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Introduction

Culturing cells and tissues is an indispensable part of basic 
cell biology research and clinical applications, such as cell-
based drug screening and transplantation of retinal pigment 
epithelial cells differentiated from induced pluripotent stem 
cells1 in regenerative medicine. Advancements in cell engi-
neering technologies will undoubtedly cause the types and 
quantities of cells required to increase dramatically. 
Efficiently producing high-quality cells that become the 
raw materials for tissues and organs used in regenerative 
medicine is one of the most important issues for the stan-
dardization and dissemination of regenerative medicine. In 
cell culturing and manufacturing, the heterogeneity of cells 
and perturbation during manipulation are among the numer-
ous uncertainties that remain.2 Previous studies3,4 have 
emphasized the importance of considering such intricate 
characteristics to ensure the quality of the processed cells. 
An additional factor to consider is the transfer of tacit 
knowledge. Such transfer is often inefficient and problem-
atic. It normally results in high education costs and usually 
serves as an obstacle to standardization and dissemination 
of regenerative medicine. This knowledge transfer problem 
poses a serious bottleneck in achieving a well-crafted cell 

production workflow outside of the lab to reach the scale of 
production that clinical applications require.
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Abstract
Cell culturing is a basic experimental technique in cell biology and medical science. However, culturing high-quality cells 
with a high degree of reproducibility relies heavily on expert skills and tacit knowledge, and it is not straightforward to 
scale the production process due to the education bottleneck. Although many automated culture systems have been 
developed and a few have succeeded in mass production environments, very few robots are permissive of frequent 
protocol changes, which are often required in basic research environments. LabDroid is a general-purpose humanoid robot 
with two arms that performs experiments using the same tools as humans. Combining our newly developed AI software 
with LabDroid, we developed a variable scheduling system that continuously produces subcultures of cell lines without 
human intervention. The system periodically observes the cells on plates with a microscope, predicts the cell growth curve 
by processing cell images, and decides the best times for passage. We have succeeded in developing a system that maintains 
the cultures of two HEK293A cell plates with no human intervention for 192 h.
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To overcome the scalability problems in cell production, 
various automated culture systems have been developed. 
Most automated culture systems fall into one of two catego-
ries: specialized and multipurpose. Specialized systems aim 
to scale the quantity of cells produced (capacity), and mul-
tipurpose systems aim to scale the types of cells that can be 
produced (capability). Specialized systems often have fixed 
configurations and usages and generally feature high-
throughput and operational stability. Some examples of this 
type of machinery include sealed-vessel culture systems 
that have aseptic spaces for cell cultures that remain 
unopened during operation.5–8 Robotic arm-assisted sys-
tems that utilize articulated robots for autonomous opera-
tion are another example.9–15 One drawback of specialized 
systems is that the addition or modification of experimental 
instruments and procedures poses certain challenges. 
Because of this lack of flexibility, specialized automated 
culture systems are generally ill-suited for basic research as 
the addition of new experiments, the modification of proto-
cols, and the addition of new laboratory equipment are fre-
quently required. Another drawback is that these systems 
cannot handle many types of cells at once, thus not scaling 
well for diverse types of cells. Multipurpose systems, on the 
other hand, allow flexible changes in workflow and the pro-
curement of additional equipment. In addition, these sys-
tems can handle multiple samples at once. This advantage 
makes these systems suitable for scalability problems of 
cell types. Automated liquid handling workstations,16,17 in 
use for decades in various applications downstream of cell 
culture processes such as high-throughput screening, repre-
sent one such example. Attempts have been made to extend 
their use into other areas, including maintenance passages 
of cell culture, phenotyping, genotyping, drug screening, 
and other cell biology experiments.18–21 Recent advance-
ments in mechatronics have made possible the application 
of industrial-grade human-like dual-arm robots to the auto-
mation of various types of experiments in proteomics, drug 
screening for osteosarcoma, gas chromatography–mass 
spectrometry (GC-MS) analysis, and chromatin immuno-
precipitation analysis.22–25 One significant advantage of uti-
lizing humanoid robots for automating laboratory 
experiments is that such robots can use the same laboratory 
equipment as humans. This leads to some significant advan-
tages over other systems. First, the seamless linkage 
between cell culturing and its downstream processes pro-
vides an acceleration of research and development. For 
example, Fleischer et al. have successfully combined a 
dual-arm robot with GC-MS that provides a seamless flow 
from sample preparation to sample transfer to the analyzer 
and autonomous analysis.24 Second, they facilitate the 
transfer of tacit knowledge and skills, which is critically 
important for yielding high-quality results in certain proce-
dures, especially in cell culture.23

Cell culture experiments consist of an array of pro-
cesses, including observation, measurement, and passage, 

and require various types of equipment. Cell culturing usu-
ally takes weeks to months, and the inaccuracies and work-
load that are inherent through the use of human operators 
often complicate the process. Conventional systems need 
complicated and expensive transportation systems to com-
bine various types of equipment and to operate them inde-
pendently for experiments of long durations, and many of 
these systems still entrust such transportation procedures to 
human operators. Cell culturing also involves decision-
making and parameter adjustments such as passage timing 
and reagent addition based on the conditions and evalua-
tion of cell growth. Small-lot multiproduction manufactur-
ing in the industrial field—including assembling IT 
products such as cell phones, televisions, and computers—
has features similar to those encountered in cell culture 
experiments: complex tasks involving multiple different 
machines. This area of automation often uses dual-arm 
robots as well.26,27

In this study, we developed an autonomous variable 
scheduling cell culture system based on LabDroid, a versa-
tile dual-arm experimental robot,23 combined with AI-aided 
fully automated cell growth evaluation and passage timing 
determination (Fig. 1). We demonstrate the performance of 
the system in culturing human embryonic kidney 
(HEK293A) cells. This variable scheduling system enables 
us to maintain multiple cell plates without any human 
assistance.

Materials and Methods

Definition of Terms

Movement: The smallest action unit for LabDroid to oper-
ate. The movement is specified by the joint angle of each 
arm. For the user, comprehending the movement of the 
robot from the joint angle values alone is hard. Command: 
A group of actions such as moving plates, transferring 
reagents, and aspirating media, among others. A command 
consists of one or more movements. Job: The instructions 
that a user gives LabDroid at one time. A job consists of one 
or more commands. For example, an observation job con-
sists of opening the door of a CO2 incubator, holding the 
target plate, moving the plate, etc.

LabDroid Maholo Including Peripheral 
Equipment

LabDroid, along with peripheral equipment, was placed 
inside of a booth consisting of acrylic walls and a stainless 
steel frame with fan filter units (FFUs; CF-H040, 
KEYENCE, Osaka, Japan). Air supplied to the platform 
was cleaned with a top-mounted FFU with HEPA filters to 
maintain cleanliness. The LabDroid booth consisted of the 
following equipment: dual-arm robot (YASKAWA Electric 
Corp., Fukuoka, Japan), refrigerator (CN-25C, Mitsubishi 
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Electric Engineering Co., Ltd., Tokyo, Japan), CO2 incuba-
tor (APC-30D, ASTEC Co., Ltd., Fukuoka, Japan), pipette 
tips (3512-05-HR/3511-05-HR/94410313/94410713/9405 
2550, Thermo Fisher Scientific, Waltham, MA), micropi-
pettes (4641110N/4641030N/4641230N/4641210N, Thermo 
Fisher Scientific), 50 mL tube rack (Robotic Biology 
Institute Inc., Tokyo, Japan), four 6-well plate rack (Robotic 
Biology Institute Inc.), dry bath (EC-40RA, AS ONE 
Corporation, Osaka, Japan), tip sensor (Robotic Biology 
Institute Inc.), aspirator (SP-30, Air Liquide, Milano, Italy), 
dust bin (EPD3S, Sekisui Techno Molding Co., Ltd., Tokyo, 
Japan), and microscope (EVOS FL Auto 2, Thermo Fisher 
Scientific).

ProtocolMaker (YASKAWA Electric Corp.), software 
fused for operating LabDroid, allows a user to construct 

LabDroid programs with a graphical user interface. The 
user may specify various settings, such as the origin and 
destination of tubes and plates, the amount, and the posi-
tion, as well as the number of suction and dispensation 
counts for liquid transfer from tubes to plates, the suction 
and dispensation heights within a tube or plate, the inclina-
tion of a plate, and the speed of suction and dispensation.

There is a space to position tubes and plates in front of 
the LabDroid. and culture operations are performed by 
moving cell plates, reagents, and labware to the designated 
locations. LabDroid uses its various sensors to determine if 
a scheduled operation has been successful. It uses the laser 
distance sensors embedded in its arms (Suppl. Fig. S1A) 
when opening and closing the caps of tubes, and the tip sen-
sor (Suppl. Fig. S1B) when attaching and removing a 

Figure 1. Overall workflow of the developed system. In manual cell culture, cells are observed under a microscope as appropriate, 
and the cells are replated by performing a passage operation once a certain cell density is reached. To automate these operations, we 
developed a variable scheduling maintenance culture platform that observes cells every 12 h, predicts the time at which cells will grow 
to a specified cell density, and executes passage operations by combining LabDroid and software.
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pipette tip. If the scheduled operation is unsuccessful, an 
error is reported before reattempting the same operation. 
When LabDroid fails to execute the operation for the sec-
ond time, the operation aborts. We registered the shapes and 
sizes of six-well plates (353046, Corning, Corning, NY) 
and 50 mL tubes (MS-58500, Sumitomo Bakelite Co., Ltd., 
Tokyo, Japan) in the system and calibrated location infor-
mation and actual movements at the time of the LabDroid 
environment setup. Microscopy images were acquired by 
running a program created with ProtocolMaker, which 
orders LabDroid to transfer the cell plates within the CO2 
incubator to the microscope. Using the software supplied 
with the microscope enabled us to align the imaging of the 
six-well plates prior to the experiment. Use of a protocol of 
26 central tiling images with a 4× objective lens to capture 
approximately 40% of the well base area enabled the cap-
ture of the same position over time, which was also used for 
image analysis.

Software: Batch Timing Manager

In this experiment, we divided the HEK293A cell line into 
two plates and cultured them in parallel. The first plate is 
named “cell plate 1” and the second plate is named “cell 
plate 2.” The batch timing manager (BTM) manages when 
and which cell plate to observe and the time of passage. A 
system initializes the scheduled observation time (SOT) 
and scheduled passage time (SPT) when the user starts the 
system. For the first cell plate, the SOT is set to 1 min after 
initialization and the SPT is set to 1 day after initialization. 
For the second cell plate, the SOT is set to 30 min after ini-
tialization and the SPT is set 1 day and 30 min after initial-
ization. At the scheduled time, the BTM instructs LabDroid 
to observe or passage the target cell plate.

After the observation, the BTM calculates the density 
from new microscopy images using the cell density calcula-
tor (CDC) and saves the observation time and cell density 
values to a log file. If the log file has two or more density 
values for the target cell plate, BTM applies a growth curve 
predictor (GCP) to the log. Then, the time in which the pre-
dicted cell density value will exceed a predetermined value 
is calculated and set as the new SPT. The SOT is set to 12 h 
after the last observation or passage. When the schedule 
includes more than one job at the same time, observation 
takes precedence over passage, and cell plate 1 takes prece-
dence over cell plate 2.

Software: Cell Density Calculator

We used tiled microscopy images (Suppl. Fig. S2A) to con-
struct cell images and adjusted the microscopic field size to 
cover as much of the area as possible without showing the 
edges of the well (Suppl. Fig. S2B). The CDC calculates 
cell density following eq 1:
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where C is the cell density, Ac is the cell area that the pro-
gram recognizes as being cells (Suppl. Fig. S2C), Ai is the 
well area, and f is a function that converts area to a pixel 
count.

The method used for cell area detection is as described 
by MathWorks28 except for our method using the Canny 
algorithm in place of the Sobel algorithm for edge 
detection.29

Software: Growth Curve Predictor

The GCP predicts cell density by fitting the logistic differ-
ential equation.30 We defined the logistic function as
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where N0 is the initial cell count, Δt is the elapsed time from 
the initial cell count, r is the growth rate, and K is the maxi-
mum cell count.
N0  and r are determined by minimizing the loss calcu-

lated as
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where Nt is the observed density at time t, pt is the number 
of passages at time t, pc is the current number of observa-
tions, ot is the number of observations at time t, oc is the 
current number of observations, Npt  is the initial cell den-
sity when the number of passages is pt, and Δt pt  is the time 
from the last passage when the number of passages is pt. In 
other words, the GCP optimizes the initial cell densities for 
each passage period. This formula is a kind of weighted 
least squares.31 We empirically fixed α to 0.1, β to 1, and K 
to 1. The GCP applies the Nelder–Mead method32 to eq 3 
for function minimization. One limitation of this approach 
is that it may provide a local minimum rather than the 
desired global minimum. To circumvent this limitation, the 
initial values of N0 and r are sampled 50 times from a 
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uniform distribution ranging from 0.01 to 0.2 and from 0.1 
to 2, respectively. If a newly sampled value for N0 and r 
yields a smaller loss than that on the first try, N0 and r are 
updated to the new value.

Software: Robot Job Manager

The robot job manager (RJM) assembles appropriate jobs 
from the job library according to the remaining amounts of 
reagents and/or labware for LabDroid to perform the appro-
priate operation.

The RJM manages the positions of tubes and plates using 
a tree data structure, referred to as the supply management 
model (SMM). The system obtains the initial positions of 
reagent tubes and plates from the user as a form of SMM. 
The user then places tubes and plates on the robot work-
space (LabDroid booth; see Fig. 2).

The RJM assembles jobs sent to LabDroid using batch 
design, the job library, and the SMM. The user prepares the 
batch design and job library, and they remain unchanged 
during control. A batch design is an ordered list of jobs for 
observation or passage, and the job library is a list of jobs. 
Some jobs in a batch design may have unspecified details, 
such as having no source position for the new plate. 
However, all jobs in the job library have detailed instruc-
tions. When sending jobs for observation or passage, the 
program uses the SMM to first search for executable jobs 
from the job library. It then replaces some jobs in the batch 
design with executable jobs in the job library. After this 
replacement, all jobs in the batch design become execut-
able. This executable job list is referred to as an assembled 
batch.

When ordering LabDroid to run an observation job, the 
RJM first finds the position of the cell plate to be observed 
from the SMM. Next, the RJM makes and sends the assem-
bled batch to LabDroid. When ordering LabDroid to run a 
passage job, the RJM first determines the position of the 
cell plate to be passaged from the SMM. Then, it finds the 
new plate and remaining reagents needed for passage. 
Afterward, the program calculates the amount of plates and 
reagent to be used in the passage and reflects this amount in 
the SMM. Finally, the RJM makes and sends the assembled 
batch to LabDroid.

Software: Dashboard

The Dashboard is an HTML-based monitoring system to 
allow humans to observe the progress of a process. The sys-
tem displays the following information: (1) LabDroid status 
(running or halted)—LabDroid status is presented as run-
ning when less than 30 min has elapsed since the latest run 
time and halted otherwise; (2) scheduled time—the SOT 
and SPT of each line; (3) observed cell density and growth 
curve—plot of calculated cell density and fitted lines esti-
mated after the latest passage; and (4) job order list—the 
names of the jobs sent to LabDroid, their time stamps, and 
execution validity (whether LabDroid successfully con-
cluded the process or not).

Preparation of Reagents and Labware

We imported all other reagents and labware into the 
LabDroid booth as shown in Supplemental Table S1. We 
prepared phosphate-buffered saline (PBS), trypsin, and 
Dulbecco’s modified Eagle medium (DMEM) in 50 mL 
tubes and placed them in the refrigerator; then we prepared 
two bottles of DMEM. When the remaining amount of the 
first bottle fell below a specified value, the second bottle 
was used. We incubated cells in No. 1 and No. 5 container 
racks in the CO2 incubator and placed eight 6-well plates in 
the CO2 incubator. Users determined the order of use. We 
prepared ethanol (326-00031, FUJIFILM Wako Pure 
Chemical Corp., Osaka, Japan) in 50 mL tubes, placed them 
in a refrigerator and tube subrack, and used them to clean 
the inside of the hose by aspirating ethanol after completing 
the job of handling the medium in the aspirator.

Cell Culture Experiments

We obtained HEK293A cells from Thermo Fisher Scientific 
(R70507) and maintained them in DMEM (043-30085, 
FUJIFILM Wako Pure Chemical), supplemented with 10% 
fetal bovine serum (FBS; 555-21245, Biosera, Nuaillé, 
France), 100 U/mL penicillin-streptomycin (15140-122, 
Thermo Fisher Scientific), and 2 mM l-glutamine (G7513, 
Sigma-Aldrich, St. Louis, MO) in a humidified atmosphere 
of 5% CO2 and 95% air at 37 °C.

Figure 2. LabDroid Maholo including peripheral equipment. A 
bird’s-eye view of the LabDroid booth: (1) dual-arm robot, (2) 
refrigerator, (3) CO2 incubator, (4) micropipettes, (5) dust bin, 
(6) aspirator, (7) tip sensor, (8) 50 mL tube subrack, (9) pipette 
tips, (10) 50 mL tube main rack, (11) six-well plate rack, (12) dry 
bath, and (13) microscope.
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Prior to cell culturing with a robot, we prepared cells 
manually. We seeded cells at the A2 well position in six-
well plates, washed them with PBS (10010023, Thermo 
Fisher Scientific), detached them with 0.05% trypsin 
(25300054, Thermo Fisher Scientific) by pipetting after  
2 min at room temperature, and replated at 1 × 105 and 2 × 
105 cells/well. We then transferred the cells to the CO2 incu-
bator in the LabDroid booth unit and created robot job 
library files (Suppl. Table S2) with ProtocolMaker, con-
firmed by LabDroid to be correct in advance. Each job 
library file contains an individual step of passage or obser-
vation. The files were then sent to the appropriate folder in 
the LabDroid control PC. The passage procedure by 
LabDroid was made according to the human method as set 
out in Supplemental Table S3. Each row of this table 
describes an individual passage step.

Results and Discussion

LabDroid-Based Autonomous Cell  
Culture System for Cell Passage

Cell culturing under artificial conditions requires attaching 
the cells to the flat bottom of a plastic tissue culture dish or 
the culture dish filled with a liquid medium containing 
nutrients. When cells proliferate and cell density exceeds a 
certain level, cells must be passaged onto a new culture dish 
by detaching adherent cells using enzymes, collecting, and 
diluting. To maintain healthy cells, the continuation of cul-
turing and passage to maintain the cell density within an 
appropriate range is necessary.

We developed a variable scheduling robot-AI system 
that automatically observes growing cells on plates every 
12 h with a microscope, predicts the time at which the cell 
density exceeds the designated level based on the observa-
tion, and passages the cells at the optimal timing. The sys-
tem can culture two cell plates at the same time (Fig. 1). 
The user must set the following initial parameters: (1) initial 
value of the passage time for the first cell plate, (2) initial 
value of the passage time for the second cell plate, (3) initial 
value of the observation time of the first cell plate, (4) initial 
value of the observation time of the second cell plate, (5) 
minimum observation interval, (6) minimum gap between 
joints, and (7) cell density for timing of passage. The user 
loads reagents and cell plates before starting the operation.

Software Development and Integration

The system consists of a LabDroid robot, a robot job library, 
and five computer programs. LabDroid is a versatile dual-
arm robot for life science experiments with very high posi-
tional accuracy.23 We placed a refrigerator, a CO2 incubator, 
and a microscope in addition to other peripherals, such as 
tube racks, in the LabDroid booth (Fig. 2). The protocol 

editor software called ProtocolMaker was used to define 
elementary robot commands such as adding reagents, cell 
detachment, and transfer of cell suspension (Suppl. Table 
S3), and 31 robot jobs, such as passage and observation, 
were constructed by assembling the elementary commands 
(Suppl. Table S2).

The software system consists of five components: (1) a 
BTM, (2) a CDC, (3) a GCP, (4) an RJM, and (5) a graphi-
cal dashboard (Fig. 3). The BTM runs continuously for the 
duration of the experiment and manages which cell plate to 
observe or transfer based on a line table file (Suppl. Fig. 
S3A). The line table file describes the next SOT and the 
next SPT for each cell plate. The CDC is a program that 
calculates cell density from microscopy images by the 
means of image processing and executes each time for a 
completed observation (Suppl. Fig. S3B). The GCP esti-
mates the growth curve of the target cell (Suppl. Fig. S3C) 
and predicts the time in which the cell density exceeds a 
preset value specified by the user. The RJM generates a 
sequence of robot commands to execute appropriate opera-
tion (observation or passage) while taking into consider-
ation the remaining labware and reagents (Suppl. Fig. 
S3D,E). The dashboard provides a graphical view for the 
user to monitor the status of the system and cell growth 
curve via a web browser (Suppl. Fig. S4).

The Developed System Automatically  
Cultured HEK293A Cells

We then used the developed system to maintain a culture of 
the HEK293A cell line, and selected this cell line for three 
reasons: (1) its single-cell-layer formation simplifies the 
image processing required to calculate the cell area, (2) its 
high adhesion to the bottom of the culture plate alleviates 
the difficulties in implementation of cell handling via 
robotic hands, and (3) its fast growth rate eliminates the 
need to create a media exchange job, as the cells would 
need to be passaged by the time a media exchange would be 
necessary.

First, we defined the various operating parameters of 
LabDroid in the passage process, such as the speed of 
reagent addition, the angle of the plate during aspiration, 
and the number of pipetting cycles during cell detachment 
in accordance with the HEK293A cells (Suppl. Table S3). 
We calculated the cell dilution rate of the cells before and 
after the passage to be 27%.

We imported two plates with a different number of seeded 
cells, the reagents required, and consumables into the robot 
booth, and started the system with the passage target set to 
80% cell density. The system operated for 192 consecutive 
hours, during which the system executed a total of eight pas-
sage processes and 39 cell observation processes. Upon 
completing its operation, the system had executed a total of 
95 jobs without yielding any system-derived errors (Suppl. 
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Table S4A). During the operation, the system automatically 
performed cell observations every 12 h and calculated 
changes in cell density over time (Fig. 4A, Suppl. Fig. S5A, 
and Suppl. Table S5A). The mean (± SD) cell density at 
passage in this experiment was 82.3% ± 1.4% (n = 9). Of 
the 95 executed jobs, 45 were executed with the lights out 
(6:00 p.m. to 6:00 a.m.).

We then changed the passage target to 60% cell density 
and repeated the same experiment. The system operated for 
159 consecutive hours without human intervention or criti-
cal system error, conducting a total of seven passage pro-
cesses and 33 cell observation processes. In total, the system 
executed 82 jobs and performed 45 of these between 6:00 
p.m. and 6:00 a.m. (Fig. 4B, Suppl. Fig. S5B, and Suppl. 
Tables S4B and S5B). The mean (± SD) cell density at 
passage was 59.8% ± 3.7% (n = 7). During the second pas-
sage for cell plate 2, the system scheduled the observation 
and passage processes at the same time. As per the protocol 
defined in the Materials and Methods section, observation 
took precedence over passage. The system suspended oper-
ation three times when it detected defective labware and 
prompted human operators to exchange such labware at the 
next available time. This exception handling procedure, 
however, had no effect on the successful completion of the 
experiment. No contamination occurred in all experimental 
periods. The mean time (± SD) required for cell observa-
tion starting with the removal of the cell plates from the 
CO2 incubator and ending with the completion of the 
cleanup procedure was 7 min and 35 ± 8 s, and the mean 
(± SD) time required for passage was 30 min and 41 ± 9 s. 

These times are comparable to manual cell culturing experi-
ments. According to a study that quantified the process of 
manual culturing experiments using a video-based analysis, 
the average time required for cell passage was about  
35 min.33 It is certain from experience that the LabDroid is 
not capable of performing individual operations as quickly 
as humans can. Therefore, we attempted to shorten the pro-
cessing time by simplifying the protocol. For example, we 
omitted the use of a centrifuge while washing the cells prior 
to passage in our experiment. These modifications to the 
protocol enabled our system to achieve passage times com-
parable to those of manual operation.

Supplemental Figure S6 shows the prediction accuracy 
of the ideal passage timing. The prediction error was close 
to zero immediately after the passage, and gradually 
increased as data accumulated over time, although it must 
be noted that the error decreased just before the next pas-
sage. We attribute the increase in prediction error between 
passages to two reasons: (1) the observed time series of cell 
density deviated from our logistic function-based prediction 
model (GCP), and (2) rapid changes in cell density made 
estimation given by the CDC less accurate. Investigation 
into the validity of the logistic function-based cell growth 
model is an issue for future research. For example, the dis-
crepancy between the actual cell growth curve and the 
mathematical model could have resulted in inaccurate cell 
growth rate estimations in GCP. The mean (± SD) error of 
ideal passage timing was 1.8 ± 2.3 h (n = 36) when the 
passage target was set to 80% and 0.1 ± 3.0 h (n = 31) 
when the passage target was set to 60%.

Figure 3. System components. Relationships between components. Black frames represent components, and gray boxes represent 
files. The density log file is a log of calculated cell density, and the execution log file is a log of jobs sent to LabDroid. The line table 
file, SMM, and components are described in Materials and Methods.
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Outlook

In conclusion, our system succeeded in the autonomous 
passage of two mammalian cell plates containing a different 
number of seeded cells simultaneously, with variable target 
passage cell density values. One limitation of our system is 
that it changes the single-variable parameter, the timing of 
passage, solely on the observation and prediction of the cell 
density. The system has potential for further applications. 
For example, human experts culture cells not only by esti-
mating cell densities but also by considering some other 
important factors, such as the 3D cell structure, temporal 
development, environmental factors, and pH of the media, 
as well as distinguishing between living and dead cells. The 
current system assesses only the quantity of growing cells 
to determine passage timing, but it can perform other proce-
dures, such as discarding cells, expanding cultures, chang-
ing media, and freezing and thawing cells based on the 
quality of the cells along with the quantity. Such extensions 
have an important potential to culture a wider range of cell 
types or for adoption in more advanced cell culturing opera-
tions, such as differentiation induction.
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