
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, 2022;32: 2621–2634

https://doi.org/10.1093/cercor/bhab369
Advance Access Publication Date: 23 October 2021
Original Article

O R I G I N A L A R T I C L E

Translational Model of Cortical
Premotor-Motor Networks
Svenja L. Kreis1,†, Heiko J. Luhmann1,†, Dumitru Ciolac 2,3,
Sergiu Groppa2,† and Muthuraman Muthuraman 2,†

1Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz
D-55128, Germany, 2Section of Movement Disorders and Neurostimulation, Biomedical Statistics and
Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes
Gutenberg University Mainz, Mainz D-55131, Germany and 3Nicolae Testemitanu State University of Medicine
and Pharmacy, Chisinau MD-2001, Republic of Moldova

Address correspondence to Muthuraman Muthuraman, Biomedical Statistics and Multimodal Signal Processing Unit, Movement Disorders and
Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg
University, Langenbeckstr. 1, D-55131 Mainz, Germany. Email: mmuthura@uni-mainz.de

†They have contributed equally to this work

Abstract

Deciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory
transformations and elaborate robust translational models of movement disorders. In the proposed translational approach,
we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density
electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site
extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly
higher spectral power in β- and γ -bands in M1compared to PMC and similarly in mice CFA layers (L) 2/3 and 5 compared to
RFA. We found a strong functional β-band connectivity between PMC and M1 in humans and between CFA L6 and RFA L5 in
mice. We observed that in both humans and mice the direction of information flow mediated by β- and γ -band oscillations
was predominantly from PMC toward M1 and from RFA to CFA, respectively. Combining spectral power, functional and
effective connectivity, we revealed clear similarities between human PMC-M1 connections and mice RFA-CFA network. We
propose that reciprocal connectivity of mice RFA-CFA circuitry presents a suitable model for analysis of motor control and
physiological PMC-M1 functioning or pathological transformations within this network.

Key words: functional connectivity, motor control, physiological oscillations, premotor cortex, primary motor cortex,
translational study

Introduction
Movement disorders such as Parkinson’s disease (PD), tremor,
or dystonia are common neurological diseases associated
with substantial disability for patients. These conditions are
characterized by motor symptoms including bradykinesia,
tremor, rigidity, or postural instability that markedly impair
the patient’s mobility and life quality (Bloem et al. 2021;

Muthuraman et al. 2015). Impaired movement control emerges
from aberrant functioning of motor network circuitries (Muthu-
raman, Koirala, et al. 2018; Muthuraman, Raethjen, et al. 2018).
However, how these abnormal patterns arise and disrupt neural
networks at the cortical level is largely unknown. Therefore,
a more in-depth investigation of connectivity measurements
and the development of novel robust models is essential for
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advancing treatment opportunities for movement disorders.
The very first step to decipher these abnormal activity
patterns would be the development detailed framework of the
physiological connectivity within the premotor-motor network.

In humans, the function and connectivity between the pri-
mary motor cortex (M1) and premotor cortex (PMC) have been
addressed in several studies (Johansen-Berg et al. 2004; Groppa
et al. 2012; Groppa et al. 2012). The M1 cortex encodes the
force, direction, speed, and magnitude of voluntary movements
(Purves 2001). The PMC encodes motor action instructions asso-
ciated with a symbolic cue, localization of external stimuli, and
movement dynamics (Solopchuk et al. 2016). The interaction
between the PMC and the M1 is essential for linking external
stimuli (e.g., visual information) to goal-directed movements
(Münchau et al. 2002). The PMC has strong anatomical connec-
tions with M1 and is known to modulate neuronal activity in
the M1 cortex (Chouinard and Paus 2006; Groppa, Schlaak, et al.
2012; Groppa, Werner-Petroll, et al. 2012). We described by the
aid of multifocal stimulation a short latency facilitatory pathway
connecting the left dorsal PMC and the M1 hand area in humans
(Groppa, Schlaak, et al. 2012; Groppa, Werner-Petroll, et al. 2012).
Abnormal oscillatory responses and altered functional connec-
tivity within the motor network circuits, comprising the PMC
and M1 among others, have been evidenced in PD and dystonia
patients (Poston and Eidelberg 2012; Carmona et al. 2017).

In contrast to humans and non-human primates, available
data on the organization and connectivity of different areas of
the motor cortex in mice is scarce (Tennant et al. 2011). Mouse
models offer the possibility for a variety of genetic, pharmaco-
logical, or optogenetic manipulations as well as the opportunity
to analyze pathophysiological alterations on a cell- and cortical
layer-specific level, representing an extremely valuable tool for
research in the field of human movement disorders (Iderberg
et al. 2012; Morin et al. 2014; Baaske et al. 2020). Therefore, it is
essential to gain more detailed information on the connectivity
of the PMC-M1 network in mice.

Intracortical microstimulation studies have shown that the
forelimb representation of the mouse motor cortex is divided
into at least two functionally distinct areas—the rostral forelimb
area (RFA) and the caudal forelimb area (CFA) (Rouiller et al. 1993;
Tennant et al. 2011). The CFA is thought to be the equivalent of
the M1 cortex in the human brain and the RFA could be regarded
as the homolog of the PMC (Komiyama et al. 2010; Sul et al. 2011;
Brown and Teskey 2014).

Striking similarities in the effects of stimulation of the RFA
and CFA on motor performance suggest that both areas may
be part of a highly integrated computing unit (Saiki et al. 2014;
Morandell and Huber 2017). Both areas are activated during
skilled forelimb movements and are equally essential for the
execution of skilled limb movements (Brown and Teskey 2014;
Guo et al. 2015; Galiñanes et al. 2018). Currently, it is still unclear
how the RFA and CFA are functionally interconnected on the
level of layer-specific circuits. The frequency-specific connec-
tivity within the mouse motor cortex, especially between RFA
and CFA, is poorly understood. In contrast, in humans, neuronal
synchronization in the gamma frequency band is associated
with neural coding and plays a key role in the processing of infor-
mation in task-specific neuronal networks (Gray 1999; Buzsáki
and Schomburg 2015). Synchronization in the beta band within
the motor cortex coordinates the processing of sensorimotor
information (Athanasiou et al. 2018) and mediates the prepara-
tion and execution of movements (Pavlidou et al. 2014). In addi-
tion, electroencephalography (EEG) recordings from PD patients

showed that increased oscillatory activity in the beta frequency
band network is related to the severity of motor impairment
(Brown et al. 2001; Tinkhauser et al. 2017; Gonzalez-Escamilla
et al. 2020). Therefore, we focused our analysis on the activity in
the beta and gamma frequency bands in both mice and humans.

We developed a translational analytical framework to obtain
information on functional and effective connectivity between
layer (L) 2/3, 5, and 6 of the RFA and CFA in male C57BL6/N mice.

Functional connectivity is defined as statistical dependen-
cies among remote neurophysiological events. In this study
we use coherence analysis to analyze functional connectiv-
ity. In contrast to functional connectivity, effective connectivity
describes the direction of information flow between two regions.
We have measured the effective connectivity between RFA and
CFA in mice, PMC and M1 in humans by applying time-resolved
partial directed coherence (TPDC; Muthuraman, Raethjen, et al.
2018).

Using a combination of these methods on data recorded
in humans as well as in mice, we were able to build a con-
ceptual framework of the human PMC-M1 connectivity and
the mouse RFA-CFA network. We were able to compare the
functional and effective connectivity in the premotor-motor
network of humans to the findings on the RFA-CFA network
in mice. Within the statistical approach of predictive modeling,
we applied structural equation models (SEM) to the estimated
functional parameters namely spectral power, coherence, and
effective connectivity, and selected the models that best pre-
dicted spike units at the different topological layers for both
regions. We aimed to validate a causal relation between the
spike units and connectivity in these two motor regions in the
mouse motor cortex.

In this study, we addressed the following questions:

1. Can the human PMC and M1 areas be distinguished based
on their spectral power and how these two motor cortices
are functionally interconnected?

2. Are the two mouse motor cortex areas, the RFA and CFA,
electrophysiologically distinct areas?

3. What are the features of functional and effective connectivity
between the RFA and CFA?

4. Can the connectivity of the RFA-CFA network be used as a
valid model for the human PMC-M1 network?

By answering these questions, we aimed to validate the RFA-
CFA network in mice as a suitable model for research in human
movement disorders.

Methods
Healthy Human Subjects

In this study, 34 healthy subjects (age: 58 ± 9 years; nine females;
29 right-handed) were recruited. Participants were seated in
a comfortable chair in a slightly reclined position. Both fore-
arms were supported to the wrists by firm armrests. The EEG
recordings were performed at resting state of 10 min with eyes
closed.

EEG Recordings and MRI

The EEG was recorded with a high-density 256-channel
recording system (Magstim EGI), with Cz as reference at a
sampling rate of 5000 Hz. Data were analyzed offline. All
subjects underwent MRI using a 3 T MRI scanner (Siemens
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TrioTim) with a 32-channel head coil. This included whole-
brain high-resolution T1-weighted images using the MPRAGE
(magnetization-prepared 180◦ radio-frequency pulses and
rapid gradient-echo) sequence with repetition time = 1900 ms,
echo time = 2.52 ms, flip angle = 9, and voxel resolution of
1 × 1 × 1 mm3.

Processing of EEG Data and Source Analysis

Initially, EEG data were re-referenced to the common grand aver-
age reference of all channels. The raw data were low-pass fil-
tered (fourth-order Butterworth filter; cut-off frequency: 500 Hz)
to avoid aliasing, followed by high-pass filtering at 0.5 Hz. Then,
data were subjected to independent component analysis (Fas-
tICA) to remove components related to muscle activity, eye
blinks, eye movements, and line noise-artifacts. On average, 9 of
256 components [9 ± 3.4, mean ± standard deviation (SD) were
rejected (eye artifact: 5 ± 0.68; line noise: 2 ± 0.34; muscle arti-
facts: 2 ± 1.21]. Residual muscle artifacts were visually inspected,
removed, and interpolated with the cubic interpolation method.
Each recording was segmented into several 1-s epochs (L = 5000).
Depending on the length (N) of the recording and the quality of
the data, 240–260 1-s epochs (M) were used for analysis, such that
N = L∗M. To solve the EEG forward problem in source reconstruc-
tion, we estimated the volume conduction model and the lead-
field matrix (LFM) containing information about the geometry
and conductivity with the finite-element method (FEM) (Wolters
et al. 2007). Skin, skull, CSF, and gray and white matter sur-
faces were extracted from the individual anatomical T1-MPRAGE
scans, and individual electrode locations were used. A com-
plete protocol has been described previously (Muthuraman et al.
2010, 2012). A full outline of the beamformer linear constrained
minimum variance spatial filter is given elsewhere (van Veen
et al. 1997; Muthuraman,Raethjen, et al. 2018). The output of
the beamformer at a voxel in the brain can be defined as a
weighted sum of the output of all EEG channels. The frequency
components and their linear interactions are represented as
a cross-spectral density (CSD) matrix. To visualize power at a
given frequency range, we used a linear transformation based
on a constrained optimization problem, which acts as a spatial
filter (van Veen et al. 1997). The spatial filter assigned a specific
value of power to each voxel. For a given source the beamformer
weights for a location of interest are determined by the data
covariance matrix and the LFM. Voxel size was 2 mm, resulting
in 6676 voxels covering the entire brain.

The human M1 and PMC ROI’s were defined based on the
beamformer linear constrained minimum variance spatial filter.
The power at any given location in the brain can be computed
using a linear transformation which in our case is the spatial
filter. The spatial filter relates the underlying neural activity to
the electromagnetic field in the surface. The neural activity is
modeled as a current dipole or sum of current dipoles. The main
aim of the LCMV method is to design a bank of spatial filters that
attenuates signals from other locations and allows only signals
generated from a particular location in the brain.

For the beta (14–30 Hz) and gamma (31–100 Hz) bands, a
within-subject surrogate analysis was used to define the signif-
icance level in order to identify activated voxels in the M1 and
PMC. Their activity was then extracted from the source space for
further analysis. The source grand average from healthy subjects
in the beta frequency for the M1 and PMC regions is shown in
Figure 1A,B.

Figure 1. Reconstruction of recording area and spontaneous activity recorded in

human and mouse motor cortex. (A, B) Source grand average from all healthy
human subjects in the β-frequency band in the M1 (A) axial slices and the PMC
(B) is shown; (C, D) simultaneous recordings of spontaneous EEG signal in M1 (C,

blue) and PMC (D, yellow). Representation of a 60-s segment of raw data (on top)
and magnification of a 5-s segment (below); (E, F) Localization and configuration
of the MEAs for simultaneous recordings in the CFA (E) and RFA (F) of an adult
C57Bl6-N mouse in vivo. Left panels of (A) and (B) are adapted from Paxinos and

Franklin (2005), shaded areas indicating the CFA and RFA (Tennant et al. 2011);
right panels of (A) and (B) show Nissl staining; black dashed lines indicate layer
boundaries; I–VI indicate the layer number; white dashed lines indicate tracks
of the MEAs; (G–J) simultaneous recordings of spontaneous activity from layers

L2/3 (first and second trace), L5 (third, fourth trace), and L6 (fifth, sixth trace) of
CFA (G, blue) and RFA (H, yellow). Representative 60-s segments of LFPs (G, and
H) and MUA (bottom panel) were recorded simultaneously in RFA and CFA (top).
Lower traces show a 5-s segment at higher temporal resolution (I, J).

Rodents
Surgical Preparation and Electrophysiological
Recordings

For acute recordings, mice (age: 2–4 months, 24–32 g) were
anesthetized with 3% isoflurane and maintained under anes-
thesia with urethane (1 mg/g, i.p) and 1–2% isoflurane during
the surgery. Additionally, lidocaine gel was applied to the skin
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in the area of the incision before the surgery. The sufficient
depth of anesthesia for the operation (surgical tolerance stage)
was determined pre-operatively and intra-operatively by the
absence of the inter-toe reflex and the eyelid reflex. Eyes were
covered with eye ointment. The mice were placed on a heating
pad to prevent hypothermia during surgical preparation and
electrophysiological recording. After the mice were fixated with
a custom-made head holder and a suitable frame, a silver wire
was implanted into the cerebellum as a reference electrode.
Subsequently, a craniotomy was performed over the front paw
representation of the motor cortex without damaging the dura.
During recordings, breathing rate and presence or absence of the
pinch toe reflex were used as indicators of the anesthetic depth
during electrophysiological recordings.

We performed extracellular microelectrode array (MEA)
recordings in all layers of the RFA and CFA. For the recording,
32-channel MEAs with a 4-shank configuration (A4x8-A32,
Neuronexus; 200-μm distance between the shanks, 100-μm
vertical distance between contacts) were slowly inserted into
the RFA (2.5-mm AP, 1.2-mm ML) and CFA (0.5-mm AP, 0.8-mm
ML) to a maximum depth of 0.8–1 mm (coordinates were chosen
according to Tennant et al. 2011). After stabilization of the
neuronal signal, ∼30 min after electrode insertion, extracellular
signals were recorded for 10 min at 20 kHz with the ME2100
system (Multi Channel Systems).

Histology

The recording electrodes were coated with a fluorescent
lipophilic dye (DiI, D282, Invitrogen). After the experiment,
animals were deeply anesthetized with xylazine hydrochloride
(30 mg/kg) and transcranially perfused with cold 0.1-M phos-
phate buffer, followed by 4% paraformaldehyde (PFA). The brain
was removed and fixed in 4% PFA at 4 ◦C overnight. Histological
brain slices (200-μm thickness) were prepared using a freezing
microtome (Leica) and analyzed for traces of fluorescent DiI in
order to identify the exact location and depth of the electrodes.
Cresyl violet staining was performed to identify cortical layers
(Fig. 1E,F).

Data Analysis

Data analysis was performed using the FieldTrip toolbox (Oost-
enveld et al. 2011) and custom programs written in MATLAB
(version 2019b; Mathworks). The full sampling rate of 20 kHz
was used to analyze local field potential (LFP), spike detection,
sorting, and single unit (SU) analysis. Spectral power, coherence,
and TPDC results were split into different frequency bands
(delta = 0–3 Hz, theta = 4–7 Hz, alpha = 8–15 Hz, beta = 16–31 Hz,
low gamma = 32–49 Hz, medium gamma = 51–75 Hz, and high
gamma = 76–100 Hz).

LFP Power

The LFP power was calculated using multitaper frequency trans-
formation. First, the recorded signals were high-pass filtered at
0.1 Hz and low-pass filtered at 250 Hz. Additionally, 50-, 100-,
and 150-Hz notch filtering was applied to reduce 50-Hz noise.
The spectral power was calculated on 50-ms segments from 0.1
to 100 Hz with a step size of 0.25 Hz. The resulting spectra were
sorted according to the layer of recording, pooled for all animals,
and separated into different frequency bands.

Functional Connectivity Analysis

To analyze the functional connectivity between layers 2/3, 5, and
6 of RFA and CFA, we calculated the LFP coherence between every
pair of recording electrodes for each animal. First, the raw signal
was bandpass filtered at 0.5–250 Hz. The spectral coherence was
calculated for frequencies between 0.5 and 100 Hz with a step
size of 0.5 Hz. The resulting coherence was split into layers and
frequency bands and pooled for all animals. The significance
was tested by a within-subject surrogate analysis, in which
the surrogates were estimated by a Monte Carlo random per-
mutation 100 times shuffling of 500-ms segments within each
subject. The surrogates possess the same mean, variance, and
histogram distribution as the original signal, but any temporal
structure is destroyed.

Effective Connectivity

Spike Sorting
Spike detection and sorting was performed using WaveClus 3
(Quian Quiroga et al. 2018). The continuously recorded wide-
band signals were high-pass filtered (0.3–3 kHz). Spike detection
was performed in each channel independently using amplitude
thresholding in the negative range. The threshold level was set
independently for each channel as 5 times the SD of the signal.
Peaks that exceeded 30 SD of the noise level were considered
to be an artifact and excluded. When a threshold crossing was
detected, all sampled amplitude values from this channel in the
time range from −0.5 to +3 ms relative to the negative peak were
extracted. Feature extraction uses a selection of wavelet coef-
ficients chosen with a Kolmogorov Smirnov test of Normality
(Quiroga et al. 2004). Super-paramagnetic clustering (SPC) was
used to define SU clusters. The SPC is based on simulated inter-
actions between each data point and its K-nearest neighbors;
the method is implemented as a Monte Carlo iteration of a Potts
model (for detailed explanation see Quiroga et al. 2004). After
automated clustering, outliers were rejected from the SUs using
the FieldTrip toolbox. Finally, the quality of the SU was analyzed
using the MLIB toolbox (Stüttgen 2020). Incomplete separated or
unstable SUs were excluded from the analysis.

Time-Resolved Partial Directed Coherence
Coherence only shows whether and to what extent two regions
are interconnected but does not indicate the direction of
information flow between the analyzed areas. Therefore, we
additionally used the time–frequency causality of TPDC, which
allows the analysis of not only certain frequency bands but also
the time dynamics and direction of causality at this frequency.
Significance was tested by means of time-reversal technique
(Haufe et al. 2013). We chose one channel per area, layer, and
animal, based on the highest theta power to TPDC analysis.
Thus, we analyzed the connectivity between three channels in
the RFA and three channels from the CFA. The LFP data were
downsampled to 200 Hz before applying the TPDC analysis
(Muthuraman, Raethjen, et al. 2018).

Statistical Analysis

Statistical analysis was performed in MATLAB (version R2019a,
Mathworks). We used an explorative approach to investigate
the region-, layer-, frequency-, and direction-specificity of the
neuronal signals. Linear mixed-effects models (LMM) were used
to identify significant effects. For the LMM results that showed
significant effects of specific factors, two-sampled t-tests were
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performed. All post-hoc tests have been Bonferroni corrected to
account for multiple comparisons (e.g., different layer combina-
tions or different frequency bands).

Structural Equation Modeling

The SEM analysis was performed in the SEM toolbox for MATLAB
(version R13a, Mathworks). The SEM represents a complex ana-
lytical tool that can determine the causal relationships between
the variables in a model-based approach. We applied several
models with the aim to predict the causal relations between
the effective connectivity and spike units. Initial models were
built with one mediator and step-by-step increased the com-
plexity with two mediators to attain a significant causal relation
between the input and output. We describe the structure of the
best two models as follows: in the first model, the relationship
between the TPDC connectivity (i.e., RFA L5 to CFA L2/3) and
spike SU (separately for RFA L5 and CFA L2/3) in the beta fre-
quency. The mediator one was coherence between RFA L5 and
L2/3 and the second mediator was separately power at RFA L5
and CFA L2/3. In the second model, the same structure was
used for the high gamma frequency. We tested the same model
structure for all the analyzed frequencies with all pair-wise layer
combinations.

We employed the Maximum Likelihood method of estima-
tion to fit the models. We used the Root Mean Square Error
of Approximation (RMSEA) index to improve the precision of
the model without increasing the bias (Kelley and Lai 2011).
The RMSEA index estimates lack of fit in a model compared
with a perfect model and therefore should be low. The RMSEA
index for all models was below 0.05, implying a very good fit
of the models. In all models, the Invariant under a Constant
Scaling (ICS) and ICS factor criteria should be close to zero,
indicating that models were appropriate for analysis. Finally, by
Akaike Information Criterion (AIC), the quality of each model
relative to other models was estimated, with smaller values
signifying a better fit of the model. The obtained AIC comparing
the models varied between 0.01 and 0.03 (good fit of the models).
The strength of associations between the variables in the models
was quantified by standardized coefficients (s), ranging from 0
(no association) to 1 (very strong association). P-values of α < 0.05
were considered statistically significant.

Study Approval

The study protocol was approved by the local ethics committee
of the Universitätsmedizin Mainz (#23177–07/G 14–1-080). All
subjects provided written informed consent before the proce-
dure. Animal experiments followed the European and German
national regulations (European Communities Council Directive,
86/609/ECC). In total, 16 C57BL6/N male mice were used.

Results
Properties of EEG Activity in the Human PMC and M1

First, we addressed the question of whether EEG recordings
from the human PMC and M1 differ in their spectral power and
how these two motor cortices are functionally interconnected in
healthy human subjects. To do so, we recorded and analyzed EEG
signals from the PMC and M1 regions from 34 healthy human
subjects (Fig. 1A–D).

We calculated the spectral power and then divided the results
into frequency bands (Fig. 2A) The EEG power was higher in M1

as compared with PMC and this difference was significant for
the α, β, and low-to-high γ -bands (all P < 0.05) (Fig. 2B).

Premotor-Motor Connectivity in Human Subjects

Next, we analyzed the functional connectivity between M1 and
PMC. We found significant coherence between M1 and PMC for
all frequency bands (Fig. 3). The coherence in the β frequency
band was significantly higher (P < 10−9) as compared with the
coherence in all other frequency bands.

These results show that PMC and M1 are highly intercon-
nected in a frequency-specific manner.

To analyze this connectivity in more detail, we calculated the
mean TPDC between the two areas. This method is used to gain
insights into the direction of information flows between PMC
and M1 (Fig. 4). We found that the TPDC is generally higher for
the direction from PMC toward M1. This difference in direction
of information flow was significant for the β and low-to-high γ

bands. The TPDC was highest in the β frequency band for the
direction from the PMC toward the M1.

These data demonstrate a strong bidirectional and frequency-
specific functional connectivity between PMC and M1 in
humans.

Premotor-Motor Network in the Mouse Motor Cortex

In order to validate the mouse motor cortex areas, the RFA and
CFA, as a suitable model for the human premotor-motor net-
work, we simultaneously recorded spontaneous neuronal activ-
ity in layers 2/3, 5, and 6 of RFA and CFA in lightly anesthetized
mice in vivo.

Spontaneous Activity in Mouse Motor Cortex

First, we addressed the question of whether RFA and CFA show
differences in their spontaneous neuronal activity. We recorded
10 min of spontaneous activity from layers 2/3, 5, and 6 of RFA
and CFA. The resulting data were analyzed and illustrated as
LFP (0.1–250 Hz) and multi-unit activity (MUA; 0.3–3 kHz). A 60-s
segment of LFP raw signal and the corresponding MUA activity
is shown in Figure 1G,H and below a 5-s segment in higher
magnification (Fig. 1I,J). Both LFP and MUA from RFA and CFA
contain periods of high activity separated by segments with
lower activity. The LFP signal showed strong similarities between
the layers. This similarity between the layers is also visible in the
MUA of RFA and CFA.

To further analyze the LPF signals, we calculated the spectral
power for layers 2/3, 5, and 6 of RFA and CFA. As in the analysis
of human data, the resulting power spectrum was then divided
into frequency bands for a more detailed analysis.

The LFPs in all layers of both motor regions showed a high
power at lower frequencies (Fig. 5). Similar to the human data
on PMC and M1, the strongest power was observed in the delta
frequency band. Alike to the results in the human motor cor-
tex (Fig. 2), we found that the LFP power in the β- and low-
to-high γ -bands was significantly higher in the CFA as com-
pared with the RFA (Fig. 5, Supplementary Table 1). These data
indicate that the RFA and the CFA are topologically separate
areas.

For the subsequent analysis of spontaneous activity, we used
threshold-based clustering to a total of 436 isolated SU from
16 animals. The mean SU firing rate did not show significant
differences in the firing rates between the different layers in RFA

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab369#supplementary-data


2626 Cerebral Cortex, 2022, Vol. 32, No. 12

Figure 2. Spectral power in M1 and PMC of human subjects. (A) Spectral power of spontaneous EEG recordings in M1 (blue) and PMC (yellow). (B) Boxplots of the spectral
power were separated into seven frequency bands for EEG activity recorded in M1 (blue) and PMC (yellow). Note the differences in scale between the frequency bands;
all plots show the mean and standard deviation of 34 healthy human subjects, each individual is represented by a dot; ∗ represents P < 0.05, ∗∗P < 0.001, ∗∗∗P < 0.0001.

Figure 3. Coherence between spontaneous EEG recordings in M1 and PMC. The coherence in the β-band was significantly higher when compared with the coherence

in all other bands (∗∗∗∗ represents P < 10–9). All boxplots show the mean and standard deviation of 34 healthy human subjects; each individual is represented by a dot.

and CFA (Supplementary Table 2). The number of SU was higher
in CFA (n = 302) as compared with RFA (n = 134). We detected a
much higher number of SU in L6 of CFA (154) as compared with
RFA and CFA L 2/3.

Functional Connectivity between RFA and CFA

Next, we addressed the question of whether and how the two
motor cortical areas, RFA and CFA, are functionally intercon-
nected in a frequency- and layer-specific manner. We analyzed

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab369#supplementary-data
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Figure 4. The TPDC connectivity between PMC and M1 of human subjects. Boxplots of TPDC separated into seven frequency bands for the direction PMC → M1 (green)

and M1 → PMC (blue); all plots show the mean and standard deviation of 34 healthy human subjects; each individual is represented by a dot; ∗∗ represents P < 0.001,
∗∗∗P < 0.0001.

the LFP coherence of spontaneous activity recorded in layers
2/3, 5, and 6 from RFA and CFA applying identical analysis tools
as for the analysis of the human EEG data. Then, we averaged
the resulting coherence across all 16 animals (Fig. 6). Our results
show significant coherence between RFA and CFA for all layer
combinations and frequency bands. The highest coherence was
observed in the β-frequency band between CFA layer 6 and RFA
layer 5 (0.7670 ± 0.1293, Supplementary Table 3). The coherence
in the β-band was significantly higher as compared with the
coherence in all other frequency bands (P < 10−12); this is in line
with our results on the connectivity between PMC and M1 in
humans (Fig. 3).

We used LMM to test for significant differences in LFP coher-
ence between the layer combinations of RFA and CFA. We found
significant differences in the β-frequency band between the
coherence of RFA L5 and L6 to all CFA layers (RFA L5: P = 3.85e−08;
RFA L6: P = 9.52e−05) and between CFA L5 and L6 to all RFA
layers on the resulting coherence (CFA L5: P = 0.0006, CFA L6:
P = 8.06e−08).

Comparable results were found in all frequency bands
(Supplementary Table 3). The coherence between RFA L5 and
L6 to CFA L6 was significantly higher than the coherence for
any other layer-combination in the δ- and θ-frequency bands.
These results indicate that both cortical regions are functionally
coupled in a layer-specific manner in all frequency bands.

Effective Connectivity between RFA and CFA

Next, we addressed the question of whether we can identify
a bidirectional connectivity between RFA and CFA using LFP
data. In addition to that, we asked whether we can identify
differences in the direction of information transmission. There-
fore, we performed TPDC to further quantify the direction of
connectivity between RFA and CFA based on the recorded LFP.
We calculated the mean TPDC for each layer combination and
frequency band for the direction from RFA toward CFA as well as
vice versa (Fig. 7). We found that the TPDC is generally slightly
higher for the direction from RFA toward CFA. We used LMM to
test for significant effects of the different layers from RFA and
CFA as well as for a possible effect of the direction of interaction
between the two areas. The LMM confirmed that the flow of
information is significantly higher from all RFA layers toward

CFA L2/3 in all frequency bands (Fig. 7). Significant differences
between the TPDC values for the direction from and toward CFA
L2/3 were confirmed using additional two-sample t-tests; the
resulting P-values are given in Supplementary Table 4. We could
show that the flow of information from RFA L6 to CFA L2/3 is
significantly higher in all frequency bands, as compared with
the opposite direction. The input from RFA L5 to CFA L2/3 was
significantly higher than the output from CFA L2/3 to RFA L5
in the δ (P = 0.0231), θ (P = 0.0332), low γ (P = 0.0465), medium γ

(P = 0.0399), and high γ (P = 0.0388) frequency bands. The flow
of information from RFA L2/3 to CFA L2/3 was significantly
higher in the θ (P = 0.0203), α (P = 0.0220), β (P = 0.0230), and high
γ (P = 0.0166) bands (Supplementary Table 5). This is in line with
our findings on the direction of connectivity from the PMC
toward M1 in the human motor cortex (Fig. 4).

These data confirmed a strong bidirectional connectivity
between all RFA and CFA layers. The transmission of infor-
mation was stronger from RFA toward CFA, especially for the
combination of all RFA layers toward CFA L2/3.

Structural Equation Modeling

Finally, we addressed the question of whether the SU activity
can be inferred based on the spectral measures of LFPs, which
were recorded from the mouse RFA and CFA.

The obtained fit indices in the SEM analysis implied a good fit
of the constructed models to the observed data, providing robust
causal relations between the parameters. In the first model, we
identified significant causal relations between the TPDC from
RFA L5 to CFA L2/3 as input and coherence between the RFA L5
to L2/3 (as the first mediator) and power separately at RFA L5
and L2/3 (as the second mediator) and SU in the RFA L5 (s = 0.75,
P < 0.01) and CFA L2/3 (s = 0.69, P < 0.01) in the beta frequency
(Fig. 8A). Moreover, in the high gamma frequency with the same
model structure, we were able to establish similar significant
causal relations between the TPDC and SU in the RFA L5 (s = 0.81,
P < 0.001) and CFA L2/3 (s = 0.75, P < 0.001) (Fig. 8B).

Discussion
In this study, we applied a combination of spectral power,
functional, and effective connectivity analysis on spontaneous

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab369#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab369#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab369#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab369#supplementary-data
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Figure 5. Spectral power in mice CFA and RFA. Spectral power of spontaneous LFP activity recorded in CFA (blue) and RFA (yellow). The LFP power spectrum for L2/3 (A),
L5 (B), and L6 (C) for 0–30 Hz of CFA (blue) and RFA (yellow). Inset figures show the corresponding spectrum for 0–100 Hz. (D) Boxplots of the spectral power separated
into seven frequency bands averaged across 16 mice. Each analyzed channel is represented by a dot; scale is different in every boxplot to visualize the differences

between RFA and CFA. ∗ represents P < 0.05, ∗∗P < 0.001.

neuronal activity recorded from PMC and M1 areas of healthy
human subjects as well as from RFA and CFA of wild-type mice.
Our data revealed strong similarities between human PMC-M1
functional connections and the RFA-CFA network in the mouse.
Our results attested significantly different spectral power
characteristics in the human PMC and M1 and strong functional
interconnections between these areas. The information flow

predominantly followed the direction from PMC toward M1 in
the β and low-to-high γ frequency bands. Similar to the results
obtained in humans, the mice data demonstrated that the two
motor areas, RFA and CFA, can be topologically characterized
by electrophysiological proxies. Alike PMC and M1, RFA and CFA
are functionally strongly interconnected and show layer- and
frequency-specific patterns of connectivity. The designed SEM
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Figure 6. Coherence in mice CFA and RFA layers. Comparison of LFP coherence between layers 2/3, 5, and 6 of RFA and CFA. Boxplots for the beta (A) and high gamma

(B) frequency bands averaged across 16 mice; each analyzed channel is represented by a dot.

model demonstrated significant causal relations between LFP
power, coherence, TPDC, and SU activity in RFA L5 to CFA L2/3.
Major differences in oscillatory activity between the premotor
and primary motor areas were found in the β and high γ -
frequency bands in both the human and mouse motor cortex
network. This indicates that these frequency bands can be used
as biomarkers for dysfunctions in the premotor-motor network.

The Resting-State PMC to M1 Connectivity
in Healthy Human Subjects

The significantly higher spectral power across frequencies in
the M1 compared with the PMC was to be expected as the
PMC is known to play an essential role in sensorimotor and
visiomotor integration during the action control (Chouinard and
Paus 2006). We further observed a high coherence between the
EEG signals recorded from the human PMC and M1 that was
the highest in the β-frequency band. Indeed, synchronization
in the β-frequency band was associated with the processing of
sensorimotor information during resting state (Engel and Fries
2010; Athanasiou et al. 2018). When we analyzed the direction of
information transmission between the PMC and M1 in humans
at rest, our results showed a strong bidirectional connectivity
between both areas. However, the information flow in β- and
low-to-high γ -frequency bands from the PMC toward the M1
was significantly stronger compared with the opposite direction,
confirming that the PMC strongly influences neural activity in
the M1 (Münchau et al. 2002; Chouinard et al. 2003; Chouinard
and Paus 2006).

In our previous work (Tamás et al. 2018) on healthy humans,
we analyzed the gamma synchronization at the beginning of
both a simple brisk and a combined movement, and during a
medium-strength isometric contraction, and showed that the

direction of information flow was from the M1 to the PMC during
hand movements. In contrast, in this study, we analyzed resting
state data without any active motor processing which could
explain the difference in connectivity.

Mouse Motor Cortical Areas RFA and the CFA
as a Model for Human Premotor-Motor Network

By employing MEAs, we recorded spontaneous activity simulta-
neously at multiple sites in layers 2/3, 5, and 6 of RFA and CFA
in lightly anesthetized adult C57Bl6-N mice. In addition to the
estimation of functional connectivity using LFP coherence, we
studied the direction and strength of the effective connectivity
by SU cross-correlations and TPDC. Our results demonstrated
that RFA and CFA are two functionally distinct cortical areas
that are highly interconnected and share common inputs from
other brain structures. All layers in both areas showed a strong
synchronization during spontaneous activity; however, synchro-
nization was the strongest between RFA L5 and CFA L2/3 in
β-and high γ -frequency bands. By analyzing the direction of
information transmission with TPDC, we identified the RFA as
the moderator of transmission.

These findings do not only contribute to a better under-
standing of the interactions in the premotor-motor network in
mice but also identified strong similarities between the mouse
RFA-CFA and the human PMC-M1 networks. This implies that
connectivity between the RFA and CFA might be a useful model
for the human premotor-motor network. Thereby, this study
fosters future research on movement disorders, such as PD
or Huntington disease, using mouse models. In our study, we
focused on the β- and high γ -frequency bands, since these
frequency bands are commonly used as biomarkers in the motor
cortex in rodent models for PD (Dupre et al. 2016).
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Figure 7. The TPDC connectivity between mice RFA and CFA. Layer-specific directionality of information flow between layers 2/3, 5, and 6 of RFA and CFA in β (A) and
high γ (B) bands. Boxplots of TPDC for the directions RFA → CFA (green) and CFA → RFA (blue); averaged across 16 animals. ∗ indicates significant effects of transmission
direction as identified by LMM.

Both the RFA and the CFA revealed the strongest spontaneous
activity in the delta and theta frequency range and decrease of
spectral power from α- over β- to the γ -frequency band. The
power was higher in CFA compared with RFA, being in concor-
dance with our results on spectral power differences between
the human PMC and M1. The recorded higher mean firing rate of
SU in the RFA compared with the firing rate in the CFA suggests
that these two are electrophysiologically distinct areas.

Our data show a strong LFP synchronization between all layer
combinations of RFA and CFA in a wide range of frequencies.
The highest coherence was observed in the β-band between the
RFA L5 and L6, and CFA L6. These results corroborate previous
studies showing anatomical connections between all RFA and
CFA layers (Rouiller et al. 1993; Hira et al. 2013). Hira et al. (2013)
showed extensive anatomical connections between deeper lay-
ers of RFA and CFA. Although the mouse data were measured in
the anesthetized state, the coherence between RFA and CFA was
comparable to the coherence between PMC and M1 in humans,
being significantly higher in the β-band as compared with the
other frequency bands.

Similar to the human data, we found reciprocal interactions
in all pairs of layer combinations between the RFA and CFA,
which is consistent with previous studies (Rouiller et al. 1993;
Harrison et al. 2012; Hira et al. 2013; Bukhari et al. 2018). Alike in
humans, the flow of information was stronger from RFA toward
CFA for all layer combinations. This difference in transmission
strength was significant in all frequency bands for interactions
between all RFA layers to CFA layer 2/3. Taken together, our
results indicate that RFA has a strong modulatory influence on
the neural activity of CFA and is supported by the findings of
Deffeyes et al. (2015), who applied intracortical microstimulation
techniques and found that RFA has a strong modulatory effect
on CFA activity.

Model Framework

To detect causal relations between the effective connectivity and
spike units, we applied SEM, which is a form of causal modeling
that fits networks of constructs to data. Our findings showed a
strong association between the effective connectivity between
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Figure 8. Structural equation modeling (SEM). Results from the SEM analysis for the β-frequency band (A) and the high γ -frequency band (B). Numbers in circles
represent standardized coefficients; gray lines and circles indicate the relationship between the individual parameters; red lines and circles indicate significant
coefficients of the overall performance of the model; ns stands for not significant, ∗∗ indicates P < 0.001, ∗∗∗ indicates P < 0.0001.

the L2/3 and L5 and SU in beta and high gamma frequency
bands. Finally, our model-based approach goes beyond the cor-
relation analysis and demonstrates that SEM can be applied to
layer-specific mice data to investigate the causal pathways that
mediate the connectivity between the two topologically distinct
motor regions.

Oscillations at β- and γ -Frequencies as Biomarker in
the Premotor-Motor Network

Neuronal oscillatory signals at different frequencies are known
to coordinate the time-locked information transfer across brain
regions and, thereby, promote physiological brain activity for
coordination of movements or cognitive functions. It is known
that alterations in the amplitude or coherence of gamma-band
oscillations are related to a variety of processes such as atten-
tion, multisensory and sensorimotor integration, and movement
preparation (Engel and Fries 2010). Synchronization in the β-
frequency band in the motor cortex is associated with the main-
tenance of the current body position without further movement
(Engel and Fries 2010). We found significant differences in power,
functional, and effective connectivity in the β- and high γ -
frequency bands both in the RFA-CFA network in mice and the
human PMC-M1 connections. These results demonstrate that β-

and high γ -frequency bands represent useful biomarkers for the
analysis of the premotor-motor network in humans and mice.

These results demonstrate strong similarities between the
mouse RFA-CFA network and the human PMC-M1 network. Our
results validate the mouse RFA-CFA network as a suitable model
for the analysis of premotor-motor connectivity in translational
research.

Limitations

Our analysis was performed at rest and captures only the PMC-
M1 (RFA-CFA) interactions at the resting state. Furthermore, we
did not analyze cortical–subcortical in this study. However, this
study does add detailed information on intracortical communi-
cation in the human PMC-M1 network as well as the mouse RFA-
CFA network, thereby validating the mouse RFA-CFA network as
a model for the human PMC-M1 network.

Our results on the RFA-CFA connectivity were performed in
lightly anesthetized mice, which lead to some degree of lim-
itations. Although our anesthesia protocol consisted of a low
dose of urethane application, the influence of even this light
anesthesia on our results should not be neglected and therefore
a direct translation of our results to the awake state is difficult.
We did, however, use anesthesia that brings conditions as close
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as possible to the nonanesthetized settings. A large number of
in vivo electrophysiological studies have shown that urethane is
the most suitable anesthetic for long recordings of spontaneous
electrical activity (Maggi and Meli 1986; Sceniak and Maciver
2006; Devonshire et al. 2010; Masamoto et al. 2012). Urethane
has the least impact on neuronal discharge patterns, neuro-
transmitter receptors, and synaptic interactions. The functional
connectivity under the urethane anesthesia is very similar to
the nonanesthetized state (Paasonen et al. 2018). Especially, the
cortical and thalamocortical connectivity is better preserved
during the urethane anesthesia as compared with other anes-
thetics (Paasonen et al. 2018). Since isoflurane (even at low
concentrations) strongly reduces the neuronal discharge pat-
terns, especially in the cortex, isoflurane was discontinued after
transferring the mice into the recording setup (at least 45 min
prior to the recording) to minimize anesthesia-induced side
effects on neural activity and functional connectivity (Williams
et al. 2010; Bukhari et al. 2018; Paasonen et al. 2018).

The intracortical connectivity shown here cannot be
explained by volume conduction artifacts alone. This can be
seen by the fact that we find the highest LFP power in the delta
and theta frequency bands, while the functional and effective
connectivity is strongest in the beta frequency band. This is in
line with our findings in the human PMC-M1 network.

In a simulation study, Haufe et al. (2013) showed that the
time reversal technique (TRT) is a suitable method to reduce
the influence of weak asymmetries (e.g., noncausal interactions
caused by delayed instantaneous connections [i.e., volume con-
duction]) on the outcome of a causal measure while preserving
or even enhancing the influence of strong asymmetries (e.g.,
time-delayed causal interactions not caused by volume con-
duction). Therefore, TRT was applied as a significance test to
the compounds already identified by TPDC. Accordingly, TPDC
asymmetries should be insensitive to contributions from vol-
ume conduction or other instantaneous interactions. Further-
more, our TPDC asymmetry calculation should be fully reversed
by applying TRT and therefore only sensitive to strong causal
interactions. In another study, TPDC was shown to be insensitive
to volume conduction (Joffe 2008). The control analysis was
performed by testing the analyses on data where we know the
ground truth through simulations. Such simulations can also
help in model-based studies in electrophysiology for functional
and effective connectivity. We have tested these methods exten-
sively on simulations of autoregressive processes in previous
work (Govindan et al. 2006; Muthuraman et al. 2015; Anwar et al.
2016).

In summary, our findings demonstrate a strong similarity in
spontaneous activity as well as functional connectivity between
the human PMC-M1 and mouse RFA-CFA. We have extensively
analyzed the properties of spontaneous activity in RFA and CFA
and assessed the functional and effective connectivity between
both areas in lightly anesthetized wild-type mice. Performing
simultaneous recordings at multiple brain regions, we demon-
strate that RFA and CFA are functionally distinct cortical areas.
We found that RFA and CFA are similar to human PMC and M1
and are highly interconnected and synchronized in the β- and
high γ -frequency bands in a layer-specific manner. We further
demonstrated that the flow of information, although bidirec-
tional, is significantly stronger from the premotor cortex toward
the primary motor cortex, both in humans and mice. Taken
together, our results clearly identify the RFA-CFA network as a
highly suitable mouse model for studying movement disorders
in humans.
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Supplementary material can be found at Cerebral Cortex online.
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