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Abstract

Objectives: (1) Examine associations of a branched chain amino acid (BCAA) metabolite 

pattern with metabolic risk across adolescence; (2) Use Least Absolute Shrinkage and Selection 

Operator (LASSO) to identify novel metabolites of metabolic risk.

Methods: We used linear regression to examine associations of a BCAA score with change (Δ) in 

metabolic biomarkers over 5-years follow-up in 179 adolescents 8–14 years at baseline. Next, we 

applied LASSO, a regularized regression technique well-suited for reduction of high-dimensional 

data, to identify metabolite predictors of Δbiomarkers.

Results: In boys, the BCAA score corresponded with decreasing C-peptide, C-peptide insulin 

resistance (CP-IR), total (TC) and low-density-lipoprotein cholesterol (LDL). In pubertal girls, the 

BCAA pattern corresponded with increasing C-peptide and leptin. LASSO identified asparagine as 

a predictor of decreasing C-peptide (β=−0.33) and CP-IR (β=−0.012); and acetylcarnitine 

(β=2.098), 4-hydroxyproline (β=−0.050), ornithine (β=−0.353), and α-aminoisobutyric acid (β=

−0.793) as determinants of TC in boys. In girls, histidine was a negative determinant of TC (β=

−0.033).
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Conclusions: The BCAA pattern was associated with Δglycemia and Δlipids in a sex-specific 

manner. LASSO identified asparagine, which influences growth hormone secretion, as a 

determinant of decreasing C-peptide and CP-IR in boys, and metabolites on lipid metabolism 

pathways as determinants of decreasing cholesterol in both sexes.

INTRODUCTION

Profiling of circulating metabolites, known as metabolomics, shows promise as one route to 

identifying specific targets for primary prevention. In the realm of obesity-related disease, 

studies in adults have unveiled distinct differences in plasma metabolite composition of 

obese vs. lean persons (1), some of which precede development of insulin resistance and 

type 2 diabetes by over a decade, independently of weight status (2). These findings suggest 

that metabolite patterns have higher discriminative capacity than weight status or traditional 

metabolic biomarkers to identify persons at risk of type 2 diabetes earlier on the disease 

continuum, and that some metabolite patterns may signal risk even among non-overweight/

obese individuals.

Less is known of these relationships earlier in the life course, when health trajectories are 

more malleable. Despite a flurry of analyses exploring cross-sectional associations of 

circulating metabolites with conventional biomarkers of glycemia in children and 

adolescents (3–6), only two studies have interrogated this relationship prospectively: one 

investigation followed 17 adolescents in Boston over the course of 18 months (6), and 

another was a two-year study of 102 Korean boys (7).The scant literature in youth is 

problematic for both biological and methodological reasons. Biologically, understanding 

determinants and etiology of worsening metabolic health during early life is essential for 

effective prevention. Methodologically, replication of existing findings is critical, especially 

in light of inconsistencies in current literature in the area of metabolomics and metabolic 

health (8), and the potential for false positive associations in analyses of high-dimensional 

‘omics data.

Here, we address the above-mentioned gaps via a two-pronged approach comprised of a 

hypothesis-driven and a data-driven analytical strategy. First, we investigated associations of 

a branched chain amino acid (BCAA) metabolite pattern that has been previously associated 

with metabolic risk in youth in cross-sectional analyses (5–7, 9), with change in glycemia, 

adipokines, lipid profile, and blood pressure during 5 years of follow-up in a cohort of 

Mexican children aged 8–14 years at baseline. Second, based on results from the first step 

(i.e., significant relationships between BCAA and the metabolic biomarkers), we applied 

Least Absolute Shrinkage and Selection Operator (LASSO) regression on the metabolite 

data set to identify the strongest metabolite determinants of change in conventional 

biomarkers of interest during follow-up. This procedure efficiently handles high-dimensional 

correlated predictors, and is useful for validation of hypothesis-driven results. Additionally, 

because we used results from the hypothesis driven-analysis to inform outcomes of interest 

for LASSO, this approach reduces the number of comparisons being made.
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MATERIALS AND METHODS

Study population

This study included participants of the Early Life Exposure in Mexico to Environmental 

Toxicants (ELEMENT) Project, a cohort study of pregnant women and their offspring in 

Mexico City, Mexico. Details on recruitment and eligibility have been previously published 

(10). In brief, we recruited women from public maternity hospitals in Mexico City between 

1997 and 2004 and followed these women and their children up to five years postpartum. In 

2010, we re-contacted a subset of the offspring, who were then 8–14 years of age, based on 

availability of archived prenatal biospecimens (n = 250) to participate in follow-up studies. 

At in-person research visits that took place in 2010 (henceforth referred to as the “baseline 

visit”) the children provided an 8-hour fasting blood sample and participated in 

anthropometric assessment. Approximately five years later, when the children were 13–19 

years of age, we carried out another research visit to obtain fasting blood and measure 

anthropometry (“follow-up visit”). Of the 207 children who attended both visits, the present 

analysis includes 179 participants who had adequate fasting serum volume from the baseline 

visit for the targeted metabolomics assays, and data on at least one of the conventional 

metabolic biomarkers of interest at both baseline and follow-up. The institutional review 

boards of the Mexico National Institute of Public Health and the University of Michigan 

approved research protocols. The study was carried out in accordance with the approved 

guidelines and regulations, including appropriate informed consent (maternal informed 

consent and child assent).

Targeted metabolomics profiling

The Michigan Regional Comprehensive Metabolomics Resource Core (MRC2) quantified 

absolute concentrations of 22 amino acids (11) and 27 acylcarnitine species (12) from 

fasting serum collected at baseline. Coefficients of variation for both chemical classes were 

<10% within a day, and <15% between days. Details on laboratory methods are provided in 

the Supplemental Material.

Conventional metabolic biomarkers

The outcomes of interest were change in conventional biomarkers of metabolic risk, 

calculated as the difference in the biomarker level at follow-up minus biomarker level at 

baseline. For this analysis, we considered markers of glycemia, as indicated by fasting 

glucose, C-peptide as a surrogate for fasting insulin (13), and C-peptide based insulin 

resistance (CP-IR); leptin, an adipose-tissue derived adipokine involved in glycemic 

regulation; lipid profile, according to total cholesterol, triglycerides high-density lipoprotein 

(HDL), and low-density lipoprotein (LDL); systolic (SBP) and diastolic (DBP) blood 

pressure; and a metabolic syndrome risk z-score (MetRisk z-score).

Fasting glucose, C-peptide, and leptin.—Using fasting blood, we measured serum 

glucose enzymatically. Serum C-peptide was quantified using an automated 

chemiluminescence immunoassay (Immulite 1000, Siemens Medical Solutions). These 

biomarkers provide a measure of glycemic control as fasting glucose is an indicator of 

glucose metabolism and a diabetes screening tool, and C-peptide is a marker of insulin 
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secretory function that is secreted in quantities equal to insulin from pancreatic β-cells (13). 

We measured leptin from serum using a radioimmunoassay (Millipore).

Lipid profile.—We measured total cholesterol, triglycerides, and high density lipoprotein 

cholesterol (HDL-C) in peripubertal fasting serum samples (mg/dL) using a biochemical 

analyzer (Cobas Mira Plus, Roche Diagnostics), and calculated low density lipoprotein 

cholesterol (LDL-C) as: Total cholesterol – HDL-C – (Triglycerides/5).

Blood pressure.—Research staff measured SBP and DBP in duplicate to the nearest 

mmHg in the seated position using BpTRU monitors (Coquitlam, BC, Canada), and used the 

average of the repeated measures for the analysis.

Metabolic syndrome risk z-score (MetRisk z-score).—For the MetRisk z-score, we 

calculated the sum of five age- and sex-specific internal z-scores for waist circumference, 

fasting glucose, fasting C-peptide, triglycerides/HDL-C, and SBP+DBP)/2. We have 

previously published this score in the ELEMENT cohort with respect to diet (14, 15), 

metabolomics (16), and early growth (17). This score is a modification (i.e., use of C-peptide 

rather than insulin) of one proposed by Ekelund et al. (18), which was then validated by 

Viitasalo et al. (19) in a study that examined correlations among the metabolic biomarkers in 

children and adults, and established its association with incident type 2 diabetes and 

cardiovascular disease across the life course.

Covariates

Upon enrollment, mothers reported on age, reproductive history, smoking history, and 

sociodemographic characteristics. A pediatrician trained in standardized methods assessed 

each child at the baseline and follow-up visits to determine Tanner stage on a scale of 1 (no 

development) to 5 (full development) for testicle (boys), breast (girls), and pubic hair 

development (both). For the analysis, we dichotomized pubertal status as pre-pubertal vs. 

pubertal: boys were considered pubertal if they received an assessment of Tanner stage >1 

for genital or pubic hair development, and girls were considered pubertal if they received an 

assessment of Tanner stage >1 for breast or pubic hair development.

Data analysis

Hypothesis-driven approach.—The goal of this approach was to examine associations 

of a previously-characterized branched chain amino acid (BCAA) metabolite pattern with 

change in several metabolic biomarkers during the follow-up period. To create the BCAA 

pattern, we selected the following compounds: the BCAAs valine, leucine, and isoleucine; 

the large neutral amino acids phenylalanine, tyrosine, and tryptophan, which share the same 

cellular transport mechanism (LAT1) as the BCAAs (20); alanine, an aliphatic amino acid 

linked to type 2 diabetes risk via its role in the glucose-alanine cycle (21); and propionyl-

carnitine (C3) and valeryl-carnitine (C5:0), which are downstream catabolites of BCAA 

metabolism. We derived the BCAA factor score by entering these compounds into an 

unsupervised principal components analysis (PCA). Judging from the Scree plot 

(Supplemental Figure S1), we retained the first factor for its clear dominance in accounting 

for the total variability. The factor retained represents a continuous, normally-distributed 
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weighted score of the compounds that compose the BCAA metabolite pattern based on their 

natural intercorrelations. The higher score for the BCAA pattern, the greater the degree to 

which an individual’s circulating metabolite profile resembles this pattern.

Next, we examined associations of the BCAA factor score with change in the metabolic 

biomarkers during follow-up, while also adjusting for the child’s baseline age, pubertal 

status, and biomarker level; and age at follow-up (Model 1). We then further adjusted for 

body mass index (BMI) z-score at baseline (Model 2) since weight status independently 

may impact subsequent metabolic health. Due to evidence of effect modification by sex for 

several biomarkers, and in light of known differences in physiology between boys and girls 

during adolescence, we ran all models separately by sex. Because we found statistical 

evidence of an interaction between the BCAA pattern and pubertal status in girls, we also 

ran models separately for pre-pubertal and pubertal females.

In addition to examining associations with the BCAA factor score, we evaluated individual 

metabolites within the BCAA pattern using Model 2. We parameterized the metabolites as a 

z-score centered at the median and scaled by 2/3 of the mean absolute deviation from the 

median (MAD). This enabled us to obtain a more granular understanding of specific 

compounds/pathways that may be driving the relationships of interest.

Data-driven approach

We applied Least Absolute Shrinkage and Selection Operator (LASSO) regression (22) on 

all 22 amino acids and 27 acylcarnitines to identify metabolites that are predictive of change 

in biomarkers that were “predicted” by the BCAA pattern in the first part of the analysis. In 

other words, if the BCAA pattern was associated with change in a biomarker in conventional 

multivariable linear regression, then we used LASSO to identify metabolites predictive of 

that biomarker.

The mechanics of LASSO have been previously described (22). In brief, LASSO is a 

regularized regression technique that detects the strongest signals (in this case, metabolites) 

from a high-dimensional and correlated set of predictors. We employed this method for its 

resistance to model over-fitting and detection of false positive associations, which are issues 

when dealing with high-dimensional data (when P>>n). The key feature of LASSO is the 

imposition of a constraint on model coefficients (β, representing the relationship between a 

given set of metabolite and change in the biomarker of interest, while conditioning on all 

other metabolites in the data set and adjusting for key covariates) so that week or null 

estimates are “shrunk” to zero and removed from the predictive model. This shrinkage 

procedure for variable selection is particularly useful for high-dimensional ‘omics data, as it 

reduces the possibility of false positive associations that may arise when metabolites 

exhibiting small and likely biologically irrelevant associations with the response variable are 

retained on the basis of statistical significance. To identify the β below which the coefficient 

for a given metabolite is set to 0, we used 10-fold cross-validation to select the threshold that 

minimizes model prediction error (23). Of note, it is currently not possible to obtain P-values 

or confidence intervals from LASSO using available statistical software as the shrinkage 

process adds uncertainty in model selection, which is difficult to precisely quantify.
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With the exception of the LASSO regression and cross-validation, which were carried out 

using the glmnet package (Version 2.0–13) in R, we performed all analyses using Statistical 

Analyses System 9.3 software (SAS Institute Inc., Cary, NC).

RESULTS

Median age of the participants at the baseline visit was 9.8 years (range: 8.1 to 13.8 years); 

47.8% (n=99) were boys. Mean ± SD of the BCAA factor score, age, and change in the 

metabolic biomarkers at the mid-childhood and early teen visits are presented in Table 1.

Table 2 shows associations of the BCAA factor score with change in the metabolic 

biomarkers in boys. A higher BCAA score corresponded with decreased C-peptide, CP-IR, 

total cholesterol, and LDL cholesterol during follow-up, with consistent estimates across the 

two multivariable models. For example, in Model 1, each 1 unit increase in the BCAA score 

corresponded with a 0.17 (95% CI: −0.08, 0.42) ng/mL decrease in C-peptide, and 0.03 

(95% CI: −0.02, 0.09) unit decrease in CP-IR after adjusting for baseline age, pubertal 

status, and biomarker level; and age at follow-up. Further adjustment for baseline BMI z-

score in Model 2 strengthened these estimates (C-peptide: −0.28 [95% CI: −0.50, −0.06]; 

CP-IR: −0.05 [95% CI: −0.10, −0.01] per 1 unit of the BCAA score). Similarly, a higher 

BCAA score was related to a decrease in total and LDL cholesterol (total cholesterol: −5.19 

[95% CI: −9.60, −0.78] mg/dL; LDL: −4.08 [95% CI: −7.56, −0.60] mg/dL per 1 unit of the 

BCAA score) in Model 1, with similar associations in Model 2.

Supplemental Table S1 shows associations of the BCAA pattern with change in the 

metabolic biomarkers, separately for pre-pubertal and pubertal girls. While we did not detect 

any statistically significant associations in pre-pubertal girls, the BCAA pattern was related 

to an increase in C-peptide and leptin in pubertal girls. Each 1 unit increase in the BCAA 

score corresponded with 0.30 (95% CI: 0.02, 0.58) ng/mL greater increase in C-peptide, and 

6.07 (95% CI: 1.68, 10.45) ng/mL greater increase in leptin (Model 1). Further adjustment 

for baseline BMI z-score (Model 2) did not change the direction, magnitude, or precision of 

these estimates.

Supplemental Table S2 shows associations of individual metabolites within the BCAA 

pattern with biomarkers of glycemia, and total and LDL cholesterol in boys, while also 

accounting for covariates in Model 2. All metabolites were associated with a decrease in C-

peptide, with the strongest associations observed for isoleucine (−0.12 [95% CI: −0.23, 

−0.02] ng/mL per 1 metabolite z-score), tyrosine (−0.15 [95% CI: −0.28, −0.02] mg/mL 

units per 1 metabolite z-score), and phenylalanine (−0.11 [95% CI: −0.21, −0.02] ng/mL 

units per 1 metabolite z-score). We noted similar trends for CP-IR (Table 4). With respect to 

total and LDL cholesterol, the metabolites were inversely related to both lipids (with the 

exception of a non-significant positive association between valeryl-carnitine and total 

cholesterol), with the strongest associations observed for leucine, valine, and tryptophan 

(Table 4).

A summary of key findings from Model 2 of Supplemental Tables S1 and S2 are displayed 

in Figure 1.
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Table 3 shows relationships between individual metabolites and the metabolic biomarkers in 

girls, within strata of pubertal status. In pre-pubertal females, the only association we 

detected was a small positive relationship between valeryl-carnitine and change in C-peptide 

(0.03 [95% CI: 0.00, 0.06] per 1 metabolite z-score). On the other hand, in pubertal girls, 

leucine and phenylalanine were each related to an increase in C-peptide during follow-up 

(leucine: 0.15 [95% CI: 0.01, 0.29] ng/mL greater increase per 1 metabolite z-score; 

phenylalanine: 0.10 [95% CI: 0.01, 0.20] greater increase per 1 metabolite z-score). 

Additionally, leucine, isoleucine, tyrosine, alanine, and propionyl-carnitine were each related 

to increased leptin during follow-up (Table 3). None of the relationships differed by baseline 

BMI z-score (all P-interactions>0.20).

Table 4 shows results of the LASSO regression. Here, we identified significant predictors of 

C-peptide and CP-IR as indicators of glycemia (we did not include fasting glucose given that 

null results in the hypothesis-driven portion of the analysis), as well as leptin, and total and 

LDL cholesterol. In boys, LASSO regression identified asparagine as a predictor of 

decreased C-peptide (β = −0.033 ng/mL per 1 metabolite z-score) and CP-IR (β = −0.012 

mg/dL per 1 metabolite z-score), after accounting for all other metabolites plus covariates in 

Model 2. Additionally, acetyl-carnitine was a positive predictor of change in total 

cholesterol, whereas 4-hydroxyproline, ornithine, and α-aminoisobutyric acid were each 

negative predictors of total cholesterol (Table 4). In girls, the only significant relationship 

was an inverse association between histidine and change in total cholesterol (β = −0.033 

mg/dL per 1 metabolite z-score). The LASSO model did not identify any metabolites 

predictive of change in LDL or leptin in either sex, beyond what was accounted for by the 

covariates in Model 2.

DISCUSSION

In this prospective study of 179 children aged 8–14 years at baseline, we observed sexand 

pubertal-stage specific associations of a branched chain amino acid (BCAA) metabolite 

pattern with conventional biomarkers of metabolic risk. In boys, the BCAA pattern was 

associated with decreased C-peptide and C-peptide based insulin resistance (CP-IR), as well 

as total and LDL cholesterol. When we disaggregated this pattern into its component 

metabolites, isoleucine, tyrosine, and phenylalanine exhibited the strongest associations with 

C-peptide and CP-IR; and leucine, valine, and tryptophan were key determinants of total and 

LDL cholesterol. In girls, we found that a higher score for the BCAA pattern at baseline 

corresponded with increased C-peptide and leptin among those who were classified as 

pubertal. The association with C-peptide was driven by leucine and phenylalanine; and the 

association with leptin was driven by leucine, isoleucine, tyrosine, alanine, and propionyl-

carnitine. Use of a data-driven technique (LASSO regression) to identify metabolites most 

strongly predictive of conventional metabolic biomarkers revealed inverse associations of 

asparagine with C-peptide and CP-IR. LASSO regression also detected positive relations of 

acetyl-carnitine, and inverse associations of 4-hydroxyproline, ornithine, and α-

aminoisobutyric acid with total cholesterol during follow-up in boys. In girls, histidine was 

predictive of decreased total cholesterol.
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Hypothesis-driven approach

The inverse relationship of the BCAA pattern with change in C-peptide and CP-IR was 

unexpected, as it is the opposite of what has been found in adults (2). However, our findings 

align with results of two cross-sectional investigations of adolescents in Pittsburgh. In the 

first study, Michaliszyn et al. reported that several compounds in the BCAA pattern, 

including leucine, isoleucine, valine, phenylalanine, and propionyl-carnitine, were associated 

with better insulin sensitivity among 139 adolescents ~13 years of age (4). In the same 

population, Mihalik et al. found evidence that these compounds were correlated with 

enhanced fatty acid oxidation (3), suggesting that the discrepancy in findings between adults 

and adolescents may be due to an adaptive increase in mitochondrial function (and 

accordingly, an improvement in glycemia) during early life that wanes with age and 

continued metabolic dysreg(13) ulation (24). Another explanation for the conflicting 

literature is that circulating BCAA are a biomarker of impaired insulin action, rather than a 

direct determinant of insulin resistance. In fact, rodent models have documented beneficial 

effects of BCAA intake on glycemia that are hypothesized to operate via their nutrient-

signaling properties. For instance, leucine activates the mammalian target of rapamycin 

(mTOR), a nutrient sensor involved in energy balance, food intake, and glycemic regulation 

(25), that has been shown to improve glucose tolerance in mice (26).

When we examined associations of individual metabolites in relation to the glycemia 

biomarkers, we detected the strongest associations for isoleucine, tyrosine, and 

phenylalanine. The inverse relationship of isoleucine with insulin secretion (C-peptide) and 

resistance (CP-IR) aligns with findings from in vitro and in vivo studies documenting a 

beneficial effect of isoleucine on skeletal muscle glucose uptake (27) and whole body 

glucose oxidation (28). Because both of these processes reduce circulating glucose levels 

without the involvement of insulin, higher circulating isoleucine could theoretically reduce 

insulin secretion and protect against insulin resistance. The inverse relationship of tyrosine 

and its precursor phenyalanine with C-peptide and CP-IR may be related the actions of 

tyrosine kinase, an enzyme composed of tyrosine and a phosphate group that improves 

efficacy of insulin signaling (29). Ultimately, the above-mentioned mechanisms would 

function to reduce the amount of insulin required to elicit the necessary physiological 

response.

The BCAA pattern – in particular, leucine, valine, and tryptophan – was associated with 

lower total and LDL cholesterol. While we were not able to locate any published studies that 

specifically focused on BCAAs and change in lipid profile, there are a few potential 

explanations for our findings. The first is that the inverse association between BCAAs and 

lipids is secondary to the relationship between BCAAs and glycemia, which is plausible 

given that dysglycemia (i.e., insulin resistance) explains a significant portion of variability in 

circulating lipid levels during adolescence (30). Another explanation is that our finding is 

actually reflective of differences in tempo of sexual maturation. This notion is worth 

considering given that increased growth hormone secretion and protein turnover during 

puberty may affect BCAA uptake or release from muscle, and can also lead to the decrease 

circulating lipid levels that occurs during the age range of our study participants (31, 32). 
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Thus, although we accounted for pubertal status in the multivariable models, we cannot rule 

out the possibility of residual confounding by progression sexual maturation.

In pubertal girls, we found a positive associations of the BCAA pattern with C-peptide and 

leptin during follow-up. Leucine and phenylalanine were key determinants of change in C-

peptide; and leucine, isoleucine, tyrosine, alanine, and propionyl-carnitine were most 

strongly associated with change in leptin. Among pre-pubertal females, we did not find any 

associations with the BCAA pattern or individual metabolites.

The positive relationship between baseline leucine and phenylalanine, as well as non-

significant but positive associations with several other compounds within the BCAA pattern 

(e.g., isoleucine, valine, tyrosine), with C-peptide in pubertal girls is opposite of what we 

found in boys, but corroborates published studies in adults, and two small studies in 

similarly-aged youth (6, 7). The relationship between BCAA and insulin resistance is 

complex, with some mechanistic studies show beneficial effects of BCAAs on glycemia 

(33), while others indicate that BCAAs are detrimental (1). It is possible that the 

physiological effects of BCAAs are context-dependent. For example, animal models indicate 

that the BCAA biochemical pathway is influenced by the hormonal milieu (34), which 

might explain the discrepancy of associations between males and females in this population.

Our finding that the BCAA pattern was associated with increased leptin during follow-up in 

pubertal girls, even after accounting for BMI z-score at baseline, aligns with the fact that 

BCAAs (leucine, in particular) can stimulate leptin secretion (35). The consistent direction 

of associations of the BCAA pattern with C-peptide and leptin with respect to this 

metabolite pattern makes sense in light of the fact that insulin and leptin both act centrally to 

regulate food intake and glucose homeostasis (36).

Data-driven approach

To identify novel compounds involved in metabolic risk, we applied LASSO regression to 

home in on metabolites that are the strongest predictors of change in conventional metabolic 

biomarkers. We specifically focused on C-peptide, CP-IR, total and LDL cholesterol, and 

leptin based on results of the hypothesis-driven analysis.

In boys, asparagine was the strongest determinant of decreasing C-peptide and CP-IR. This 

association could transpire from the impact of its derivative, aspartic acid, on secretion of 

growth hormone (37), which is involved in glycemic homeostasis via regulation of glucose 

oxidation and muscle uptake of glucose. We also identified several metabolites predictive of 

change in total cholesterol in boys. Acetyl-carnitine, a short-chain acylcarnitine derived from 

acetyl-CoA involved in lipid oxidation (38), was predictive of increasing cholesterol. On the 

other hand, 4-hydroxyproline, a product of collagen degradation that has been implicated in 

the pathogenesis of atherosclerosis in animal models (39); ornithine, an amino acid involved 

in the urea cycle that modulates lipid metabolism (40); and α-aminoisobutyric acid, an 

isomer of β-aminoisobutyric acid (BAIBA) that is inversely correlated with cardiometabolic 

risk factors in vitro and in vivo (41), were each determinants of a decrease in total 

cholesterol during follow-up. The LASSO models did not yield any metabolites predictive of 

change in LDL or leptin in boys, beyond what was already accounted for by the covariates.
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In girls, we only identified one statistically-significant relationship between metabolites and 

change in the metabolic biomarkers: histidine predicted a small decrease in total cholesterol. 

This finding could be explained by histidine’s ability to promote lipid peroxidation (42), 

which generally decreases circulating lipid levels.

If BCAAs were the strongest predictors of worsening metabolic health, then the data-driven 

analysis should have selected those metabolites, which was not the case in this study. The 

lack of concordance between results of the hypothesis-driven and data-driven analyses can 

be explained, in part, by the fact that LASSO conditions on (i.e., adjusts for) all other 

metabolites when estimating β for the relationship between each compound and change in 

the conventional biomarkers, whereas β values for the BCAA metabolites represent marginal 

associations that do not jointly consider other metabolites. Additionally, associations of 

BCAA metabolites that on related biochemical pathways (and therefore, are likely correlated 

with each other) with the outcomes be attenuated in the LASSO model, which accounts for 

all other metabolites in consideration.

Strengths & limitations

Limitations of this study include assessment of plasma metabolites at a single point in time, 

which precludes our ability to infer on upregulation vs. downregulation of specific pathways 

and mechanisms; relatively small sample size; potential for false positive associations; 

variation in the tempo of sexual maturation during follow-up; and relatively small sample 

size, especially when exploring associations within sex-specific strata of pubertal status. 

Additionally, we acknowledge the potential lack of generalizability of findings to non-

Hispanic populations, especially given the role of genetic predisposition of metabolic risk in 

this ethnic subgroup (43). However, the extent to which genetic predisposition manifests as 

differences in circulating metabolites associated with metabolic risk remains yet to be 

elucidated.

Strengths of this investigation include the two-pronged approach armed by a hypothesis-

driven and data-driven analytical strategy, the former of which reduces the multiple testing, 

and the latter of which provides an avenue to identify novel biochemical pathways; and our 

ability to examine the relationship of BCAA and related metabolites with prospective 

change in multiple metabolic biomarkers in a population afflicted by high rates of obesity 

and metabolic disease.

Conclusions

The BCAA metabolite pattern was associated with prospective change in glycemia and lipid 

profile in a sex- and pubertal-stage specific manner. Contrary to findings in adults, the 

BCAA pattern was not a good biomarker of metabolic risk in adolescent boys. However, in 

pubertal girls, this metabolite pattern was associated with increased insulin resistance and 

leptin during follow-up. Use of LASSO regression identified several additional compounds 

associated with change in glycemia (asparagine in boys), and total cholesterol (acetyl-

carnitine, 4-hydroxyproline, ornithine, and α-aminoisobutyric acid in boys; histidine in 

girls) that deserve further investigation. Given that many metabolic risk factors considered in 

this analysis, particularly lipid profile (44, 45) and glycemia (45), track from late childhood/
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early adolescence into adulthood, our findings add to current literature and represent a step 

forward in understanding of biomarkers and etiology of metabolic risk during early life. 

Future studies are warranted to confirm our findings in other populations of adolescents 

undergoing the pubertal transition, and to explore these associations beyond puberty.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Associations of the BCAA factor score with change in select metabolic biomarkers between 

baseline (8–14 years) and follow-up (13–19 years) in 85 boys and 94 girls in ELEMENT. 

Estimates are adjusted for age, pubertal status, BMI z-score and the biomarker of interest at 

baseline, and age at follow-up. Abbreviations: BCAA: branched chain amino acid; CP-IR: 

C-peptide-based insulin resistance; Tot. chol: total cholesterol; LDL: low-density 

lipoprotein cholesterol
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