cap+/LNT sia+/NspA2 was ,1.5-fold

higher than on BZ198 Cap+/LNT sia+ (data not shown).

Complementation of fHbp2 NspA2 double mutants
with NspA restores binding of fH and serum resistance to
meningococci

Meningococcal strain A2594 Cap2 L8 LOS lacking both fHbp

and NspA was complemented, in trans, with NspAA2594 to verify

that the loss in fH binding and concomitant decrease in serum

resistance were not due to secondary changes. As expected,

complementation with NspAA2594 resulted in expression of NspA

as judged by both western blot (data not shown) and flow

cytometry (Figure 11A). Restoration of NspA expression also

restored the ability of fHbp2 NspA2 double mutants to bind fH

(Figure 11A). The ability of the complemented strains to resist

killing by NHS was assessed in a serum bactericidal assay. As

shown above (Figure 10A), A2594 Cap2 L8 LOS lacking both

fHbp and NspA was more sensitive to serum killing than the

parent strain expressing both of these proteins. Complementation

with NspA, alone, restored serum resistance to the mutant strain

lacking both fH ligands, albeit to levels less than that of the parent

strain (Figure 11B). All three strains were completely (100%) killed

in 6.6% NHS (data not shown). Overall, these data indicate that

the lack of fH binding and decreased serum resistance observed in

strains lacking NspA is because of lack of NspA expression and not

the result of secondary changes in these isogenic strains.

Discussion

Several pathogens, including bacteria, fungi, parasites and

viruses bind to fH, which inhibits complement activation on their

Figure 9. Meningococcal NspA binds selectively to human fH. A. Unencapsulated N. meningitidis A2594 expressing L8 LOS and its fHbp2,
NspA2, and fHbp2NspA2 isogenic mutants were incubated with 10% (v/v) heat-inactivated human, chimpanzee and rhesus sera and Western blots
were performed using polyclonal goat anti- human fH. B. Human, chimpanzee and rhesus serum controls at a dilution of 1/200 (v/v) were performed
to ascertain that the goat polyclonal anti-human fH Abs recognized all primate fH tested.
doi:10.1371/journal.ppat.1001027.g009
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surface (reviewed in [49,50]). This work has characterized NspA as

a ligand for human fH and has shown that NspA plays a role in

conferring serum resistance to meningococci even in the absence

of expression of the previously characterized fH-binding menin-

gococcal molecule, fHbp. NspA interacts with fH SCRs 6 and/or

7 and like fHbp, preferentially binds to human fH.

It is interesting that all naturally occurring meningococcal

strains reported thus far express both fHbp [12,51] and NspA [52],

suggesting an important role for these proteins in meningococcal

pathogenesis. Prior to this study the function of NspA had not

been defined. The factors that influence fH binding to NspA on

intact bacteria have been characterized in this study, which

Figure 10. NspA expression enhances resistance of meningococci to complement-dependent killing and limits C3 deposition on
bacteria. A. Strains BZ198 Cap+/L8 LOS and A2594 Cap2/L8 LOS and their isogenic mutant derivatives that lacked fHbp, NspA, or both fHbp and
NspA were tested for their ability to resist killing by normal human serum in a serum bactericidal assay. The y-axis represents percent survival. Error
bars indicate standard deviation calculated from 3 independent experiments. In all cases the decreased survival observed in strains that lack NspA
was statistically significant (P,0.02 by a t-test) compared to the parent strain expressing NspA and fHbp B. C3 deposition on strains BZ198 Cap+/L8
LOS and A2594 Cap2/L8 LOS and their isogenic mutants that lacked either fHbp or NspA expression. The BZ198 Cap+ mutants were incubated with
40% NHS while the A2594 Cap2 mutants were incubated with 20% NHS. C3 deposition on bacteria was detected by flow cytometry. Axes are as
described for Figure 1A. Data with the double fHbp2/NspA2 mutant was similar to the NspA2 mutant and has been omitted for ease of
visualization.
doi:10.1371/journal.ppat.1001027.g010
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provides insights into the pathophysiological conditions or niches

where NspA-mediated fH binding may assume an important role.

Meningococcal strains that are isolated from the nasopharynx are

often unencapsulated and/or express L8 LOS [53]; high binding

of fH to NspA under these conditions could point to a key role for

NspA in survival of meningococci during nasopharyngeal

colonization (a prerequisite of invasive disease) and in survival of

carrier strains. The positive effects of NspA on bacterial survival

are also seen in encapsulated strains that are high NspA expressers

such as BZ198 when they express L8 LOS (Figure 10A).

Meningococcal isolates often express more than one LOS species

because many of the genes involved in LOS biosynthesis, including

lgtA, are phase variable [28]. Thus, for example, a strain could

express a combination of LNT and L8 LOS species [54,55]. It is

not clear how LOS sialylation, which represents elongation

beyond the LNT structure, enhances fH binding to NspA. One

possibility is that LOS and NspA lie in close proximity and

expression of the unsialylated LNT hinders fH from binding to

NspA; sialylation may alter the conformation of LOS thereby

better exposing the fH binding region of NspA. Another possibility

is that LOS sialic acid itself may act as part of the docking site for

fH. Nevertheless, LOS sialylation is not essential for fH binding to

Figure 11. Complementation of fHbp NspA double mutants with NspA restores fH binding and serum resistance. A. Meningococcal
strain A2594 Cap2/L8 LOS (‘‘parent’’), its fHbp nspA double mutant (fHbp2 NspA2) and its fHbp nspA double mutant complemented with NspA
(fHbp2 NspA2/NspAA2594 comp) were examined for their ability to bind to MAb 14C7 (anti-NspA) and to fH (20 mg/ml) by flow cytometry. The boxed
numbers accompanying each histogram represents the median fluorescence of 14C7 or fH binding to the entire bacterial population. Controls
(shown by the broken lines) represent fluorescence where either mAb 14C7 or fH or was omitted from the reaction mixture. Axes are as described for
Figure 1A. B. Strain A2594 Cap2/L8 LOS (fHbp+ NspA+), its fHbp nspA double mutant (fHbp2 NspA2) and its fHbp nspA double mutant
complemented with NspA (fHbp2 NspA2/NspAA2594 comp) were tested for their ability to resist killing by NHS at concentrations of 3% (left graph)
or 1.5% (right graph) in a serum bactericidal assay. The y-axis represents percent survival. Error bars indicate standard deviation calculated from 3
independent experiments. With 1.5% NHS the decreased survival observed in strains that lack NspA was statistically significant (P,0.02 by a t-test)
compared to the parent strain expressing both NspA and fHbp.
doi:10.1371/journal.ppat.1001027.g011
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NspA on intact organisms. Sialylation of N. gonorrhoeae LNT LOS

also enhances fH binding, but the interaction in that instance

requires the concomitant presence of the gonococcal PorB

molecule [56]. LPS glycan extensions can negatively impact

binding of complement inhibitors to gram-negative bacteria. As an

example, expression of O-antigenic repeats on the LPS of Y.

enterocolitica can block binding of fH to the Ail protein [27].

Neisseriae lack O-antigenic repeats, yet subtle changes in the core

LOS structure can have profound impacts on the binding of

complement inhibitors and serum resistance. The presence of the

proximal Glc off HepI appears to be necessary for optimal C4b-

binding protein (C4BP) binding to porin (Por) B.1B (Por1B)-

expressing gonococci [29].

NspA forms an eight-stranded anti-parallel b-barrel and has

four putative surface exposed loops. A conformational epitope that

includes NspA loop 3 appears to be important for binding of mAbs

Me-7 [57] and 14C7 [40] both of which inhibit fH binding to

NspA on meningococci. It is therefore possible that NspA loop 3

plays a role in the interaction with fH, although steric hindrance

by the surface-bound mAb could account for the ability of the

mAbs to block fH binding. It would be of interest to determine

whether NspA plays a role in fH binding to gonococci because of

the extensive (,95%) sequence similarity between gonococcal and

meningococcal NspA.

Sera from humans may contain naturally-occurring antibodies

that are directed against LNT-expressing LOS and is bactericidal

against group B meningococci [58]. Phase variation of lgtA that

results in L8 LOS expression could subvert killing by these

naturally occurring anti-LNT antibodies. However, truncation of

the HepI chain of LOS could have a negative effect on serum

resistance because of increased accessibility of the 3-phosphoetha-

nolamine (PEA) residue on HepII to C4b [59]; C4b amide-linked

to PEA can lead to downstream complement activation that may

result in bacterial killing. By virtue of enhanced fH binding, high

NspA expressers may be able to dampen excessive complement

activation that is initiated by C4b when LOS is truncated.

It is noteworthy that loss of NspA (leaving fHbp intact) from a

high NspA expressing strain such as A2594 (intermediate fHbp

expression levels) resulted in increased C3 deposition on bacteria,

while loss of fHbp (leaving NspA intact) in that strain did not

enhance C3 deposition (Figure 10B). Strain BZ198 also expresses

high levels of NspA and intermediate levels of fHbp; loss of NspA

resulted in greater enhancement of C3 deposition relative to that

seen when fHbp was deleted (Figure 10B). We have shown

previously that loss of fHbp in high-fHbp expressing strains such as

H44/76 (expresses low levels of NspA) also increases C3

deposition [13,42]. The relative abilities of the two ligands to

regulate C3 deposition on different strains may reflect heteroge-

neity in their expression levels. In addition, variables such as the

amount of capsule expression and the diversity of HepI LOS

extensions could affect the amount of fH binding to NspA and

thereby its ability to regulate C3 deposition. The relative roles of

fHbp and NspA in regulating complement activation in the

context of expression of the different capsular groups and varying

LOS structures is a complex subject that merits further study.

However, it is evident from the current study and from previous

work [13,42,60,61] that both molecules contribute to the ability of

meningococci to resist killing by normal human serum.

fHbp has shown considerable promise as a vaccine candidate

[20]. A vaccine that has fHbp as a component could lead to

selection of meningococcal strains that either do not express, or

express very low amounts of fHbp. Under such circumstances,

high NspA expressers may have a survival advantage. Our data

suggest that including NspA as part of a vaccine strategy that

targets fH-binding proteins on N. meningitidis could, in theory,

overcome this potential obstacle. Indeed, NspA has been

intensively investigated as a vaccine candidate against group B

meningococci [62,63]. Both mAbs against NspA (including Me-7

and 14C7) and polyclonal Abs against NspA (raised by

immunization of mice with meningococcal outer membrane

vesicles that contained native NspA) were bactericidal and

protected against experimental murine infection [52,64]. Although

recombinant NspA expressed in E. coli and purified from inclusion

bodies elicited a good antibody response in humans, these

antibodies were not bactericidal [62]. Recombinant NspA does

not have the same conformation as NspA present in the

meningococcal outer membrane [40,64], suggesting that protec-

tive antibodies may be directed against conformational epitopes.

Another intriguing possibility, in light of our observations that

binding of fH to NspA is restricted to humans, is that human fH

may bind to NspA in the vaccine formulation, which could have

attenuated the antibody response to surface-exposed (and fH

binding) NspA epitopes that otherwise would have elicited a more

productive bactericidal antibody response; this possibility has been

raised previously with regard to the use of fH binding proteins as

vaccines [14,65].

In summary, we have identified an important complement-

evasion function for NspA, an antigen that has been studied for its

potential as a group B meningococcal vaccine candidate. In

addition to the implications for fHbp-based vaccines that are

currently being developed, these findings set the stage for further

studies to characterize NspA-fH interactions that could boost

efforts to develop better meningococcal vaccines.

Materials and Methods

Ethics statement
This study was approved by the Committee for the Protection of

Human Subjects in Research at the University of Massachusetts

Medical School. All subjects who donated blood for this study

provided written informed consent.

Bacterial strains, mutagenesis and bacterial growth
conditions

The relevant phenotypes of the mutants created in N. meningitidis

are listed in Table 1. The characteristics meningococcal strains

used in this study are listed in Supplementary Table S2. Bacteria

were routinely grown on chocolate agar plates supplemented with

IsoVitaleX equivalent at 37uC in an atmosphere enriched with 5%

CO2. GC plates supplemented with IsoVitaleX equivalent were

used for antibiotic selection. Antibiotics where used at the

following concentrations when indicated; 100 mg/ml kanamycin,

7 mg/ml chloramphenicol, 5 mg/ml erythromycin, 50 mg/ml

spectinomycin and 5 mg/ml tetracycline. Escherichia coli strains

(Invitrogen, Carlsbad, CA) were routinely cultured in Luria

Bertani (LB) broth or on LB agar. Antibiotic were used as needed

at the following concentrations: 50 mg/ml kanamycin, 150 mg/ml

ampicillin, 50 mg/ml chloramphenicol, 400 mg/ml erythromycin,

100 mg/ml spectinomycin and 12.5 mg/ml tetracycline.

Construction of lgtA [59], lgtF [59], mynB [56], siaD [59], lst [66]

and fHbp [13] deletion mutants have all been described previously.

Loss of capsule expression was verified by either colony

hybridization or flow cytometry with the appropriate serogroup

specific anti-capsule Ab. Anti-group A mAb JW-A-1 (IgG2a), anti-

group C mAb KS-C-1 (IgG3), anti-group W-135 mAb JW-W1b

(IgG2b) and anti-group Y mAb JW-Y2a (IgM) were provided by

Dr. Dan M. Granoff (Childrens Hospital Oakland research

Institute, Oakland, CA), while anti-group B mAb 2-2-B (IgM)
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was obtained from the National Institute for Biological Standards

and Control (Potters Bar, Hertfordshire, U.K). In addition,

inactivation of siaD (mynB in the case of group A) was verified by

PCR. For serogroups A, C, Y and W-135 the confirmatory PCR

was the amplification of a fragment corresponding to the predicted

size of siaD (or mynB for group A) plus the resistance marker

(,2.5kb for serogroup A using primers NT2 59-ATGATGG-

TAATGGGAAAAGAGT-39 and NT4 59-ATACTTAATAACA-

GAAAATGGCG-39; ,2.9 kb for serogroup C using primers BF

59-AGCGTCAACGAATATGAAACATTAT-39 and CR 59-

CTGCTTAACTTTATTAAGGGCATTG-39 and ,2.8 kb from

serogroups W-135 and Y strains using primers W1618 59-

ATTCCCCATGAACTACATCAGAATA-39 and W2766 59-

TAATGCAAACTCAATTGCAAAACTA-39) coupled with the

absence of a wildtype gene. In serogroup B strains siaD is

inactivated with the 8.9 kb Tn1725 and a lack of amplification of

the wild type siaD, in the presence of a positive control reaction,

was used to demonstrate the lack of the wild type siaD. All Cap2

serogroup B strains were verified by lack of reactivity to the anti-

group B capsule mAb 2-2-B. LOS structure was verified in all

strains and mutants by silver staining of protease K digested

bacterial lysates that had been separated on 12% Bis-Tris gels

(Invitrogen, Carlsbad, CA) using MES buffer (Invitrogen,

Carlsbad, CA) as described previously [67]. In addition insertions

in lgtA or lgtE were verified by PCR.

Mutant derivatives of strain A2594 that lacked PorA or PorB3

expression were constructed using DNA extracted from PorA and

PorB3 deletion mutants in strain H44/76 (porA::kan and porB3::erm,

respectively) that were provided by Dr. Peter Van der Ley

(Laboratory of Vaccine Research, Netherlands Vaccine Institute,

Bilthoven, The Netherlands).

NspA deletion mutants were constructed as follows. A 1.3 kb

fragment of DNA containing nspA was amplified from N.

meningitidis strain A2594 using the primers nspA_F114 (59-

CTCTTTAGGTTCTGCCAAAGGCTTC-39) and nspA_R1122

(59-ATGTTGTGAAGTGGGAAAGTGTTGC-39) and the am-

plicon was cloned into pCR2.1-TOPO (Invitrogen, Carlsbad,

CA). The resulting plasmid was digested with HincII, deleting an

internal 130 bp fragment of nspA, and ligated to a blunt

spectinomycin resistance cassette containing aadA. Linearized

plasmid DNA was used to transform N. meningitidis strains as

previously described [68]. PCR was used to confirm the nspA::spc

genotype and Western blot using anti-NspA mAb Me-7 were

performed to demonstrated loss of NspA.

A derivative of the E. coli-Neisseria shuttle vector pFP12 was

used to complement the nspA::spc mutations in trans. A 1,131 bp

fragment, containing nspA with its native promoter and terminator

was amplified from chromosomal DNA prepared from strain

A2594 using the primers NspA-R1213 StuI 59-GACAGG-
CCTGTTTTGGACATTTCGGATTCCTC-39 and NspA-F102

SphI 59-GACGCATGCCACTATATAAGCGCAAACAAATC-

G-39. The amplified DNA was digested with StuI and SphI and

cloned into identically digested pFP12-GNA1870 [69]. The

resulting construct was then digested with ScaI to allow for the

insertion of a blunt (BsrBI) TetM cassette. The resulting plasmid

construct, pFP12 NspAA2594Tet, was confirmed by DNA sequenc-

ing and by Western blot analysis of E. coli cell lysates using ME-7.

A2594 Cap2 L8 (CmR, KanR) and its fHbp2 (ermR) and NspA2

(spcR) and fHbp2 NspA2 double mutants were transformed with

pFP12 NspAA2594Tet as described above. Tetracycline resistant

transformants were screened by PCR and Western blot with Me-7.

In addition the DNA sequence of the complementing nspA was

verified.

Expression of NspA was up-regulated in some strains that

naturally express low levels of NspA by replacing the nspA

promoter with the promoter of porA. In brief, an approximately

200 bp fragment of DNA containing the promoter region of porA

was amplified by PCR from genomic DNA isolated from group B

strain M986 using the following primers: 59-CTCATCGATGGG-

CAAACACCCGATACG-39 (introducing site ClaI) and 59-

CTCACGCGTGAGGTCTGCGCTTGAATTGTG-39 (intro-

ducing site MluI). This fragment was ligated into a 700 bp region

upstream of nspA amplified by PCR from Z1092 genomic DNA

using primers 59-CATAAGCTTCGTAGCGGTATCCGGCT-

GC-39 and 59-CGCTGCCGAAGATTTGCCGGCAAATC-

TTCGGCAGCG-39. This, in turn, was ligated into the EcoRI

and HindIII sites of the cloning vector pGEM3zf(-) (Promega

Corporation, Madison, Wisconsin). An erythromycin resistance

cassette, ermB, was inserted upstream of the porA promoter within

the fragment upstream of nspA. N. meningitidis strain Z1092 was

Table 1. Description of genotype and phenotype of mutations used in this study.

Mutation Genotype Phenotype

mynB mynB::Cm results in unencapsulated derivative of group A meningococci

fHbp fHbp::Erm fHbp not expressed

lgtA lgtA::Kan results in LOS with lactose substitution on HepI (GalRGlcRHepI)

lgtF lgtF::Spc results in LOS without glycan extensions off HepI (HepI unsubstituted)

siaD siaD::Cm; interruption of the polysialyltransferase (siaD) in groups B, C, W-135 or Y
results in unencapsulated mutants

siaA siaA::Cm; blocks first enzyme in sia operon (GlcNAc-6-P epimerase); results in unencapsulated strains
that cannot synthesize CMP-NANA and therefore cannot endogenously sialylate its LNT LOS

lst lst::Kan interruption of the LOS sialyltransferase (lst) prevents LOS sialylation

nspA nspA::Spc No NspA expression

porB3 porB3::Erm No PorB3 expression

porA porA::Kan No PorA expression

nspA++ nspA under control of porA promoter; high-level NspA expression

nspAA2594comp pFP12 NspA A2594 (TetR) nspA under the control of it’s native promoter expressed from the low copy plasmid pFP12Tet

Cm, chloramphenicol; Erm, erythromycin; Kan, kanamycin; Spc, specctinomycin; Tet, tetracycline.
doi:10.1371/journal.ppat.1001027.t001
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transformed by adding plasmid DNA in 10 mM MgCl2 to colonies

of Z1092 and incubating at 37uC enriched with 5% CO2 for

5 hours prior to plating onto chocolate agar with 5 mg/ml or

erythromycin. The level of NspA expression in erythromycin-

resistant colonies was analyzed by SDS-PAGE and Western

blotting using murine antisera raised against His-tagged-NspA. All

analyzed transformants expressed approximately 5-times the level

of NspA when compared with the wild-type strain (data not

shown). DNA extracted from Z1092 overexpressing NspA was

used to transform strain Y2220 and Y2220/L8 LOS; colonies

resistant to erythromycin were screened for increased NspA

production compared to the parent strain by Western blotting.

E. coli BL21 (DE3) pGMS 1.0 harboring a functional copy of

nspA and the preparation of microvesicles that contain NspA have

been described previously [40].

For simplicity, the capsule and LOS phenotype of each mutant

has been designated as follows: encapsulated strains, Cap+;

unencapsulated mutants, Cap2; sialylated lacto-N-neotetraose

LOS, LNT sia+; unsialylated lacto-N-neotetraose LOS, LNT;

LOS with lactose extension off HepI (lgtA mutants), L8 LOS and

LOS with no HepI saccharide extensions (lgtF mutants), HepI

unsubstituted.

Sera
Serum collected from a healthy human volunteer without a

history of meningococcal disease and who had not received any

meningococcal vaccines (normal human serum; NHS) was

aliquoted and stored at 280uC till used. Hemolytic activity of

the serum was confirmed using the Total Haemolytic Comple-

ment assay (Binding Site, Birmingham, U.K). Chimpanzee,

baboon and rhesus sera were purchased from Bioreclamation

(Bioreclamation, Hicksville, NY). Complement activity in the sera

was destroyed by heating at 56uC for 30 minutes. The serum used

did not contain any fHbp- or NspA-specific antibodies as revealed

by western blots of whole bacterial lysates that were probed with

serum.

Flow cytometry
Flow cytometry to detect bound fH was performed as described

previously [44]. Briefly, bacteria grown overnight on chocolate

agar plates were washed with Hanks Balanced Salt Solution

(HBSS) containing 1mM Ca2+ and 1 mM Mg2+ (HBSS++) and

suspended to a final concentration of 36108 cells/ml; 108

organisms were centrifuged and incubated with fH purified from

human plasma (Complement Technology, Inc.; concentration

specified for each experiment). Bound fH was detected using either

affinity-isolated sheep anti-human fH (Lifespan Biosciences) or an

anti-fH mAb (Quidel, catalog no. A254 (mAb 906)), as available.

While the polyclonal antibody provided higher sensitivity, relative

differences in fH binding among strains using the two reagents

were similar. FITC conjugated anti-sheep IgG or anti-mouse IgG

(Sigma) were used as secondary antibodies. All reaction mixtures

were carried out in HBSS++/1% BSA in a final volume of 50 ml.

Flow cytometry was performed using a FACSCalibur instrument

(Becton Dickinson) and data analysis was performed using the

FlowJo data analysis software package (www.TreeStar.com).

FH / murine Fc fusion constructs that contain contiguous fH

SCR domains (SCRs 1–5, 1–7, 6–10, 11–15, or 16–20) fused to

the N-terminus of the Fc fragment of murine IgG2a (fH/Fc fusion

proteins) have been described in detail previously [45]. To detect

binding of recombinant fH/Fc fusion proteins, bacteria were

incubated with concentrated tissue culture supernatant containing

0.5 mg of recombinant fH/Fc protein (as determined by ELISA) in

a final reaction volume of 100 ml for 30 min at 37uC. After

washing, FITC-labeled goat anti-mouse IgG (Sigma-Aldrich)

diluted 1:100 in 1% BSA/HBSS++ was used to detect bacteria-

bound fH/Fc fusion proteins.

Recombinant Factor H-like protein-1 (FHL-1) was generated as

previously described [44]. Following incubation of bacteria with

0.5 mg purified FHL-1, bound FHL-1 was detected using

monoclonal (mAb) 906 (specific for SCR1; detects both full-

length fH and FHL-1) and FITC-conjugated anti-mouse IgG

(Sigma) as previously described [44].

In some experiments, mAbs against NspA (mAb Me-7; IgG2a

[57] and 14C7 [40]) were used to block fH binding to intact

bacteria; mAb P1.9 against outer membrane protein PorA of strain

A2594 (National Institute of Biological Standards and Control) was

used as a control. Bacteria were incubated with tissue culture

supernatants containing mAbs Me-7 or P1.9 (the concentration of

mAb in supernatants was estimated by western blotting where serial

dilutions of the supernatants were compared against purified mouse

IgG standards of the same subclass) or purified mAb 14C7 for

15 min at 37uC followed by addition of purified fH. The reaction

mixture was incubated for an additional 15 min and bound fH was

detected using sheep anti-human fH as described above.

C3 deposition on bacteria that were incubated with normal

human serum (concentration specified for each experiment) was

measured using FITC-conjugated sheep anti-human C3 (Biode-

sign/Meridian Life Science, Inc.) as described previously [13].

Bacterial membrane preparations
Membranes were prepared from N. meningitidis strains A2594

and H44/76 and their fHbp deletion mutants as previously

described [13,70]. Briefly, bacteria harvested from five plates after

overnight culture on chocolate agar were suspended in normal

saline. Bacteria were washed, suspended in 5 ml of PBS containing

10 mM EDTA, and incubated at 60uC for 30 min. The bacterial

suspensions were sheared by sequential passage through progres-

sively smaller-gauge needles (18- through 25-gauge). The resultant

suspension was centrifuged at 50006g for 10 min at 4uC to

separate any intact cells and debris. The supernatant was collected

and ultracentrifuged at 80,0006g for 90 min at 4uC to yield a

pellet that was enriched in outer membranes.

Western blotting
Far Western blotting was used to assess fH binding to membrane

preparations as described previously [13]. Membrane proteins were

separated on a 4–12% Bis-Tris gel (Invitrogen Life Technologies)

using MOPS running buffer. Proteins were transferred to

polyvinylidene difluoride membranes (Millipore) and blocked with

PBS-1% dry milk for 30 min at room temperature. Blocked

membranes were incubated overnight at 4uC with fH (1 mg/ml in

PBS-0.05% Tween 20). fH-binding proteins were detected using

affinity-isolated sheep anti-human fH (1 mg/ml in PBS-0.05%

Tween 20) and disclosed using anti-sheep IgG-alkaline phosphatase.

Western blotting was also used to assess NspA and fHbp

expression. To detect NspA, membranes were probed with tissue

culture supernatants that contained anti-NspA mAb Me-7

followed by anti-mouse IgG alkaline phosphatase. To detect fHbp

(variant 1, 2 and 3), membranes were probed with rabbit

polyclonal anti-serum that recognized variants 1, 2 and 3 fHbp

diluted 1:1000 in TBS 0.02% Tween 20 followed by anti-rabbit

IgG alkaline phosphatase. To ensure equal loading across lanes,

membranes were incised horizontally at the level of the ,40–

50 kD marker prior to the blocking step and stained with

Coomassie blue (Imperial Protein Stain kit, Pierce).

Binding of human, chimpanzee and rhesus macaque fH to

neisserial strains was measured by Western blotting as described
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previously [45]. Briefly, 108 bacteria were suspended in HBSS2+

and incubated for 30 min at 37uC with 10% (v/v) heat-inactivated

NHS or heat-inactivated chimpanzee or rhesus serum in a final

reaction volume of 100 ml. Bacteria were washed three times in

HBSS2+, the bacterial pellets were lysed with lithium dodecyl sulfate

sample buffer (Invitrogen, Carlsbad CA) and liberated fH was

detected after electrophoresis and transfer to PVDF using goat

polyclonal anti-human fH (Bethyl Laboratories, Montgomery, TX)

that also recognizes chimpanzee and rhesus fH [45], followed by

alkaline phosphatase-conjugated anti-goat IgG (Sigma). Human

and the non-human primate sera alone served as positive controls.

MALDI-TOF analysis
Outer membrane proteins were separated by electrophoresis as

described above and stained with colloidal Coomassie brilliant

blue (Sigma-Aldrich). The band corresponding to the ,17 kDa

band that bound fH was excised, washed extensively and then

digested ‘‘in gel’’ with trypsin as described elsewhere [71].

Digested peptides were further purified via micro Zip Tipping.

Briefly, samples dried down to a 10 ml volume were acidified with

1–2 ml of 1% TFA and then loaded on a Zip Tipm-C18 (Millipore,

Corp) that had been pre-equilibrated with 0.1% TFA. After

washing with twice with 10 ml aliquots of 0.1%, TFA samples were

deposited directly onto the MALDI sample target using 1 ml of

Matrix solution (15 mg/ml of 2,5-dihydroxybenzoic Acid (Mas-

sPrep DHB, Waters Corp.) in 50:50 acetonitrile: 0.1% TFA).

Samples were allowed to air dry prior to insertion into the mass

spectrometer. Analysis was performed on a Kratos Axima QIT

(Shimadzu Instruments) matrix-assisted-laser desorption/ioniza-

tion (MALDI) mass spectrometer. Peptides were analyzed in

positive ion mode in mid-mass range (700–3000 Da). The

instrument was externally calibrated with Angiotensin II

(1046.54 Da), P14R (1533.86 Da) and ACTH (18–39)

(2465.20 Da). Precursors were selected based on signal intensity

at a mass resolution width of 250 for CID fragmentation using

Argon as the collision gas. Database searches were performed in

house with Mascot (Matrix Sciences, Ltd.) using the Peptide Mass

Fingerprint program for MS data and the MS/MS Ion Search

program for CID data. All identifications were confirmed or

established with CID (MS/MS) data.

Serum bactericidal assays
Susceptibility of meningococci to complement mediated killing

was determined using a serum bactericidal assay as described

previously [44,72]. The optimal concentration of serum was

determined empirically for each strain (Supplementary Figure S5).

Bacteria from an overnight culture on chocolate agar plates were

inoculated onto fresh chocolate agar and allowed to grow for ,6 h

at 37uC in 5% CO2. Normal human serum was obtained from a

healthy human volunteer and stored at 270uC till used in

bactericidal assays. Briefly, 2000 CFUs of meningococci were

incubated with serum (concentrations specified for each experiment)

in a final reaction volume of 150 ml. Aliquots of 25 ml were plated in

duplicate at the start of the assay (t0) and after incubating the

reaction mixture at 37uC for 30 min (t30). Survival was calculated as

the number of viable colonies at t30 relative to baseline colony

counts at t0. Each experiment was repeated at least three times.

ELISA to detect binding of fH to microvesicles containing
NspA

E. coli BL21(DE3) (Invitrogen, Carlsbad, CA) harboring

recombinant NspA on plasmid pGMS 1.0 and E. coli BL21(DE3)

transformed with pBluescript II SK+ (Stratagene, La Jolla, CA)

were used to prepare microvesicles as previously described [40].

An ELISA was used to detect fH binding to NspA containing

vesicles. Microtiter wells were coated with either NspA-producing

vesicles or with control vesicles each at a concentration of 10 mg/

ml in PBS overnight at 22uC. Nonspecific biding sites were

blocked with PBS/2.5% BSA for 2 h at 37uC. To demonstrate the

ability of anti-NspA mAb 14C7 to block fH binding to NspA-

containing vesicles, select wells were incubated with mAb 14C7

(10 mg/ml) in PBS/0.05% Tween 20 for 1 h at 37uC; the

remaining wells were incubated with PBS/Tween alone. fH

(concentrations ranging from 0 to 10 mg/ml) was then added to

wells for 1 h at 37uC, and bound fH was detected using polyclonal

sheep anti-human fH followed by anti-sheep IgG conjugated with

alkaline phosphatase, each for 1 h at 37uC.

Statistical methods
Cuzick’s nonparametric test for trend across ordered groups

[73] was used to determine if there was a trend between the

binding of fH and the length of glycan extensions from the HepI

chain of LOS. Median fluorescence values from three independent

experiments were used in the analysis. Strains expressing LNT

LOS, L8 LOS and unsubstituted LOS were ordered decreasingly

by the length of the HepI glycans extensions and scored as 5, 3 and

1, respectively. The measurement of binding was divided by the

value of the control for normalizing. The analysis was done

separately for strains A2594 Cap+ and A2594 Cap2. The results

showed a statistically significant trend between fH binding and

decreasing length of HepI glycan extensions for both Cap+ and

Cap2 strains (Table S2; results are the same for A2594 Cap+ and

A2594 Cap2, p = 0.007).

For bactericidal assays the average survival was calculated from

at least three independent experiments and error bars represent

the standard deviation. A t-test was used to determine significance.

Supporting Information

Figure S1 Neisserial Opa proteins are not involved in binding of

fH to N. meningitidis. fH binding to Opa+ unencapsulated

meningococcal strain Z2087 (solid black line) and its unencapsu-

lated isogenic Opa negative mutant (shaded grey) was examined

by flow cytometry. Bacteria were incubated with purified human

fH at a concentration of 20 mg/ml and bound fH was detected

with polyclonal sheep anti-human fH. Representative controls

with the parent strain where fH was omitted from the reaction

mixture is shown by the broken line. The x-axis represents

fluorescence on a log10 scale and the y axis is the number of events.

Found at: doi:10.1371/journal.ppat.1001027.s001 (0.13 MB TIF)

Figure S2 Expression of fHbp and NspA in BZ198, A2594 and

Z2087 derivatives as determined by Western blotting of whole cell

lysates followed by detection with polyclonal anti-fHbp (variant 1,2

and 3) or anti-NspA mAb Me-7 as indicated. Strains with altered

capsule (cap+ or cap2) and LOS structures were examines. The

HepI of LOS was substituted with either lacto-N-neotetraose

(LNT), lactose (L8) or was unsubstituted (U). Growth in the

presence of CMP-NANA to sialylate LNT LOS is as indicated.

After transfer, proteins migrating above ,50 kD were stained with

Coomassie blue and served as a loading control, proteins

migrating between ,20 kD and 40 kD were probed to detect

fHbp and proteins migrating below 20 kD were probed to detect

NspA. NspA migrates with an apparent molecular mass of

approximately 15 kD when 4–12% Bis-Tris gels are used with

MES running buffer. Of note, NspA is a heat-modifiable protein

and the second larger anti-NspA-reactive band seen in some lanes

is the result of incomplete heat denaturation.

Neisserial NspA Binds Factor H

PLoS Pathogens | www.plospathogens.org 18 July 2010 | Volume 6 | Issue 7 | e1001027



Found at: doi:10.1371/journal.ppat.1001027.s002 (0.84 MB TIF)

Figure S3 Truncating the HepI chain of LOS in low and

intermediate NspA expressing strains discloses fH binding. fH

(10 mg/ml) binding to the Cap2/LNT sia2 mutants of strains

H44/76, C2120, W171 and Y2220 were compared to their

isogenic mutants that lacked glycan extensions from HepI (HepI

unsubstituted).

Found at: doi:10.1371/journal.ppat.1001027.s003 (0.28 MB TIF)

Figure S4 Binding of purified recombinant FHL-1 (7mg/ml) to

encapsulated (gray shaded histogram) and unencapsulated (solid

black line) N. meningitidis strain A2594 that expresses NspA but not

fHbp. In all graphs, the x-axis represents fluorescence on a log10

scale and the y-axis the number of events. Numbers represent the

median fluorescence of the corresponding histogram. Purified

FHL-1 was omitted from control reaction mixtures (broken line).

Found at: doi:10.1371/journal.ppat.1001027.s004 (0.11 MB TIF)

Figure S5 Titration of serum concentrations to determine the

level of serum resistance of BZ198 Cap+ L8 LOS and A2594

Cap2 L8 LOS. Strains BZ198 Cap+ L8 LOS (left graph) and

A2594 Cap2 L8 LOS (right graph) were tested for their ability to

resist killing by normal human serum in a serum bactericidal assay.

The y-axis represents percent survival and the x-axis represents the

percent serum used in the assay. Error bars indicate standard

deviation calculated from 3 independent experiments.

Found at: doi:10.1371/journal.ppat.1001027.s005 (0.15 MB TIF)

Table S1 Estimated mean of normalized fH binding and p-

values for trend test.

Found at: doi:10.1371/journal.ppat.1001027.s006 (0.05 MB

DOC)

Table S2 Meningococcal strains used in this study and their

relevant characteristics.

Found at: doi:10.1371/journal.ppat.1001027.s007 (0.15 MB

DOC)
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