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Abstract
Understanding the genetic contribution(s) to the risk of preterm birth may lead to the devel-

opment of interventions for treatment, prediction and prevention. Twin studies suggest heri-

tability of preterm birth is 36–40%. Large epidemiological analyses support a primary

maternal origin for recurrence of preterm birth, with little effect of paternal or fetal genetic

factors. We exploited an “extreme phenotype” of preterm birth to leverage the likelihood of

genetic discovery. We compared variants identified by targeted sequencing of women with

2–3 generations of preterm birth with term controls without history of preterm birth. We used

a meta-genomic, bi-clustering algorithm to identify gene sets coordinately associated with

preterm birth. We identified 33 genes including 217 variants from 5 modules that were sig-

nificantly different between cases and controls. The most frequently identified and con-

nected genes in the exome library were IGF1, ATM and IQGAP2. Likewise, SOS1, RAF1

and AKT3 were most frequent in the haplotype library. Additionally, SERPINB8, AZU1 and

WASF3 showed significant differences in abundance of variants in the univariate compari-

son of cases and controls. The biological processes impacted by these gene sets included:

cell motility, migration and locomotion; response to glucocorticoid stimulus; signal transduc-

tion; metabolic regulation and control of apoptosis.

Introduction
Despite significant advances in the care of pregnant mothers and infants, preterm birth
remains a leading cause of newborn morbidity, mortality and hospitalization in the first year of
life in the United States [1]. In developed countries 70% of infant mortality is secondary to pre-
term birth (birth before 37 completed weeks of gestation). The rate of preterm birth varies in
different societies and in different ethnic groups from 3.8% in Eastern Asia to rates reaching
close to 17% in disadvantaged African American groups [2, 3]. Neonatal morbidity and mortal-
ity after preterm birth are inversely related to gestational length. Survivors are at increased risk
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of cerebral palsy, intellectual disabilities, respiratory problems and other long term conditions
[4]. Moreover, despite numerous attempts at intervention, the incidence of prematurity has
shown minimal improvement over the last two decades [2]. The risk factors associated with
prematurity are many including: adverse sociodemographic status, race/ethnicity, infection,
stress, trauma and prior history of a premature birth [4–10]. The leading etiology is idiopathic.
A large number of clinical/epidemiologic studies have examined the individual and collective
contribution of each of these factors. A family history of preterm birth and inter-pregnancy
interval of<18 months also increase the risk of prematurity [9].

A precise estimate of the contribution(s) of genetic factors to preterm birth has been difficult
to achieve [11–17]. Twin studies suggest heritability is 36–40%, however differences in gesta-
tional age used and other details cloud the precision of those estimates [18, 19]. A history of a
previous preterm birth is one of the best predictors of a subsequent preterm delivery. Mothers
who were preterm themselves or who have a first order relative with preterm birth have an
increased risk for delivering prematurely. These observations support the importance of
genetic factors in preterm birth [13, 20, 21]. Large epidemiological studies drawn from popula-
tion based analyses in Sweden and Denmark support a maternal origin for the genetic contri-
bution(s) to risk of preterm birth, with little contribution by paternal or fetal genetic factors
[17, 22–24].

Attempts to identify the genetic contributions to the risk of preterm birth have been pursued
widely [13–17, 25, 26]. Studies have focused on genomic and proteomic approaches to the
mechanism(s) of preterm labor. Polymorphic changes in the protein coding regions, regulatory
and intronic sequences of specific genes have been described. In most of these studies, candi-
date genes or proteins involved in inflammatory reactivity or uterine contractility have been
investigated [13–18, 25–37]. The results suggest that alteration in the expression of these pro-
teins interacts with infection and/or other environmental influences associated with preterm
birth. The results however, do not provide insight into the causes of prematurity in the absence
of early inflammation or infection. Moreover, while interventions directed at infection or
inflammation have been successful in experimental models they have largely been unsuccessful
in treatment or prevention of preterm birth in humans [38]. Thus, there is abundant informa-
tion that demonstrates important genetic contribution(s) to the risk of preterm birth and fur-
ther suggests that preterm birth is a complex, polygenic disorder that entails activation and/or
suppression of a host of genes [4]. In addition, linkage analyses have been limited because large
pedigrees with a family history of preterm birth are not widely available, however one such
study has been reported [39]. In spite of the data suggesting an association between genetics
and PTB, there is a gap in our knowledge of the precise genetic contributions and whether they
are discrete or multifactorial.

We have developed an alternative approach to identify a more manageable set of genes for
preterm birth which incorporates some elements of the discovery in genome wide investiga-
tions. We previously used a bioinformatics approach for mining published literature and
screening publicly available high-throughput databases to develop a validated collection of
genes with a priori connection to preterm birth [40]. We used gene set enrichment analysis
(GSEA) of this refined gene set to analyze a large genome wide association study to identify the
contribution(s) of individual biological pathways to the genetic architecture of preterm birth
[40, 41]. We identified important genes and networks associated with preterm birth. In order
to identify the variants underlying these associations, we targeted the exons, flanking sequence
and splice sites of the 329 genes and 132 haplotype blocks that we showed were associated with
preterm birth [41]. We were as interested in variants that were associated with increased risk
for preterm birth as we were with variants that were associated with reduced risk. We exploited
an “extreme phenotype” of preterm birth to leverage the likelihood of genetic discovery by
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concentrating our enrollment on patients with a prior history of preterm birth. We compared
variants identified in women with 2–3 generations of preterm birth with term controls without
history of preterm birth. We used a meta-analytic, bi-clustering algorithm to identify gene sets
coordinately associated with preterm birth. We identified 33 genes including 217 variants from
5 modules significantly different between cases and controls. The biological processes impacted
by these gene sets included: cell motility, migration and locomotion; response to glucocorticoid
stimulus; signal transduction; metabolic regulation and control of apoptosis.

Results

Library Design and Univariate Sequence Analysis
Sequencing was carried out on 32 women with 2 or 3 generations of preterm birth and 16 con-
trols. We targeted the exons, flanking sequence and splice sites of the 329 genes and 132 haplo-
type blocks that we had previously shown were highly associated with preterm birth [41]. We
identified over 13,000 variants in the targeted exome library and 11,000 variants in the haplo-
type block library [41]. Using the univariate analysis strategy discussed in the Methods, we
identified 205 and 168 variants that were significantly different in abundance between cases
and controls from the exome and haplotype block libraries at p<0.05, respectively. These vari-
ants and their associated genes are shown in S1 and S2 Tables. Fig 1 shows a Manhattan plot
for these combined results with a threshold at -logP 1.3.

Meta-analysis
The genes containing variants that showed significant differences between cases and controls
were examined for their association with networks and biological pathways using GSEA. We
analyzed genes whose variants differed from controls with a p-value<0.1. We ran GSEA inde-
pendently for each of the 48 patients. The significant gene sets from the GSEA of each patient
were then compared by adapting a newly described meta-analytic approach known as iterative

Fig 1. Manhattan Plot of Significant Variants. The 13,000 variants from the targeted exome library and
11,000 variants from the haplotype block library were compared for difference in abundance in the cases
versus the controls. The figure shows a Manhattan plot of all variants across 22 autosomes with the vertical
axis being the -logP value from the statistical test for association, with the threshold line (-logP 1.3) indicating
p-value of 0.05. There were 205 and 168 variants that significantly differed in abundance in cases versus
controls from the exome and haplotype block libraries respectively.

doi:10.1371/journal.pone.0155021.g001
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binary bi-clustering (iBBiG) [42]. The iBBiG algorithm identifies “modules” of gene sets and
patient subsets from binary data [42]. Our analytical pipeline is illustrated in Fig 2.

For each module we analyzed the patient subsets by comparing the number of cases versus
the number of controls. These results are summarized in Table 1, which lists the module

Fig 2. Meta-analysis and analytical pipeline: The genes harboring variants in each patient were analyzed
by gene set enrichment using the MSig database C2 collection of gene sets [43]. The significant gene sets for
each patient were combined into a binary association matrix. The iBBiG algorithm extracts modules of gene
sets and patient subsets from the data matrix. The modules are represented by different colors. Fisher’s
exact test was used to identify modules with significant differences in the number of cases and controls.

doi:10.1371/journal.pone.0155021.g002
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number, the numbers of cases, the numbers of controls, and the p-value (Fisher’s exact test).
This analysis of the exome library identified 2 modules, for which there were significant differ-
ences in number of cases and controls in the patient subsets. For the haplotype library 3 signifi-
cant modules were identified. Fig 3A and 3B shows a network of all of the modules and the
patients assigned to each module from the exome and haplotype libraries. For the exome
library, Module 8 (blue) contained significantly more cases than controls and Module 4 (red)
contained significantly more controls than cases. For the haplotype library, Module 2 (light
blue) contained significantly more cases than controls and Module 8 (green) and Module 9

Table 1. The number of case and control patients and Fisher’s Exact p-value for each of the significant modules from the two targeted sequencing
libraries.

Libraries Modules Cases Controls p-value

Exome Library M4 2 9 0.0002

M8 9 0 0.0200

Haplotype Library H2 9 0 0.0200

H8 1 4 0.0300

H9 0 5 0.0025

doi:10.1371/journal.pone.0155021.t001

Fig 3. Network analysis of cases and controls.Cases are labeled by letter “c” in the significant modules.
(A) Network of all modules of the exome library and patients, with the patients from significant Modules 4 and
8 highlighted in red and blue, respectively. (3B) Network of all modules of the haplotype block library and
patients, with the patients from significant Modules 2, 8 and 9 highlighted in light blue, green and orange,
respectively.

doi:10.1371/journal.pone.0155021.g003
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(orange) contained significantly more controls than cases. Not surprisingly, patient subsets
overlapped between modules. However for the exome library, the significant modules were
represented by discrete patients. In the haplotype library two patients were shared among the 3
significant modules.

In addition to patient subsets, each module contained gene sets. We extracted the genes
from each gene set. We found significant overlap when analyzing these modules. Several gene
sets were included in more than one module and there were multiple genes within each gene
set that were shared among modules. This overlap is displayed for the exome library and the
haplotype block library in Fig 4A and 4B. The significant modules and associated genes are dis-
played as Insets of Fig 4A and 4B. Inset a1 shows the 6 genes in Module 8 and inset a2 shows
the 8 genes in Module 4. Inset b1 shows the 17 genes in Module 2, b2 shows the 5 genes in
Module 8 and b3 shows the 6 genes in Module 9. Table 2 lists these individual genes, their
genomic location, and the five significant modules to which they belong.

Fig 4. Network of modules and their gene sets. (A) Network output showing all 10 modules from the
exome library and the genes contained in each module. The two significant modules are displayed as insets.
Inset a1 and a2 display the genes of E8 and E4 respectively. (B) Network output showing all 10 modules from
the haplotype block library and the genes contained in each module. Insets b1, b2 and b3 show the genes of
H2, H9 and H3 respectively.

doi:10.1371/journal.pone.0155021.g004
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The most highly connected genes in the exome library, IGF1, ATM and IQGAP2, were
identified in 4–5 modules, Fig 4A. Similarly, from the haplotype block library, SOS1, RAF1 and
AKT3 were identified in 5–6 modules, Fig 4B.

We recognize that some of the individual variants we found during the initial univariate test-
ing might be important and not identified in the meta-analysis. Table 3 shows the variants in
SERPINB8, AZU1 andWASF3 that were significantly different in cases and controls (p<0.05)
with predicted deleterious effects according to PolyPhen 2 HDIV.

Table 2. Gene names, IDs and chromosome numbers identified in the significant modules from both
targeted sequencing libraries.

Gene HGNC ID Chr Modules

DZIP3 30938 3 E4

GOLGA4 4427 3 E4

TAOK3 18133 12 E4, H2

RALBP1 9841 18 E4, H8

IGF1 5464 12 E4

ATM 795 11 E4

MGLL 17038 3 E4

IQGAP2 6111 5 E4,E8

NBEA 7648 13 E8

ZBTB16 12930 11 E8

APP 620 21 E8

ISG20 6130 15 E8

ANXA2 537 15 E8

TNFAIP8 17260 5 H2

RDH12 19977 14 H2

SOAT1 11177 1 H2

PLA1A 17661 3 H2

PI3 8947 20 H2

LIMK1 6613 7 H2

PPARG 9236 3 H2, H9

ZFYVE26 20761 14 H2

SOS1 11187 2 H2, H9

KITLG 6343 12 H2

CHUK 1974 10 H2

RAF1 9829 3 H2

AKT3 393 1 H2

HIC1 4909 17 H2

COL16A1 2193 1 H2

IL6R 6019 1 H2, H8, H9

PRPSAP1 9466 17 H8, H9

NF2 7773 22 H8, H9

RPS6KB1 10436 17 H8

PAK1 8590 11 H9

E4 = Exome Library Module 4, E8 = Exome Library, Module 8,

H2 = Haplotype Library, Module 2, H8 = Haplotype Library, Module 8, H9 = Haplotype Library, Module 9

doi:10.1371/journal.pone.0155021.t002
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Gene Ontology Analysis
We performed gene ontology analysis to identify the biological processes for the genes belong-
ing to the significant modules [44]. A total of 80 groups of biological processes were identified
which segregated into 9 individual and overlapping clusters, S3 Table. Fig 5 shows these indi-
vidual and shared ontology groups. The most abundant association was with mechanisms reg-
ulating programmed cell death. Likewise, control of cell motility, migration and cell cycle
regulation were associated with several of the most highly connected genes in Module 4 of the
exome library. Metabolic processes, phosphate and lipid metabolism, protein phosphorylation
and various forms of signal transduction were common biological functions attributed to the
other most highly connected genes from the exome library. Similarly, the results from the gene
ontology analysis of the haplotype library showed a high degree of association with cellular
metabolism, signal transduction and nucleic acid metabolism. Regulation of immune cell sys-
tem development, responses to glucocorticoid signaling, signal transduction pathways in

Table 3. Significant variants from the Exome library with annotations.

Gene HGNC id Chr Function dbSNP 138 Polyphen 2HDIV p-value

SERPINB8 8952 18 exonic rs3826616 0.998 0.036

AZU1 913 19 exonic rs28626600 0.995 0.037

WASF3 12734 13 exonic rs17084492 0.968 0.036

doi:10.1371/journal.pone.0155021.t003

Fig 5. Ontology groups.Diagram showing the clusters of terms from the Gene Ontology analysis for
biological processes related to preterm birth. Gene Ontology Database terms for biological processes shown
in clusters A thru I are detailed in S3 Table.

doi:10.1371/journal.pone.0155021.g005
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immune regulatory cells and regulation of smooth muscle cell proliferation were associated
with the genes identified in the haplotype library.

Discussion
We are striving to identify the genetic basis for preterm birth. Our prior pathway analysis sup-
ports our strategy to look for variants in shared networks or pathways of genes that contribute
to risk or resilience [41]. In order to increase the likelihood of discovery, we leveraged genetic
risk by concentrating our enrollment on patients with a prior history of preterm birth. We
compared variants identified in women with 2–3 generations of preterm birth with term con-
trols without history of preterm birth. We performed targeted sequencing of the haplotype
blocks surrounding previously identified significant variants from a GWAS for preterm birth
[41]. We also performed targeted sequencing of the exons and flanking sequences of the genes
nearest these variants. We then filtered the resulting 25,000 variants for those which were sig-
nificantly different between preterm birth cases and matched controls. We adapted a new
meta-analysis to identify modules of gene sets that were increased in abundance in cases or the
controls. Several gene sets were included in more than one module and there were multiple
genes within each gene set that were shared among modules. The most frequently identified
and connected genes in the exome library were IGF1, ATM and IQGAP2. Likewise, SOS1,
RAF1 and AKT3 were most frequent in the haplotype library. Additionally, SERPINB8, AZU1
andWASF3 showed significant differences in abundance of variants in the univariate compari-
son of cases and controls. IGFI has been previously implicated in preterm birth in association
with variants in coagulation and inflammation pathway genes [45]. IGF1 has also been impli-
cated through reduced expression in the placenta from preterm birth compared to controls
[46]. The IGF-I receptor has also been associated with preterm birth through a linkage analysis
in the Finish population [39]. Interestingly, none of the remaining genes were previously impli-
cated in preterm births. Their inclusion in this discovery sent was solely through our prior
imputation [41]. The high degree of overlap of the same gene in different gene sets and the
same genes in different modules is consistent with the well-recognized redundancy of genes
and their networks in nature [47].

Whole exome sequencing (WES) has been undertaken to identify the genetic architecture of
complex diseases [48–50]. While successful at identifying large numbers of variants, specificity
is limited. A recent WES project from the National Heart, Lung and Blood Institute (NHLBI)
identified almost 500,000 nucleotide variants which were rare [50]. Remarkably, individual
patients were predicted to have up to 300 putatively deleterious variants but actual phenotype
genotype correlations were not available. It was only after careful review of the literature and
prioritization of the identified variants that targets for resequencing were identified [51, 52].
Our strategy is the inverse of the approach just described. We carried out the biological reduc-
tionism first through a robust literature curation and aggregation of genes from public data-
bases [40]. We then used gene set enrichment with this biologically validated gene set to
analyze a large genome wide association study of preterm birth [41]. We identified a modest
number of genes and significant haplotype blocks. In this report we describe the results of tar-
geted deep sequencing of these genes and significant haplotype blocks in women with a multi-
generational history of preterm birth and compared the findings to patients delivering at term
with no family history of preterm birth.

Our results are consistent with our a priori hypothesis that preterm birth would not be asso-
ciated with single gene variant(s) but rather with variants in networks of genes. Additionally,
we anticipated that we would find networks with gene variants in some but not all of the cases
and controls. This is consistent with the notion that a minimal but sufficient disruption in
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several pathways is sufficient to lead to a clinical disease or phenotype but that different net-
works or modules can result in similar clinical or phenotypic outcomes [40, 53]. This approach
is powerful at identifying subsets of patients with networks of genes that are associated with
clinical disease phenotypes.

We compared cases with a multigenerational history of preterm birth to patients delivering
at term with no family history of preterm birth. This approach is consistent with recommenda-
tions on design of studies to define rare variants and “missing heritability” which include care-
ful phenotyping of cases, carefully-matched controls, use of prior data on genes or variants to
identify targets and/or assess results [54, 55]. Our data are from a modest size cohort of
patients. Nonetheless, our targeted strategy allowed us to find significant associations which
both enhanced and reduced the risk of preterm birth. Other investigators have used combina-
tions of targeted sequencing and/or targeted patient enrollment to enhance discovery of rare
variants using modest patient size cohorts and have reported similar success [55–60]. As
shown here, prior genetic analysis and prior filtering of both patients and gene targets improves
the likelihood of identifying otherwise difficult-to-find rare variants [55–60]. Replication in
another cohort of patients, comparison with genes associated evolutionarily with preterm birth
and the addition of phylogenomic analyses are needed to validate and add veracity to these
candidate genes [61].

These results illustrate an effective way to use large data sets and layered approaches
employing pathway analysis, gene set enrichment and meta-genomic analysis, to identify the
genes in networks and pathways associated with complex disease. We discovered modules of
genes for which the variants in these genes taken together might prevent or result in preterm
birth for a specified subset of patients. This meta-genomic approach is also suitable for meta-
analysis of sequence/variant results from independent projects to identify gene networks in
additional subsets of patients/phenotypes. These results are generalizable to other disorders.

Methods

Patient Identification and Enrollment
Women & Infants Hospital of Rhode Island is the only provider of high-risk perinatal services
in Rhode Island, northeastern Connecticut and southeastern Massachusetts. We used this pop-
ulation-based service to enroll patients with a prior history of preterm birth. An informatically
driven retrieval from our electronic medical record gave us a daily report on all preterm births.
A clinical research assistant trained in genetic interviews reviewed the records of all patients
delivering< 34 weeks. Controls were patients who delivered� 37 weeks gestation in whom a
careful, formal genetic history revealed no history of preterm birth on either maternal or pater-
nal side of the pedigree. Following informed consent, women underwent a careful interview.
There were explicit questions in the formal questionnaire of preterm birth in mother, grand-
mother, her first order relatives and also paternal relatives. Informed consent was obtained
from all participants. Careful clinical history with an emphasis on additional risk factors for
prematurity including medical illnesses, drug use, psychiatric disorders and employment his-
tory was recorded on all patients. The study was approved by the Institutional Review Board,
08–0117. 48 samples were selected for targeted sequencing. Samples were taken from 23
women with 2 generations of preterm birth, 9 women with 3 generations of preterm birth and
16 control women at term. The clinical characteristics of the patients are shown in Table 4. The
only significant difference was the older gestational age among the controls. All of the patients’
identifying data was coded and redacted for the purposes of data analysis. Residual maternal
whole blood was obtained for extraction of genomic DNA. The samples were stored continu-
ously at -80°C until processing.
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Sample preparation
We targeted 329 genes and 132 haplotype blocks that are highly associated with preterm birth
for sequencing [41]. Genomic DNA from whole blood was extracted using DNA kit QIAamp
DSP DNA blood mini kit from Qiagen following the manufacture’s protocol. Samples were
quantified using Qubit technology (Life Technologies, Carlsbad, CA, USA) and sequencing
libraries were constructed from 2 μg each of case/control DNA. Library preparation was per-
formed using Illumina TruSeq DNA LT Sample prep Kit (Illumina, San Diego, CA, USA), with
enzymatic fragmentation using ds DNA Fragmentase (NEB), followed by indexing and clean-
up. DNA capture was performed using custom capture probes from SeqCap EZ choice kit
(Roche NimbleGen) Post-capture quality control and targeted sequencing were performed at
the Brown University Genomics Core.

Targeted sequencing
The library was sequenced on our Illumina HiSeq 2500 using 100 base pair paired-end proto-
cols. Initial cluster counts of ~300,000 were obtained. Following sequencing, the multiplex
indices were used to bin the samples for each patient and QC sequence data was recorded.
High quality sequence data from well-balanced pools was observed. There were an average of
22,000,000 reads from each patient, with an average of 99% perfect index reads and a Q30 of
91%. The mean Phred score for each patient was 36. These data were then aligned to the
human reference sequence (Hg19). Reads were mapped to the to the human reference sequence
(Hg19) with BWA [62] sorted and indexed with SAMtools [63].

Sequence data, variant calling and zygosity testing
Variants were flagged as low quality and filtered using the established metrics: if three or more
variants detected within 10bp; if four or more alignments map to different locations equally
well; if coverage of less than five reads; if quality score< 30; if low quality for a particular
sequence depth (variant confidence/unfiltered depth< 1.5); and if strand bias (Phred-scaled p-
values using Fisher’s Exact Test> 200). A variant identified by any ONE of these filters was
labeled “low quality” and not considered for further analysis. For variant discovery we used the
Gene Analysis Tool Kit (GATK) version 3.2 to analyze the sequence reads. Following the filters
described in Methods, we implemented GATK’sHaplotype Caller [64, 65]. Duplicated reads
marked and removed using Picard Tools version 1.77. Haplotype caller was applied for variant
detection on 329 gene set library and the Haplotype blocks library. 100 base pairs upstream
and downstream of the each gene were included in the variant detection.

Annotations
Variants were annotated using ANNOVAR for functional prediction scores Polyphen 2 HDIV
[prediction if a change is damaging (> = 0.957), possibly damaging (0.453< = Polyphen

Table 4. Clinical characteristics of maternal patients (mean ± SD).

Study Group Maternal Age Gravida Gestational Age Race

Preterm 25.0 ± 5.3 2.8 ± 2.3 31.9 ± 2.3 A8; AS1; H8; W18;NA1

Controls 24.8 ± 4.5 1.8 ± 1 40.0 ± 0.7* A3; AS1; H3; W9

* P<0.05A;

A African-American; AS Asian; H Hispanic; W White; NA Native American

doi:10.1371/journal.pone.0155021.t004
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2 HDIV< = 0.956) or benign< = 0.452], PhyloP [prediction of a conserved (>0.95) or non-
conserved (<0.95) site], and chromosome position [66].

Univariate Analysis
In order to focus on putatively relevant variants, we eliminated the bulk of the identified vari-
ants for immediate investigation because they were equally common in cases and controls.
Using a Markov Chain Monte Carlo (MCMC) Fisher Exact Test, we created a 2 x 3 contin-
gency table for zygosity testing to compare the frequency of homozygosity for the reference
allele, heterozygosity or homozygosity for the minor allele. The results are shown in Table 3.

Meta-Analysis using GSEA and iBBiG
For each patient (total of 48), we built a gene list for each patient for GSEA. In order to ensure
that we analyzed enough genes in each patient to conduct gene set enrichment, we relaxed the
significance threshold on genes from p<.05 to p<.1. We ran GSEA on each patient’s gene list
independently [43]. We used pre-ranked GSEA analysis against a collection of curated gene
sets (C2) fromMSigDB [43]. The resultant gene sets were considered significant if they
obtained a nominal p-value below 0.05. Next, we transformed the significant gene sets into a
binary matrix where the rows of the matrix were the gene sets and the columns were the indi-
vidual patients. The binary matrix was used as input into the iterative binary bi-clustering algo-
rithm (iBBiG). This algorithm was used to identify groups of gene sets that are coordinately
associated with subsets of patients and their phenotypes (preterm, term) across the GSEA
results. Fisher exact test was used to compare the abundance of cases and controls in each mod-
ule output from iBBiG.

Gene Ontology
We sought to provide a representation of the biological processes encompassed by these gene
sets using the Gene Ontology (GO) Database. The Gene Ontology Database describes genes in
terms of their associated biological processes, molecular functions and cellular components.
Using GOstat, the genes shown in the clusters were tested for their statistical association with
GO terms [67]. The program identifies Gene Ontology terms for which genes in the list were
overrepresented. For each GO term, a p-value was calculated indicating the probability that the
observed counts could have resulted from randomly distributing the associated GO terms
between our genes and modules. GOstat corrects for multiple comparisons by employing a
false discovery rate, p<.05.

Supporting Information
S1 Table. Genes and variants from zygosity testing (Exome library).
(DOCX)

S2 Table. Genes and variants from zygosity testing (Haplotype library).
(DOCX)

S3 Table. Gene ontology terms from each significant module. Genes from each module were
used in GO to describe biological functions.16 Each biological function and module number is
shown for the nine clusters. Modules are shown as large solid figures. Connections (“edges”)
between biological functions in different clusters are shown.
(DOCX)
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