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Duffy Blood Group System and the malaria adaptation process in humans

Malaria is an acute infectious disease caused by the protozoa of the genus Plasmodium. The
antigens of the Duffy Blood Group System, in addition to incompatibilities in transfusions and
hemolytic disease of the newborn, are of great interest in medicine due to their association with the
invasion of red blood cells by the parasite Plasmodium vivax. For invasions to occur an interaction
between the parasites and antigens of the Duffy Blood Group System is necessary. In Caucasians
six antigens are produced by the Duffy locus (Fya, Fyb, F3, F4, F5 and F6). It has been observed
that Fy(a-b-) individuals are resistant to Plasmodium knowlesi and P. vivax infection, because the
invasion requires at least one of these antigens. The P. vivax Duffy Binding Protein (PvDBP) is
functionally important in the invasion process of these parasites in Duffy / DARC positive humans.
The proteins or fractions may be considered, therefore, an important and potential inoculum to be
used in immunization against malaria.
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Introduction

Malaria is an acute infectious disease caused by protozoa of the genus Plasmodium.
The etiologic agents in Brazil are the species Plasmodium vivax, Plasmodium falciparum
and Plasmodium malariae. The disease is transmitted through the bite of female Anopheles
mosquitoes, even though in certain situations other mechanisms are possible. (1)

The antigens of the Duffy Blood Group System, in addition to involvement in
transfusion incompatibility and hemolytic disease of the newborn, are of great interest in
medicine because of their association with the invasion of red blood cells (RBCs) by the
parasite P. vivax. Additionally they are receptors for the chemokine family involved in the
regulation of inflammatory processes.(2-5)

The finding that Fy(a-b-) erythrocytes are resistant to infection by Plasmodium
knowlesi and P. vivax validated the proposition that the absence of these antigens
represents an example of natural selection especially in areas where P. vivax is widespread.
This resistance appears to have significantly influenced the distribution of Duffy system
phenotypes in areas where malaria is endemic.(5-7)

This article discusses the prospect of a vaccine against malaria and also makes a brief
review of the parasite and its interaction with Fya and Fyb antigens as resistance and
susceptibility factors to malaria, particularly that caused by P. vivax.

The terminology used in this article, to refer to antigens and antibodies to the Duffy
Blood Group System was recommended by the International Society of Blood Transfusion
(ISBT).(8)

Malaria

General
Malaria, also known as paludism, palustre fever and ague is one of the most important

parasitic diseases among populations of tropical and subtropical countries of the world.
The etiologic agent, Plasmodium sp., was first identified in 1880 by Charles Alphonse
Laveran. Malaria is caused by infestation of different species of protozoa of the genus
Plasmodium: P. vivax, is responsible for the benign tertian disease, P. falciparum, the
malignant tertian disease, P. malariae, the benign quartan disease, and P. ovale, also
causes benign tertian disease, but only exists in Africa.(9)

Malaria caused by P. falciparum is more severe because it causes microvascular
impairment, which makes it pathophysiologically different from the malaria caused by
P. vivax that under certain conditions may have less severe clinical symptoms, as the
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immune response is more of the inflammatory and hemolytic
type.(10)

The most characteristic clinical signs and symptoms of
malaria are fever, chills, sweating and anemia, as well as general
symptoms such as headaches, myalgia, malaise and weakness
and in severe cases, visceral involvement (splenomegaly and
hepatomegaly).(9)

Epidemiology
The overall socioeconomic impact of Malaria is

extensive, as this disease is still a major public health problem
in tropical and subtropical areas of the world.(1) P. vivax
accounts for less than half of all malaria cases in Latin America,
Oceania and Asia(11) and it is calculated that from 70 to 80
million clinical cases caused by P. vivax occur annually
worldwide.(12)

In Brazil, there has been a decrease in the annual parasite
incidence in the states of the Brazilian Amazon region from
32 per 1,000 inhabitants in 1999 to 13 per 1,000 inhabitants in
2008. Mortality was also reduced from 3 deaths per 10,000
cases in 1999 to 1.5 in 10,000 cases in 2008, and the proportion
of hospital admissions dropped from 3.3% in 1999 to 1.3% in
2008. In this same period, there was a considerable change in
the transmission dynamics of malaria with concentrations of
cases in specific municipalities. The number of municipalities
at high risk, i.e. an incidence of 50 cases or more per 1,000
inhabitants, was reduced from 160 to 67 municipalities. Over
80% of reported cases outside the Amazon were imported
from other states in endemic regions, from Africa or from
Paraguay. Sporadic autochthonic cases occurred in restricted
focal areas. It is important to mention the municipals located
on the shores of the lake of the Itaipu hydroelectric plant,
areas covered by Atlantic Forest in the states of Espírito
Santo, Minas Gerais, Rio de Janeiro, São Paulo and Bahia,
the central-west states of Goiás and Mato Grosso do Sul and
the northeastern state of Piauí.(13)

Children are the most affected with between one or two
million childhood deaths each year. Often, infant mortality
and morbidity are related to delay in establishing the correct
diagnosis because of few clinical features.(14)

In school children and adolescents, the clinical
symptoms resemble those seen in adults, whereas in infants
and preschool children, the clinical characteristics of the
disease are often atypical and the triad of fever, chills and
headache may not be presented. Ventura et al. evaluated the
clinical presentation of malaria in 100 children and adolescents
and found that the combination of these three symptoms
occurred in only 13.6% of cases.(15)

Transmission
Transmission occurs through the bite of female

Anopheles mosquitoes that feed on human blood that is
infected with gametocytes. This promotes the fertilization
process producing zygotes that become invasive and grow
and divide thus producing thousands of invasive sporozoites.

These migrate through the body and invade the salivary
glands of female mosquitoes. Females, when they feed again,
inoculate sporozoites in the blood of man, which rapidly
migrate into hepatocytes and transform into trophozoites in
the liver where they mature and divide to form thousands of
merozoites. The liver cells rupture releasing merozoites into
the circulation, thereby initiating the blood cycle. In this
phase, symptoms do not appear in the host. In the blood
cycle, the merozoites develop into trophozoites forming
schizonts. These, when ripe, lead to the rupture of RBCs
releasing merozoites that can re-infect other RBCs. This stage
of the cycle is associated with clinical symptoms. After a
period of asexual replication, some merozoites differentiate
into gametocytes and become infective to mosquitoes.(16)

The transmission dynamics is variable among human
groups belonging to different epidemiological strata, because
of the interaction of risk factors, including biological,
ecological, economic, sociocultural and public health. The
combination of these factors establishes different
transmission rates for the disease.(1)

Diagnosis
Routine laboratory diagnosis uses light microscopy of

thick blood smears, with the identification of parasites in
peripheral blood. Improvement of microscopy and the
introduction of biological stains that identify the species,
developmental stage, viability and quantification of parasites,
have made this test simple, rapid and satisfactory in terms of
its sensitivity and specificity.(17) However, the low sensitivity
of the technique to diagnose patients with low parasitemia
(common in asymptomatic carriers of malaria) and mixed
infections is under discussion.(18)

Since 1990, several studies have mentioned the
application of polymerase chain reaction (PCR) in the
molecular diagnosis of malaria for epidemiological surveys,
in screening of infected donors in blood banks, in the
identification of asymptomatic carriers of malaria and in the
monitoring therapeutic response.(19) Despite several
experiments showing that PCR is more sensitive than
microscopy and its use by some authors as the gold standard
in diagnosis, the employment of this technique under current
conditions requires more evidence, especially due to its high
cost and the sophisticated infrastructure needed for
implementation.(20)

New rapid methods that detect antigenic components
of Plasmodium, including immunochromatographic assays,
are being developed. Performed on nitrocellulose strips
containing monoclonal antibodies against specific antigens
of the parasite, the sensitivity of the test is above 95% and
comparable to thick smears with parasitemia of more than 100
parasites/µL. Although the tests available today specifically
differentiate P. falciparum and other species, they are not
able to diagnose mixed malaria. Because of their convenience
and simplicity, they are useful for screening and even
diagnostic confirmation, especially in situations where the
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processing of a thick blood smears is complicated, such as in
remote areas with difficult access to healthcare services and
in regions with low incidence.(13)

Treatment
Treatment is by a combination of chloroquine (blood

schizonticide) and primaquine, the drug of choice to eliminate
hypnozoites. Because of its oxidizing character, primaquine
can induce severe hemolytic anemia, even at the conventional
dose of 0.25 mg/kg/day, but only in patients with glucose-6-
phosphate dehydrogenase deficiency (G6PD).(21)

The regimen using primaquine adopted by the National
Health Foundation for the rapid treatment of malaria due to
P. vivax infection was over fourteen days. Although effective,
this extended regimen can explain the high number of cases
of noncompliance and thus the appearance of relapse.(22)

Duffy blood group antigens

Brief history
In 1950 Cutbush, Mollison and Parkin(23) discovered

anti-Fya, by detecting an agglutinin in the serum of a
multitransfused hemophiliac patient that was not recognized
as a blood group antigen. This antibody was named anti-Fya,
after the patient in question, Mr. Duffy; the antibody reacted
with 64.9% of 205 blood samples from unrelated English
individuals. The following year, Ikin et al.(24) described the
anti-Fyb antibody that defined the antithetical pair to Fya. In
1955, Sanger, Race, and Jack(25) observed that the Fy(a-b-)
phenotype was rare in Caucasians but was the most common
in African-Americans and probably represented a product of
a silent allele, FY.

Biochemistry
The Duffy blood group antigen was identified on the

surface of RBCs eliminating toxic excesses of circulating
chemokines, called DARC.(26) The determinant is a glycoprotein
that traverses the membrane seven times and includes an
extracellular epitope, N-terminal domain that mediates RBC
invasion by merozoites of  P. vivax.(27) The FY gene has two
exons (FYA and FYB) that are encoded by the codominant FYA
and FYB alleles, located on chromosome 1.(28,29)

FYA and FYB alleles differ by a single base substitution
at nucleotide 125. Such an amino acid substitution in the
amino-terminal domain of the protein is sufficient to define
the two antithetical antigens. This variation leads to the
identification of the Fy(a+b-), Fy(a-b+), Fy(a-b-) and Fy(a+b+)
phenotypes (Table 1).(30)

FYA and FYB alleles differ by a mutation in an
important transcription complementary DNA (cDNA) that
encodes glycine (FYA) or aspartic acid (FYB) at position
42 of the most important proteins encoded by exon 2. The
molecular mechanism that gives rise to the null Duffy
phenotype [Fy (a-b-)] has been classically associated with
a mutation in the Graphic Alignment Tool for Comparative
Sequence Analysis (GATA)-box of the DARC silent
promoter gene encoding the Duffy antigen system in RBCs
of these individuals, resulting in the FYB allele.(31-33)

It was demonstrated that Caucasian and African
descent blood donors in southeastern Brazil were
serologically Fy(b-) with the majority of African descents
presenting FYB with the GATA box single nucleotide
polymorphism (SNP), while the majority of Fy(b-) type
Caucasians presented FYB and 265 thymine/298 adenine
SNPs.(34) Fy(a-b-) RBCs are common in black African ethnic
groups but rare in many other populations.(35) In blacks it
was shown to be due to a mutation at position -33 (T>C) in
the promoter region of the FYB gene, the GATA-box.(31,36)

This change leads to a disruption in erythroid transcription
factor GATA-1, resulting in an absence of the Fyb antigen
expression only in RBCs without changing the expression of
this protein in other tissues. As a result, these individuals
may develop anti-Fya, but not anti-Fyb antibodies.(37) Most
individuals of West African and 68% of African-Americans
do not express Fya or Fyb in their RBCs, which results in
resistance to infection by P. vivax because RBCs with the
Fy(a-b-) phenotype cannot be invaded by this parasite.(25,31)

Epidemiology
The phenotype frequencies found in studies of blood

donors in São Paulo for antigens of the Duffy blood group
system were: the Fy(a+b-) phenotype in 19.8% of Caucasians
and in 14.0% of Blacks; the Fy(a+b+) phenotype in 41.4%
of Caucasians and in 1.6% of Blacks; the Fy(a-b+)
phenotype in 37.8% of Caucasians and in 17.5% of Blacks
and the Fy(a-b-) phenotype in 1.1% of Caucasians and in
66.9% Blacks (this phenotype is considered to be a marker
for Black individuals).  (Figure 1).(38)

Figure 1 – Phenotypes found for the Duffy blood group system in
blood donors of São Paulo. (Modified from Novaretti MC et al.(38))
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The Fya antigen is common among the Chinese, Japanese
and Melanesians, but uncommon among Black Africans.(39,40)

However, the Fyb antigen is more frequent in the Caucasian
population than in Asians and Blacks and the Fy(a-b-)
phenotype is extremely rare outside the black population.(41,42)

Relationship between Plasmodium vivax and
Duffy system antigens

History
The discussion about the role of the RBC antigens of

the Duffy system began in 1975 when Miller et al.(41)

suggested that the Fya or Fyb antigenic determinants could
be receptors for P. knowlesi and that resistance to the
invasion of this merozoite in Blacks was due to the Fy(a-b-)
phenotype. The strength of Fy(a-b-) against invasion by
P. knowlesi merozoites was demonstrated in vitro and
Barnwell et al.(43) confirmed this with P. vivax suggesting that
there was a natural selection of individuals with the FY gene
who do not produce Fya and Fyb.

Epidemiology
P. falciparum uses a series of receptors on the surface

of human RBCs to invade them, while P. vivax and P.
knowlesi depend on an interaction with the Fya or Fyb

antigens of the Duffy Blood Group System.(5,41,44,45) In Africa,
where the Fy(a-b-) phenotype has achieved stability in
different ethnic groups, the transmission of P. vivax is
uncommon.(46,47) In the Papua New Guinea population, carriers
of the Fy(a-b+) or Fy(a+b-) express half the level of Duffy
antigens on red blood cells compared to wild type
homozygotes and exhibit reduced susceptibility to blood
stage infection by P. vivax.(33,48) These observations suggest
that total or partial restriction to access Duffy antigen reduces
the ability of the parasite to invade new red blood cells and
thus this might inhibit parasitemia by P. vivax.(49)

P. vivax Duffy binding protein (PvDBP) is functionally
important in the invasion process of parasites in human
Duffy/DARC positive RBCs, and it has recently been
demonstrated that regions where malaria transmission rates
are low or medium, such as in inhabitants of the Brazilian
Amazon, this protein is naturally immunogenic.(50) In these
populations, the proportion of DBP Immunoglobulin G (IgG)
increased with exposure to malaria, reaching a peak in
individuals with prolonged exposure such as in residents of
endemic areas (> 15 years). This observation was later
confirmed in the Rondonia population, an malaria endemic
area where IgG1 and IgG3 DBP-specific antibodies were
identified.(51)

The populations of various ethnic regions of Thailand
and Indonesia were studied, and there was a high incidence
of the FYA allele (> 0.9) and the presence of a new phenotype,
Fy(a+weak b-), while these data were similar to those found in
previous phenotypic studies conducted in Southeast Asia
and Australasia. It is striking that Fy(a+weak b-) individuals

had FYA/FYA genotypes while Fy(a-b-) individuals had
FYA/FYA or FYA/FYB genotypes as seen by Polymerase
Chain Reaction-Restriction Fragment Lenght Polymorphism
(PCR-RFLP) using BanI and the Sty enzymes; the genetic
mechanisms that cause this phenotype have not been
determined. The implications of the presence of these
phenotypes are still unknown but it has been suggested that
in malaria endemic regions, there are defense mechanisms
against P. vivax infection distinct from those in African
descendents.(40)

Field observations in West Africa and Ethiopia have
established strong correlations between the absence or low
endemicity for P. vivax and the high prevalence of negative
FYA and FYB alleles.(47,52) In these populations in which
there is an African gene influence, four main phenotypes,
Fy(a+b-), Fy(a-b+), Fy(a+b+) and Fy(a-b-), have been
identified.(53) Thus, the Duffy blood group system is
considered one of the most interesting chromosomal loci to
assess the impact of natural selection in different geographic
regions.(54,55)

The Brazilian population has a great diversity in its
ethnic composition as a result of the hybridization of
numerous indigenous populations and immigrants from
Europe, Africa and Asia. Immigration was not uniform across
the country.(56,57) The differential distribution of Duffy
antigenic determinants among ethnic groups is a
characteristic feature of this blood group system. So this has
been used as a marker for ethnic composition, as well as an
indicator of population trends.(58)

Mechanism of action
In regards to merozoite invasion of RBCs, Aikawa et

al.(59) and Miller et al.(60) observed by electron microscopy
that the apical portion of the merozoite makes the first contact
with the RBC creating a small depression in the membrane.
This area begins to thicken and binds with the membrane of
the merozoite which then enters the red blood cell by
invagination. After the Plasmodium enters, this access closes.
This binding is crucial for parasite invasion. The presence of
one member of a large family of proteins bound to RBCs,
referred to as Duffy Binding Protein (DBP), is required to
mediate with the DARC as this antigen was identified as a
chemokine receptor.(2)

This critical binding occurs in the cysteine-rich domain
between the amino acids at positions 291 and 460 of region
II.(61) According to several observations, region II of the DBP
(DBPII) can be a critical target for protective immunity of the
host. Firstly, certain DBPII are highly polymorphic and appear
to be maintained by immune selection.(62-64) Secondly,
antibodies against DBPII found in populations of endemic
areas for P. vivax inhibit binding of COS-7 cells expressing
the DBPII ligand to DARC-positive RBCs.(65,66) Thirdly, the
high antibody levels against region II of P. knowlesi a
protein, a molecule that is 70% homologous to P. vivax DBP,
also mediates infections of human DARC-dependent RBCs
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and may inhibit invasion of human RBCs by P. knowlesi.(67)

P. vivax DBP is a 140-kDa protein that belongs to a
family homologous to Duffy DBL-EBP, located inside
organelles of merozoites of Plasmodium.(68) The similarity
between DBL-EBPs is most prominent in two conserved
cysteine-rich domains in regions II and VI. The binding
functional domains of DBL-EBP lie in region II, which for
P. vivax is DBP 330-amino acid and the critical residues of
map linking a central region of 170- amino acid including
cysteines 5-8.(61,69)

The gene encoding the P. vivax DBPII is highly
polymorphic and this diversity varies geographically from
region to region.(70,71) This polymorphism is consistent with
a high pressure on DBP selection and suggests that an allelic
variation functions as an immune evasion mechanism.(72,73)

DBP is likely to be exposed during the invasion,
therefore, it can become accessible to antibodies. Currently,
data on humoral immune response to DBP in the human
population is limited, and studies have been mainly restricted
to areas where malaria is highly endemic.(65,74,75)

Research on cytokines and their receptors converged
in the investigation of the antigens of the Duffy Blood
Group System, showing an important physiological role for
the alleles of this glycoprotein.(76) Horuk et al. showed in a
study of multispecific chemokine receptors in human RBCs,
that interleukin (IL)-8 minimally binds to Fy(a-b-) RBCs, that
monoclonal antibodies against Duffy antigens block the
binding of IL-8 to positive Duffy RBC antigens and that IL-
8 also prevented the binding and invasion of RBCs by P.
knowlesi. This led to several lines of evidence suggesting
that Duffy blood group antigens are receptors for
chemokines.(2)

It was also observed that if a mutation occurred in the
DARC promoter region of the gene in erythroid precursor
cells, this would prevent its expression in RBCs and complete
resistance to infection by P. vivax would occur.(5,31)

Immune response
It is believed that merozoite invasions seize organelle

protein until contact of merozoites with the target RBC
presumably as a mechanism to reduce the exposure of DBP
to immune inhibition.(77) At present, the data available on the
humoral immune response to DBP in human populations show
that anti-DBP antibodies increase with exposure to P. vivax
and that immune response, which includes antibody activity,
blocks adhesion of DBPII to its receptor on RBCs.(50,65,74,78)

The same antibodies that block DBPII-DARC also interact
inhibiting RBC invasion by P. vivax(49) which is the concept
that proves that the P. vivax Duffy Binding Protein antibody
(anti-PvDBP) can inhibit invasion of merozoites. It is notable,
that children living in endemic areas of P. vivax develop
inhibitory anti-DBP antibodies that seem to confer protection
against the blood infection stage.(79)

Over 90% of sub-Saharan Africans do not express
DARC, and as a result, P. vivax has limited distribution in this

region of Africa. Therefore, the BPD protein represents one
of the most promising antigens among the candidates to be
used in the production of vaccines against malaria, but little
is known about the immune response against this molecule.
However, host immune responses to P. vivax DBP appear to
play a key role in acquired immunity to P. vivax, due to their
essential role in the invasion of RBCs by merozoites. This
acquired immunity is probably partly due to the production
of anti-BPD antibodies that block it binding to receptors in
red blood cells. In support of this model, an increase in the
proportion of bonds and antibodies that recognize
recombinant Duffy Binding Protein (rDBP) was observed as
the age advanced, concomitant with a reduction in prevalence
and intensity of P. vivax infection.(80)

To better define potentially protective epitopes in the
critical link of DBPII, at least four dominant linear epitopes
were identified, two of which correspond to the
aforementioned T cell epitopes.(80) The accumulation of these
antibodies against linear epitopes is closely correlated with
the correct recognition of folded rDBPII antibodies.(66) This
suggests that antibodies directed to some of these linear
epitopes also recognize native DBP expressed on the surface
of merozoites.(75)

With current knowledge, the innate resistance to malaria
infections in humans has been attributed to the
polymorphisms of blood groups.(81)

Vaccine
The attempt to control malaria through the use of a

vaccine has been encouraged for years and today it is a
controversial and widely discussed topic. The development
of a vaccine is of great importance for infection control, since
resistance to drugs used in therapy is increasing around the
world as is the emergence of the vector's resistance to
insecticides.(82)

Several antigens of asexual blood forms of P. vivax are
considered potential components to include in a vaccine for
species-specific malaria.(83) Among these, the three best
characterized from the immune viewpoint are the merozoite
surface protein 1 (MSP-1),(84) DBP (66,85) and apical membrane
antigen 1 (AMA-1).(86)

MSP-1 is the best characterized protein in the blood
stage of Plasmodium. This antigen is an integral membrane
protein that appears to be linked to the merozoite surface
through Glycosylphosphatidylinositol anchors (GPI) and
is synthesized as a high molecular weight precursor (180 to
230 kDa) during the schizogony stage. After being
processed, the MSP-1 protein generates smaller fragments
of 19 kDa and 42 kDa which remain on the surface of the
parasite; these are essential for merozoite invasion.(87)

Several studies have shown that the P. vivax MSP-1
protein (PvMSP-1) is highly immunogenic in different regions
of the world including Korea,(88) Sri Lanka,(89) Colombia(90)

and Brazil.(91-94) Additionally, studies in BALB/c(90,93) and
nonhuman primate  immunization(90,95,96) performed with
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PvMSP-1 showed the presence of high levels of IgG
antibodies and anti-PvMSP-1. In addition, nonhuman
primates immunized with this protein showed a partial
protective immunity when tested with blood forms of the
parasite.(90,95,96)

Recently, PvMSP-1 has been tested in preclinical and
clinical studies, however, additional studies are needed to
identify the main fragment of this protein that is capable of
inducing a protective response.(97)

Despite the PvMSP-1 antigen being considered an
important candidate for the inoculation of the vaccine
against the asexual blood stage of the parasite,(84,96,98,99) other
studies have demonstrated that this protein shows
polymorphisms which certainly could compromise its
potential for this purpose.(89,100,101) Other proteins, also
associated with the merozoite surface such as MSP-3, MSP-4,
MSP-5 and MSP-9, have been identified and characterized as
potentially useful for vaccines(102-105) while some of these
have already been produced for studies as recombinant
proteins.(106,107)

DBP represents one of the most promising vaccine
candidate antigens against P. vivax infection.(78) This is
probably exposed on the surface of merozoites during
invasion of RBCs, which allows its binding to the receptor
and, importantly from the standpoint of a vaccine, makes it
accessible to antibodies in the serum. Although having great
importance as a candidate protein, there are some limitations
that have hindered its study such as its low abundance in
the parasite, low immunogenicity, as well as the limitations
for the in vitro cultivation of P. vivax.(74,75,108,109) With the
spread of drug resistance and with cases of P. vivax infection
increasing, more emphasis has been placed on developing a
vaccine against the malaria caused by P. vivax.(46) Residents
of a specific endemic area develop acquired immunity to
P. vivax over several years. The gradual acquisition of
immunity probably occurs because of the many antigenically
different strains of the parasite and/or weakly immunogenic
epitopes recognized by the host immune system.(110)

Although this molecule represents a good candidate
to be used in vaccine production, polymorphisms may be a
serious difficulty, and therefore probably conserved regions
within the protein should be used or multiple allelic forms of
the antigen should be incorporated. Understanding the
nature and origin of this polymorphism in Plasmodium
antigens is crucial for vaccine development.(72)

One of the goals to be achieved will be to determine
how the genetic diversity of parasites is related to vaccine
immunity, and thus the DBP antigen of P. vivax is a leading
candidate. To attain this goal, it is important to assess levels
of genetic diversity of DBP within and between populations
in different geographic regions and assess how this genetic
diversity is generated and maintained. Many factors can
contribute to the genetic diversity of the population with
malaria, especially mutations, intragenic recombination
(determined by the multiplicity of infection and transmission

intensity), natural selection, gene flow between different
regions and population size.(72)

The AMA-1 protein is a member of a family of molecules
expressed in micronemes of Plasmodium merozoites. This
protein is 83 kDa in P. falciparum and 66 kDa in the other
species and plays an important role in the invasion of RBCs in
the asexual blood stage. In addition, the AMA-1 protein is
also expressed in sporozoites, and seems to be involved in the
invasion of hepatocytes.(111) However, despite the importance
of this protein as a vaccine candidate antigen, few studies
have been conducted on its immune response. (97)

In experimental models using nonhuman primates, the
AMA-1 protein showed high immunogenicity.(86)

Subsequently, immuno-epidemiological studies conducted
in Korea(112) and Sri Lanka(89) showed that individuals with
positive stool examinations for P. vivax developed antibodies
against AMA-1. Similarly, in Brazil, the AMA-1 protein was
highly immunogenic in individuals from endemic areas during
natural infections and antibody levels increased depending
on exposure to malaria.(113,114)

Many studies have shown that the genetic diversity
of AMA-1 is variable between different regions of the world.
In highly endemic areas such as Papua New Guinea,(115) a
high polymorphism diversity was observed among different
isolates of the region, however in low endemic regions such
as Korea,(116) there was a low polymorphism diversity. In
Brazil, the MSP-1 protein has been shown to be highly
immunogenic in natural infections of individuals originating
from six different endemic malaria regions(113,114) with limited
polymorphism diversity(113) as observed in Korea.

In the last decade, research to produce a vaccine
received much investment.(117) RTS,S, the most advanced
vaccine in development, will cost $500 million in its next
phase.(118) In August 2006, the organization Malaria Vaccine
Technology Roadmap stipulated that its goal was to develop
a vaccine by 2015, which offered 50% protection against the
severe form of infection for at least one year. Today, however,
only one may achieve this goal, the RTS,S (project of the
Glaxo Smith Kline pharmaceutical industry in conjunction
with the Research Institute Walter Reed Army).(117) The
challenge of an effective vaccine against malaria is to develop
immunity against the etiologic agent, as the infection occurs
again and again and evolves to a chronic infection. Moreover,
existing knowledge about the complex host-parasite
interaction is still a major limitation in the development of
research.(82)

New perspectives for malaria vaccination arise with the
use of monoclonal antibodies (AcM). AcM are attractive tools
to assist in the identification of epitopes and mechanisms.
These antibodies show specificity to antigens in the asexual
blood stage of the parasite and also showed in vitro and in
vivo neutralizing capacity. Most specific AcM result from
hybridoma technology in mice, which makes their use
restrictive both for in vitro investigations and for studies
employing mice infected with common rodents species of
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Plasmodium. To meet this deficiency, a recent alternative is
the development of recombinant human antibodies
employing the use of genomic libraries, thus avoiding the
need for hybridomas or vaccines. This technology enables
the creation of monoclonal IgG antibodies specific to human
Plasmodium and recent work has demonstrated the
effectiveness of this methodology in in vitro and in vivo
models. This new approach also offers advantages, allowing
"molecular adjustments" to the specific antigens and
functional characteristics of antibodies produced in this
way.(82,119,120)

Conclusion

There have been significant advances in recent years
in studies on the relationship between human infestation
by pathogens of malaria antigens and the Duffy blood group
system. However much remains to be discovered and better
understood as, for example, the mechanisms that allow
interaction between Plasmodium and the Fya and Fyb

antigens. The intense polymorphism and different alleles
of the immuno-dominant region that produce potential
candidate antigens for use as inocula for the vaccine,
emphasize the need to better understand the relationship
between genetic and humoral immunity. Studies show that
PvDBP is equally or more promising than other protein
candidates for vaccine antigens; it is naturally immunogenic
in different populations of the Brazilian Amazon, the
antibody response is proportional to the length of individual
exposure to the parasite in areas of malaria transmission. A
major challenge to vaccine development is the specific
technical difficulties to cultivate in vitro in a continuous
and efficient process, although today, with a new
perspective in using monoclonal antibodies, the limitation
is not to be able to extrapolate the results to in vitro to in
vivo models. We believe that with the development of new
molecular and immunological technology, the challenges
can be overcome in a relatively short time thus allowing the
production of human vaccine against malaria, in order thus
to prevent an endemic disease that affects millions of people
in various regions of the world. We emphasize that an
additional difficulty in Brazil is the limited resources available
for research in this area.
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