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Detecting breast cancer at early stages can be challenging. Traditional mammography and tissue microarray that have been studied
for early breast cancer detection and prediction have many drawbacks. Therefore, there is a need for more reliable diagnostic tools for
early detection of breast cancer due to a number of factors and challenges. In the paper, we presented a five-marker panel approach
based on SVM for early detection of breast cancer in peripheral blood and show how to use SVM to model the classification and
prediction problem of early detection of breast cancer in peripheral blood. We found that the five-marker panel can improve the
prediction performance (area under curve) in the testing data set from 0.5826 to 0.7879. Further pathway analysis showed that the
top four five-marker panels are associated with signaling, steroid hormones, metabolism, immune system, and hemostasis, which
are consistent with previous findings. Our prediction model can serve as a general model for multibiomarker panel discovery in

early detection of other cancers.

1. Introduction

Traditional methods mostly used for early detection have
been regular and periodic self-examination and annual or
biannual checkups using mammography and analysis of tis-
sue biopsies. But mammography as a screening tool for early
detection has many drawbacks. For example, mammography
may not detect small tumors and is often unsatisfactory for
younger women, who typically have dense breast tissue. And
if a patient does have a suspicious mammogram, a biopsy will
probably be done to make the diagnosis. Obtaining tissue bio-
psies can be difficult for several reasons, including small
size of lump, lack of available medical facilities, and patients’
reluctance to undergo invasive procedures due to scaring and
costs.

In recent years, functional genomics studies using DNA
microarrays have been shown effective in differentiating

between breast cancer tissues and normal tissues by mea-
suring thousands of differentially expressed genes simultane-
ously [1-3]. However, early cancer detection and treatment
are still challenging. One reason is that obtaining tissue
samples for microarray analysis can be still difficult. Another
reason is that the signatures of gene expression difference
between normal and cancer obtained in different studies are
not sufficiently reproducible or informative to be prognos-
tically useful, although they do give valuable insights into
the pathogenesis and biology of human tumor metastasis
[4]. Moreover, the fact that breast cancer is not a single
homogeneous disease but consists of multiple disease status,
each arising from a distinct molecular mechanism and having
a distinct clinical progression path [5, 6], makes the disease
difficult to detect in early stages.

To address these issues, a novel and minimally invasive
test that uses easily obtained peripheral blood for breast
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cancer detection has been developed [7, 8]. For exam-
ple, Sharma et al. used microarrays and nearest-shrunken-
centroid method to analyze the expression pattern of 1,368
genes in peripheral blood cells of 24 women with breast
cancer and 32 women with no sign of this disease. The
study found that a blood-based gene expression test can
be developed to detect breast cancer early in asymptomatic
patients [8]. Aarge et al. collected peripheral blood from 67
breast cancer samples and 63 normal samples, identified a
set of 738 differentially expressed probes, and achieved an
estimated prediction accuracy of 79.5% with a sensitivity of
80.6% and a specificity of 78.3% [7].

There is a need for more reliable diagnostic tools for
early detection of breast cancer in peripheral blood which
can achieve high prediction accuracy with as few genes
as possible and to reduce the required examination of a
large number of genes which increases the dimensionality,
computational complexity, and clinical cost of diagnosis [8].
Li estimated that five or six genes rather than 37 or 738 would
be sufficient for the early detection of breast cancer, based on
colon cancer, leukemia, and breast cancer [8]. Therefore, it is
desirable to adopt a “multimarker panel” concept and non-
trivial computational methods that can integrate microarray
measurement of multiple differential gene expression levels
between disease and controls to achieve good performance
for clinical genomic development of biomarkers [9].

Support vector machine (SVM) has several unique char-
acteristics as a research tool for prediction in cancer classi-
fication applications. One unique characteristic as a specific
type of learning algorithm is that it is characterized by the
capacity control of the decision function, the use of the
kernel functions, and the sparsity of the solution [10]. The
second unique characteristic of SVM is that it is established
on the unique theory of the structural risk minimization
principle to estimate a function by minimizing an upper
bound of the generalization error and therefore very resis-
tant to the overfitting problem, eventually achieving a high
generalization performance. The third unique characteristic
of SVM is that training SVM is equivalent to solving a
linearly constrained quadratic programming problem so that
the solution of SVM is always unique and globally optimal,
unlike neural networks training, which requires nonlinear
optimization with the danger of getting stuck at local min-
ima.

For classification and prediction of breast cancer samples,
these unique characteristics make SVM appealing as com-
pared with regression-based models or neural network as
seen in [11-13]. For example, Liu et al. used SVM to predict
the state of breast cancer and found that SVM outperformed
K-means cluster and artificial neural network [11]. Henneges
etal. applied oscillating search algorithm for feature selection
(OSAF) to iteratively improve features for training of Support
vector machines (SVM) to better predict breast cancer [12].
They selected 35 out of 51 nucleosides/ribosylated metabolites
in the urine of breast cancer women and controls by LC-
ITMS coupling for subsequent computational analyses, and
they identified 44 pairwise ratios of metabolite features by
iterative optimization of SVM. Liu et al. combined genetic
algorithm (GA) and all paired (AP) support vector machine
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TABLE 1: Statistics of samples.

#health #cancer #total
Training group 32 34 66
Testing group 31 33 64
Total 63 67 130

(SVM) methods to determine the predictive features for
multiclass breast cancer categorization [13].

There has not been any report until this study that
applied SVM to the development of multimarker panels for
early detection of breast cancer based on peripheral blood.
Based on a neural network approach to multibiomarker
panel development for LC/MS/MS proteomics profiles we
developed [14], we propose for the first time a multimarker
panel development solution for early detection of breast
cancer in peripheral blood by using a SVM and show how to
use SVM to model the classification and prediction problem
of early detection of breast cancer in peripheral blood.

2. Methods and Materials

2.1. Peripheral Blood Data Collection. The peripheral blood
data are publicly available through the GEO database with
the accession number GSE16443 [7] and were collected with
the purpose of determining the potential of gene expression
profiling of peripheral blood cells for early detection of
blood cancer. It consists of 130 samples with 67 cases and
63 controls. We downloaded the 130 samples which contain
32,879 probes. Then we randomly divided the 130 samples
into two groups: group A as a training group and group B
as a testing group (Table 1).

2.2. Normalization. Per sample normalization was per-
formed to normalize for staining intensity variations among
samples. All expression data on a sample were normalized to
the 50th percentile of log base 2 of all values on that sample.
First, log ratio base 2 transformation was used to transform
the data. And then for each probe the median of the log
summarized values from all the samples was calculated and
subtracted from each of the samples.

2.3. Linear Mixed Model. We used the ABI Human Genome
Survey Microarray Version 2 to manage and map probe IDs.
A full factorial model was used to represent the fixed effect
and the random effect which are used to account for group
and probe. The expression log ratios value is the final quantity
that is fit by a separate analysis of the variance (ANOVA)
statistical model for each probe as y;; using the following:

Yij=pu+Ti+S; + & (Y

where S; € N(0, af), gj € N(0,6?). Here, y is the mean
expression value, T; is the fixed group effect (caused by the
experimental conditions or treatments being evaluated), S;
is the random sample effect (random effects from either
individual biological samples or sample preparations), and ¢;;
is the within-groups errors. All random effects are assumed
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independent of each other and independent of the within-
groups errors &;.
2.4. Statistics. Statistical significance was measured by a
three-step method. First, we conducted the above linear
mixed model to obtain the P value of the significance for
the group effect. Then we calculated the FDR adjusted P
value. Last, we calculated the FDR g value using the Storey-
Tibshirani method [15]. We chose a significance screening fil-
ter (g < 0.01) to select genes of which we estimated significant
differences in the health and breast cancer samples.

2.5. Support Vector Machine Analysis. The classification prob-
lem of breast cancer can be restricted to consideration of the
two-class problem without loss of generality (breast cancer
and normal). We used a support vector machine- (SVM-)
based methods [16] to develop the classifier for breast cancer
from peripheral blood. And then we applied the classifier to
predict blind dataset of breast cancer from peripheral blood.

For the use of the support vector machine as an appro-
priate tool for prediction of the breast cancer, a three-way
data split is applied for training, validation, and testing. The
training set is used for learning to fit the parameters of the
classifier. The validation set is used to tune the parameters
of the classifier. And the testing set is used only to assess the
performance of the fully-trained classifier. We first randomly
split the data into two groups: group A (training group) and
group B (testing group), with roughly equal size. Then we use
the k-fold cross validation on the training group to find the
“optimal” parameters for the classifier. Group A is randomly
partitioned into k subsamples. For each subsample, a cross
section of the data is flagged for use as the validation set,and a
new model is created by training on the remaining data which
are the training set and not in the subsample. The cross vali-
dation process is then repeated k times (the folds), with each
of the k subsamples used exactly once as the validation data.
The k results from the folds then can be averaged to produce
a single estimation. The testing group is used as testing set.

We chose each combination of N (N = 5 for five-
marker panel) out of all the 42 genes differentially expressed
in the training group as inputs to the SVM. In order to find
the optimal classifier, we presented an optimization method
that measures the area under the curve (AUC) for receiver
operating characteristics (ROC). In this scheme, we first
train SVM for each combination in the training set with
5-fold cross validation. Then, we measured the AUC for
each combination in the validation set. Lastly, the optimal
combination C* was determined by

C" = argmax AUC (SVM, V), )
C

where AUC is the area under the ROC curve of SVM predic-
tion, SVM is the support vector machine, C is combination of
picking five out of the 42 genes, and V' is the validation set of
training group.

Fivefold cross validation was used to increase the number
of estimates and improve the accuracy of the prediction
model by avoiding the overfitting. In 5-fold cross validation,

the original sample is randomly partitioned into 5 subsam-
ples. Of the 5 subsamples, a single subsample is retained as
the validation data for testing the model, and the remaining
4 subsamples are used as training data. The cross validation
process is then repeated 5 times, with each of the 5 subsamples
used exactly once as the validation data. The 5 results from
the folds then can be averaged to produce a single estimation.
The advantage of this method over repeated random sub-
sampling is that all observations are used for both training
and validation, and each observation is used for validation
only once.

2.6. Pathway Analysis. The Integrated Pathway Analysis
Database (IPAD) (http://bioinfo.hsc.unt.edu/ipad/) [17] is
used for pathway analysis.

3. Results

We downloaded from the Gene Expression Omnibus (acces-
sion number GSE16443) [7] the 130 samples with 67 breast
cancer and 63 healthy women. After we randomly divided
the 130 samples into two groups, group A as training group
and group B as testing group (Tablel), we obtained 32
healthy samples and 34 cancer samples in the training set and
validation set and 31 healthy samples and 33 cancer samples
in the testing set.

We obtained 42 markers in the training group with
q value <0.01. No data from the testing set were utilized in (1)
identification of peripheral blood markers or (2) development
of the SVM model.

An SVM model with 5-fold cross validation was built on
all 42 markers in the training group. We obtained a high
performance (AUC = 1.0, precision = 94.4%, accuracy =
97.0%, sensitivity = 100.0%, and specificity = 93.8%) for
the training group but a low performance (AUC = 0.58,
precision = 58.3%, accuracy = 57.8%, sensitivity = 63.6%,
and specificity = 51.6%) for the testing group (Figure 1). The
result shows that using all markers as a predictor can improve
the prediction accuracy only for training group but not for
the testing group. Therefore, we constructed an SVM with 5-
fold cross validation for each combination of five out of 42
markers and trained with breast cancer cells in peripheral
blood derived from 34 women diagnosed with breast cancer
and 32 control women in the training group. The three-way
data split was applied for training, validation, and testing.
The optimal combinations were obtained by our optimization
model based on the training set and validation set in the
training group.

Training of the SVM was performed using radius basis
function (RBF) kernels function and five-fold cross valida-
tion. Receiver operating characteristic (ROC) curve and area
under curve (AUC) were calculated to help evaluating the
predictive performance of the SVM. We choose N = 5 for
five-marker panel because (1) our pilot study shows that five
markers can be enough to achieve a satisfied performance
for prediction and classification of cancer [14], (2) previous
papers from other labs estimated that five or six genes would
be sufficient for the early detection of breast cancer [18], and
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FIGURE 1: 42 biomarkers predicting the healthy and breast cancer samples in testing set. X-axis
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is the 42 biomarkers. Y -axis shows the 33

breast cancer and 31 healthy samples (H: healthy, blue; C: cancer, yellow).

(3) we expect to achieve high prediction accuracy for breast
cancer with as few genes/proteins as possible.

In order to validate our prediction method, we compared
the ROCs for the best four 5-marker panel predictions
determined by our method with the ROCs for four ran-
domly chosen 5-marker panels from 42 candidate biomarkers

(Figure 2). As shown in the Figure2, the top four best
predictions determined by our method (solid lines) have
better sensitivity-specificity-tradeoff performance than those
chosen randomly from 42 candidate biomarkers.

In Table 2, we show the best four five-marker panels
identified, using the SVM. Two genes, BCAR3 and LEFTY2,
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FIGURE 2: A comparison of best four 5-marker panel ROCs (solid
lines) and randomly chosen four (out of 42 candidates) 5-marker
ROC:s (dotted lines).

TABLE 2: Best four five-marker panels identified.

pancl Train;‘rg group Testi;;{‘;J %TOUP
Egiggé%;;ing, CACNGS6; 0.9053 0.7879
LEFIYYBCARS 091 e
DEFA3; LEFTY2; CACNGG6; 0.8897 0.7801

BCAR3; DGKD

are in common between the best four five-marker panels. Two
genes, CACNG6 and DEFA3, are shown three times, and two
genes, PCDHGAS and SCEL, are shown twice.

Pathway analysis shows that the pathways linked with the
best four five-marker panels are signaling, steroid hormones,
metabolism, immune system, and hemostasis (Table 3),
which are consistent with previous findings [7].

The confusion matrix and common performance metrics
for both the training group and testing group for the best five-
marker panel are shown in the Table 4. Although the final
accuracy is 68.75%, it can be considered as an improvement
if compared to the original accuracy 58.81%. In addition, the
AUC, a comprehensive measurement of sensitivity and speci-
ficity, is improved markedly from 0.5826 to 0.7879 (Figure 2
and Table 4).

We further evaluated our multimarker panel prediction
performance by comparing our results with prediction per-
formance in previously published findings. Sharma et al.

TABLE 3: Pathway analysis for the best four five-marker panels.

Pathway ID Pathway name Molecule
200071 Regulation of CDC42 activity BCAR3
hsa04260  Cardiac muscle contraction CACNG6
Arrhythmogenic right
hsa05412  ventricular cardiomyopathy CACNG6
(ARVC)
Hypertrophic cardiomyopath
hsa05410 (ﬁ’gM) P yopaty CACNG6
hsa05414  Dilated cardiomyopathy CACNG6
hsa04010  MAPK signaling pathway CACNG6
194002 Glucocorticoid biosynthesis CYP21A2
193993 Mineralocorticoid biosynthesis CYP21A2
211976 Endogenous sterols CYP21A2
209943 Steroid hormones CYP21A2
196071 Metal?olisr-n of steroid hormones CYP2IA2
and vitamins A and D
211897 Cytochrome P450, arranged by CYP21A2
substrate type
211945 Phase 1, functionalization of CYP21A2
compounds
211859 Biological oxidations CYP21A2
hsa00140  Steroid hormone biosynthesis CYP21A2
556833 I\./Ietaboli?m of lipids and CYP2IA2
lipoproteins
1430728 Metabolism CYP21A2
1462054 Alpha-defensins DEFA3
1461973 Defensins DEFA3
hsa05202 Transcriptional misregulation in DEFA3
cancer
168249 Innate immune system DEFA3
168256 Immune system DEFA3
114508 Effects of PIP2 hydrolysis DGKD
hsa00561  Glycerolipid metabolism DGKD
hsa04070 Phosphatidylinositol signaling DGKD
system
hsa00564  Glycerophospholipid metabolism DGKD
416476 G alpha (q) signalling events DGKD
388396 GPCR downstream signaling DGKD
372790 Signaling by GPCR DGKD
162582 Signal transduction DGKD
76002 Platelet a.ctivation, signaling, and DGKD; LEFTY2
aggregation
109582 Hemostasis DGKD; LEFTY2
Regulation of signaling b
33617 gnating by LEFTY2
1181150 Signaling by NODAL LEFTY2
114608 Platelet degranulation LEFTY2
76005 Respon.se to elevated platelet LEFTY?2
cytosolic Ca2+
hsa04350  TGF-beta signaling pathway LEFTY2
1266738 Developmental biology LEFTY2

identified a panel of 37 genes that permitted early detection
with the classification accuracy of 82% [8], and Aarge et al.
identified a set of 738 differentially expressed probes that
achieved an estimated prediction accuracy of 79.5% with a
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TABLE 4: Prediction result for the best 5-marker panel.
Predicted Training group Testing group
Cancer Normal Cancer Normal
Cancer 29 6 21 8
Normal 5 26 12 23
Precision 82.86% 72.41%
Accuracy 83.33% 68.75%
Sensitivity 85.29% 63.64%
Specificity 81.25% 74.19%

sensitivity of 80.6% and a specificity 0of78.3% [7]. Considering
that their methods were not applied to independent testing
group randomly separated from training group but used k-
fold cross validation where the original sample was randomly
partitioned into k subsamples and of the k subsamples, a
single subsample was retained as the validation data for test-
ing the model, and the remaining k — 1 subsamples were used
as training data, our prediction performance actually out-
performed them. When we applied an SVM and 5-fold cross
validation with our best 5-marker panel to the training group
of 34 women with breast cancer and 32 healthy women con-
trols, we obtained a higher performance than these previously
published findings (precision = 82.86%, accuracy = 83.33%,
sensitivity = 85.29%, and specificity = 81.25%, Table 4). We
believe that our approach is a significant success, considering
that we only used five gene markers in a panel to achieve the
prediction performance (AUC = 0.7879, precision = 72.41%,
accuracy = 68.75%, sensitivity = 63.64%, and specificity =
74.19%).

4. Discussions

In this study, we incorporate the use of a three-way data
split in combination with an enumeration method based on
SVM. It is a reasonably straightforward application of exist-
ing methods and achieves substantially higher prediction per-
formance. In our three-way data split, the testing set is used
for the purpose of independent testing only and the validation
set is used for tuning the parameters in the SVM training.
Splitting the data three ways to get training, validation, and
testing sets actually makes our approach very close to real
applications. We cannot always select markers based on test-
ing data because in most real applications the testing data
are blind or unknown pending for prediction. The prediction
performance of the testing set in a three-way data split can
actually reflect the outcome in a real application. The best
model selected from the training group may not produce
the best prediction performance in the testing data due to
the inconsistence between the training data and testing data.
However, our results show that the selected top models will
produce acceptable performance in the testing set, although
not best performance.

Although some other researches achieved higher perfor-
mance, for example, 82% by Sharma et al. [8] and 79.5% by
Aarge et al. [7], our prediction result outperforms theirs if
we use training group only (precision = 82.86%, accuracy
= 83.33%, sensitivity = 85.29%, and specificity = 81.25%,
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Table 4) as they did. Our prediction performance which is
more close to a real application is actually based on the testing
set which is totally blind to the training group (precision
= 72.41%, accuracy = 68.75%, sensitivity = 63.64%, and
specificity = 74.19%, Table 4).

One limitation of the three-way data split is the sample
size. If we split a small size sample into three ways, we would
end up with so little data in each set that our analysis would
lack any power. If we identify the inconsistence of prediction
performance between the validation set and testing set, we
can increase the size of training group (training set and
validation set) and decrease the size of testing set by simply
moving some samples in the testing set to the training group.

Since our approach enumerates all possible combinations
of 5 out of N markers, there is a limitation for the size of N
due to current computational capability. In our talon super-
computer, it would take about 1 hour to calculate all combina-
tions of 5 out of 32 markers and about two weeks to finish the
computation of picking 5 out of 100 markers. It is acceptable
for us to set the maximum of N to be 100 because in most
cases the top 100 markers can be both specific and sensitive
in understanding the treatment, diagnosis, and prognosis of
cancer and can be limited by setting a reasonable P value
threshold.

An ANOVA statistical model is used for identifying
differentially expressed genes between cancer and normal
samples. For a simple two-group comparison, we would get
the identical result if we were to compare the two groups
using ANOVA, t-test, or SAM. However, ANOVA is a much
more flexible and powerful technique that can be applied
to much more complex research issues with multiple factors
than the other two methods. For example, for the peripheral
blood data, we should take into account two factors: (1) the
fixed group effect (caused by the experimental conditions or
treatments being evaluated) and (2) the random sample effect
(random effects from either individual biological samples or
sample preparations). In this case, ANOVA method is more
efficient than multiple two-group studies analyzed via ¢-test
or SAM, because with fewer observations we can gain more
information.

In this work, we use the support vector machine (SVM)
for classification, which is in general believed to outperform
the other classification methods such as the logistic regression
(LR) and the artificial neural networks (ANN) [19, 20],
because the SVM prediction improves LR and ANN signifi-
cantly along the specificity axis [21]. However, we understand
that for special problems the ANN may still yield reasonable
results and that the conclusion that SVM outperforms ANN is
in general from a theoretical perspective and in particular for
the considered case study [22]. Therefore, we strongly suggest
that the tree-way data split method should be carried out for
this kind of comparison before we reach any conclusions.

5. Conclusions

We developed an integrated computational approach that
addressed a challenging multipanel biomarker development
problem in the early detection of breast cancer in peripheral
blood. The approach that we used combined simple statistical
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filtering of ANOVA with an optimization model of SVM.
The approach automatically learned nonlinear relationships
between features and outcomes to generate predictive mod-
els, which achieved AUC = 0.7879 performance with a sen-
sitivity of 63.64% and a specificity of 74.19% in the testing data
set of 33 women with breast cancer and 31 healthy women
controls. The SVM combined with the AUC optimization
method is capable of identifying the optimal combination of
multimarkers for performance comparable to that of conven-
tional medical decision support systems. We believe that this
computational approach works well with early detection of
breast cancer in peripheral blood and can provide general
guidance for future molecular medicine multimarker panel
discovery applications in other diseases. In the future, we
will follow up with biological experiments to validate these
biomarkers with our collaborators.

Conflict of Interests

All authors declare that there is no conflict of interests.

Authors’ Contribution

Renee Drabier conceived the initial work and designed the
method. Fan Zhang generated the datasets, developed the
statistics method, and performed the statistical analyses of
the case studies. Youping Deng validated markers for early
detection of breast cancer in peripheral blood. All authors are
involved in the drafting and revisions of the paper.

Acknowledgment

This work was supported by the bioinformatics program in
the University of North Texas Health Science Center.

References

[1] X.Hu,Y.Zhang, A. Zhang et al., “Comparative serum proteome
analysis of human lymph node negative/positive invasive ductal
carcinoma of the breast and benign breast disease controls
via label-free semiquantitative shotgun technology,” OMICS: A
Journal of Integrative Biology, vol. 13, no. 4, pp. 291-300, 2009.

[2] B. A. Zeidan, R. I. Cutress, N. Murray et al., “Proteomic ana-
lysis of archival breast cancer serum,” Cancer Genomics and Pro-
teomics, vol. 6, no. 3, pp. 141-148, 2009.

[3] A. Lebrecht, D. Boehm, M. Schmidt, H. Koelbl, R. L. Schwirz,
and E H. Grus, “Diagnosis of breast cancer by tear proteomic
pattern,” Cancer Genomics and Proteomics, vol. 6, no. 3, pp. 177-
182, 2009.

[4] M. Suzuki and D. Tarin, “Gene expression profiling of human
lymph node metastases and matched primary breast carcino-
mas: clinical implications,” Molecular Oncology, vol. 1, no. 2, pp.
172-180, 2007.

[5] K. Polyak, “Breast cancer: origins and evolution,” The Journal of
Clinical Investigation, vol. 117, no. 11, pp. 3155-3163, 2007.

E Zhangand]. Y. Chen, “Discovery of pathway biomarkers from
coupled proteomics and systems biology methods,” BMC Geno-
mics, vol. 11, supplement 2, article S12, 2010.

)

[7] J. Aarge, T. Lindahl, V. Dumeaux et al., “Gene expression pro-
filing of peripheral blood cells for early detection of breast
cancer,” Breast Cancer Research, vol. 12, no. 1, article R7, 2010.

[8] P. Sharma, N. S. Sahni, R. Tibshirani et al., “Early detection of
breast cancer based on gene-expression patterns in peripheral
blood cells,” Breast Cancer Research, vol. 7, no. 5, pp. R634-644,
2005.

A. Vlahou, C. Laronga, L. Wilson et al., “A novel approach
toward development of a rapid blood test for breast cancer,
Clinical Breast Cancer, vol. 4, no. 3, pp. 203-209, 2003.

[10] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks, vol. 10, no. 5, pp. 988-999,
1999.

[11] H. X. Liu, R. S. Zhang, F. Luan et al., “Diagnosing breast can-
cer based on support vector machines,” Journal of Chemical
Information and Computer Sciences, vol. 43, no. 3, pp. 900-907,
2003.

[12] C. Henneges, D. Bullinger, R. Fux et al., “Prediction of breast
cancer by profiling of urinary RNA metabolites using Support
Vector Machine-based feature selection,” BMC Cancer, vol. 9,
article 104, 2009.

[13] J.J. Liu, G. Cutler, W. Li et al., “Multiclass cancer classification
and biomarker discovery using GA-based algorithms,” Bioinfor-
matics, vol. 21, no. 11, pp. 2691-2697, 2005.

[14] F Zhang and J. Y. Chen, “A Neural network approach to multi-
biomarker panel development based on LC/MS/MS proteomics
profiles: a case study in breast cancer;” in Proceedings of the 22nd
IEEE International Symposium on Computer-Based Medical
Systems (CBMS "09), pp. 1-6, August 2009.

[15] J. D. Storey and R. Tibshirani, “Statistical significance for geno-
mewide studies,” Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 100, pp. 9440-9445,
2003.

[16] D. Meyer, E Leisch, and K. Hornik, “The support vector
machine under test,” Neurocomputing, vol. 55, no. 1-2, pp. 169-
186, 2003.

[17] E Zhangand R. Drabier, “IPAD: the integrated pathway analysis

database for systematic enrichment analysis,” BMC Bioinfor-

matics, vol. 13, supplement 15, article S7, 2012.

[9

[18] W.Li, “How many genes are needed for early detection of breast
cancer, based on gene expression patterns in peripheral blood
cells?” Breast Cancer Research, vol. 7, no. 5, p. E5, 2005.

[19] N. Cristianini and J. Shawe-Taylor, An Introduction to Sup-
port Vector Machines, Cambridge University Press, Cambridge,
Mass, USA, 2000.

[20] J. V. Tu, “Advantages and disadvantages of using artificial neural
networks versus logistic regression for predicting medical
outcomes,” Journal of Clinical Epidemiology, vol. 49, no. 11, pp.
1225-1231, 1996.

[21] E Dal Moro, A. Abate, G. R. G. Lanckriet et al., “A novel
approach for accurate prediction of spontaneous passage of
ureteral stones: support vector machines,” Kidney International,
vol. 69, no. 1, pp. 157-160, 2006.

[22] A. Abate, E Dal Moro, and G. R. G. Lanckriet, “Response to ‘sup-
port vector machines versus artificial neural network: who is the
winner?; Kidney International, vol. 71, no. 1, pp. 84-85, 2007.



