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a b s t r a c t

Electrostatic features are fundamental to protein functions and protein-protein interactions. Studying 
highly charged biomolecules is challenging given the heterogeneous distribution of the ionic cloud around 
such biomolecules. Here we report a new computational method, Hybridizing Ions Treatment-2 (HIT-2), 
which is used to model biomolecule-bound ions using the implicit solvation model. By modeling ions, HIT-2 
allows the user to calculate important electrostatic features of the biomolecules. HIT-2 applies an efficient 
algorithm to calculate the position of bound ions from molecular dynamics simulations. Modeling para
meters were optimized by machine learning methods from thousands of datasets. The optimized para
meters produced results with errors lower than 0.2 Å. The testing results on bound Ca2+ and Zn2+ in NAMD 
simulations also proved that HIT-2 can effectively identify bound ion types, numbers, and positions. Also, 
multiple tests performed on HIT-2 suggest the method can handle biomolecules that undergo remarkable 
conformational changes. HIT-2 can significantly improve electrostatic calculations for many problems in 
computational biophysics.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Electrostatic features are essential for the proper functioning of 
biomolecules because the electrostatic character of the molecule 
plays significant roles in biomolecular binding/repelling [1–3], ion 
transport [4], and structural stability [5]. Nevertheless, electrostatic 
calculation in silico is a challenging topic in computational bio
physics due to the presence of ions. Ions contribute to the com
plexity of the environment around biomolecules. Highly charged 
biomolecules, such as nucleic acids, globular proteins, and motor 
proteins tend to attract ions with opposite charges to balance the net 
charge in a local environment. The bound ions significantly affect 
electrostatic potential on biomolecular surfaces, which further in
fluences the interactions of this molecule with other molecules.

At present, there are two models that can handle ions and water 
surrounding biomolecules: the explicit solvent model and the im
plicit solvent model. The explicit model is widely applied in all-atom 
molecular dynamics (MD) simulations when the goal is to simulate 
ions and H2O (TIP3P [6], TIP4P [7]) explicitly—that is, with co
ordinates for each water and ion atom. The explicit model neu
tralizes highly charged biomolecules by adding unbalanced amounts 
of cations and anions in the modeled system. However, the elec
trostatic calculations by the explicit model may consider billions of 
atoms in hundreds of frames (each frame including the coordinates 
of the protein, water, and ions). This approach is extremely memory- 
intensive and time-consuming. Therefore, the implicit solvent model 
seems to be more suitable to handle ions and water surrounding 
biomolecules. Implicit solvent models include Poisson-Boltzmann 
(PB) model [8] and Generalized Born (GB) model [9]. In both models, 
the ionic environment of biomolecules is treated homogeneously by 
setting dielectric constants for biomolecules and solutions. The im
plicit method avoids the energy calculations for ions and water in 
solutions [10,11]. Compared with the explicit method, the implicit 
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model has the obvious advantage of accelerating electrostatic cal
culations on biomolecules. However, the homogeneous treatment of 
the solvent ignores local effects of bound ions. The homogenous 
solvent is not realistic in many situations—especially for highly 
charged biomolecules. In some cases, even though the net charge of 
a biomolecule is neutral, the charge distribution on the surface of the 
biomolecule is not. In detail, the interfaces between biomolecules 
are often highly charged, for binding or repelling other molecules. 
Those charged areas in biomolecules may cause nonhomogeneous 
ionic distribution. Overall, the homogeneous treatment of solutions 
has the limitation of ignoring this feature of highly charged bio
molecules.

To solve the above difficulties when treating highly charged 
biomolecules, we proposed a Hybridizing Ions Treatment (HIT) 
method [12,13] for representing ions in implicit solvation calcula
tions. HIT method adds explicitly bound ions into the implicit sol
vent model for the electrostatic calculation. The core idea behind 
this method is using the frames of MD simulations to calculate the 
position of bound ions via clustering. Compared with prediction 
methods by coordination numbers [14], geometries [15], or elec
trostatic potentials [11,16], HIT calculations are more reliable. This is 
because HIT uses the results from all-atom MD simulations to do 
calculations. Most popular MD programs, such as NAMD [17] and 
GROMACS [18], take the majority of intermolecular forces acting on a 
system, including Van der Waals (VDW) forces and electrostatic 
forces, into consideration. Nevertheless, the HIT method has diffi
culties handling biomolecules with significant movement. It also has 
trouble treating multi-component systems simultaneously. Overall, 
HIT worked well in previous test cases, but sometimes calculations 
were computationally expensive and program input was unfriendly 
for users.

Here we report HIT-2, a new version of the Hybridizing Ions 
Treatment method to combine bound ions and implicit solvent so
lutions for accurate electrostatic calculations. This method does not 
require the setting of a cube size or the type and number of bound 
ions, unlike the first version of HIT [12]. We observed two issues 
when we developed HIT at first stage: redundancy and incorrect 
calculation [12]. Redundancy means two or more calculated ion 
positions are close to one real position of bound ions while an in
correct calculation means the calculated position is far away (over 
5 Å) from the real position. Redundancy occurs because HIT cuts a 
binding site into several pieces equally or approximately equally, and 
then the two or more segments, which are treated as multiple 
binding sites. Because HIT only selected bound ions according to 
ranking of occupancy, redundancy further causes the last correct 
results to be abandoned. This results in incorrect calculations. In HIT- 
2, we applied an iteration technique to handle redundancy and in
correct calculations. Iteration ensures a binding site is fully en
compassed within a cube by increasing the cube size, so eliminating 
redundancy and subsequent incorrect calculations. Furthermore, we 
defined several independent parameters and prepared tools to train 
and test HIT-2 by machine learning methods.

Several machine learning methods were applied to optimize HIT- 
2 parameters. We developed a Random Ions Generation Tool (RIGT) 
to generate 3888 cases for parameter optimization via machine 
learning. To ensure the accuracy of ion distributions in RIGT, the 
Maxwell Boltzmann distribution was applied to simulate ionic dis
tributions. After classification and optimization, the best parameters 
were found and applied to test real datasets (real explicit MD si
mulations). We tested HIT-2 in proteins with bound Ca2+/Zn2+ to 
further validate the accuracy of the bound ions’ positions. Also, we 
applied HIT-2 on proteins and nucleic acids to validate the broad 
applicability. Moreover, we improved HIT-2 so that it is also able to 
handle biomolecules with significant conformational changes. Lastly, 
we applied HIT-2 to predict the binding position for signal ions 
(Ca2+) in troponins to exhibit the wide applicability of this method. 

The results showed it is a very promising tool in computational 
biophysics and related fields.

2. Methods

2.1. Dataset

2.1.1. Random ions training sets
A water box with ions simulation was prepared by NAMD [17] to 

observe the velocity distribution of ions. The velocity of ions in the x, 
y, and z directions was calculated in pm/ns (Å/0.01 ns) and fitted to a 
Maxwell Boltzmann distribution [19]. The Maxwell Boltzmann dis
tribution was first defined and used for describing particle speeds in 
idealized gases. Here we applied it to fit ions moving in solvation 
boxes.

= + +v v v vx y z
2 2 2

(1) 

Where the v is the ion’s speed and vx, vy, and vz is the speed com
ponent in the x, y, and z directions. The v conforms to a Chi-squared 
distribution while the vx, vy, and vz conform to a normal distribution. 
Here we took the unit of pm/ns as the ion’s speed in simulation. The 
result was applied for ion generation in the Random Ions Generation 
Tool (RIGT).

RIGT is the tool designed to generate abundant ionic simulations 
for HIT-2 testing. It can quickly generate a series of trajectories of 
ions’ simulation for a certain time. The ions trajectories were further 
combined by RIGT to generate an ionic cloud file (In PDB format). 
Here in our experiment, the solution was 150 mM NaCl. 10 Na+ and 
10 Cl- were trapped in a sphere with random diameters of 0–5 Å. 
Maxwell Boltzmann distribution was applied to the velocity of ions 
to better simulate each frame of the ionic cloud. Here, the interval is 
0.01 ns for saving frames of the ionic cloud. 54 datasets were gen
erated with random simulation times (0.05–40 ns).

2.1.2. Testing sets in MD simulations
A random ions testing set is solvated by a 150 Å × 150 Å × 150 Å 

solvation box with 150 mM NaCl with 10 K+ and 10 Cl- restrained to 
simulate the bound ions. Cysteine dioxygenase (PDB: 5L0S) [20] and 
Factor VIIa with bound Ca2+ (PDB: 5PB2) [21] were used for Ca2+ 

testing while insulin with bound Zn2+ (PDB: 1ZEH) [22] was used for 
Zn2+ testing. Moreover, DNA(PDB: 5J2M) [23] and RNA(PDB: 4TNA) 
[24] with bound ions are were also tested by HIT-2. The membrane 
protein BamA (PDB: 4K3B) [25] was simulated to include biomole
cules which exhibit marked conformational changes. Additionally, 
we also conducted actin filament simulations to further explore the 
potential ability of HIT-2 for the search of signal ions and corre
sponding binding sites. A piece of actin filament with troponins 
(PDB: 6KN8) [26] was chosen as the model for simulations. The 
missing loops in these structures were made up by Swiss-model 
[27]. The solvation was achieved by VMD [28]/CHARMM-GUI [29]
using TIP3P [6]. The membrane of BamA was constructed by the 
CHAMRMM-GUI membrane builder [30]. MD Simulations were 
performed on NAMD 2.12 [17]. The electrostatic potential was cal
culated by Delphi [10] using the CHARMM36m [31] forcefield while 
charges were assigned by pdb2pqr [32]. More details about the MD 
simulations and electrostatic calculations are included in the sup
porting information.

2.2. Algorithm

2.2.1. Preparation, solvation box cutting, and ion counting
After MD simulations, the relative positions of ions are calculated 

using the mass center of biomolecules in the corresponding frame. 
Then ions in all frames are aligned together by their relative posi
tions, forming an ionic cloud (Fig. 1: a and b). The cube size (the side 
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length of each cube) is initialized to 3 Å. Based on the initialized cube 
size, the ionic cloud is cut into several cubes (Fig. 1: c). The ions in 
each cube are counted to calculate the filling ratio (Eq. 1 and 
Fig. 1: d).

=R
n
nf

ic

f (2) 

Where the Rf represents the filling ratio, nic represents the number 
of ions in the corresponding cube, and the nf represents the number 
of frames.

2.2.2. Screening and ionic cloud updating
If the filling ratio is higher than a given threshold (filling ratio 

threshold), the corresponding cube is selected as a binding site, 
where the mass center is calculated by Eq. 2, representing the po
sition of the bound ion (Eq. 1). The ions in the selected cubes are 
then removed from the ionic cloud (Fig. 1e). Then the cube size in
creases by a given step size (Å). The step size means the increment of 
the cube size in iterations. The updated ionic cloud and cube size are 
further used in the iterations until the cube size is bigger than 10 Å. 
The filling ratio threshold and step size are important parameters to 
be optimized by machine learning methods.

=P
v

n
i

ic (3) 

Where the P represents the position of bound ions and the vi re
presents the positions of all ions in the selected cubes.

2.2.3. Structural alignment
After iterations of screening and ionic cloud updating, the posi

tions of bound ions are logged and aligned to the biomolecular 
structure in the target frame by Eq. 3. The output is the biomolecule 
with bound ions in PDB format in the target frame (nth frame 
decided by users).

= +P P Po b (4) 

Where the Po and Pb represent the output positions of bound ions 
and the mass center of the biomolecules.

2.3. Algorithm testing

Based on the RIGT, 54 simulation results (0.05–40 ns) are pre
pared for testing. In each dataset, HIT-2 applied different step sizes 
(0.05–1 Å) and filling ratio thresholds (0.5–0.99) for testing. In total, 
3888 cases were generated including the results generated by HIT-2. 
We define success and failure in the section below and for all suc
cessful cases, the error was calculated for further optimization.

2.4. Classification and optimization

First, we defined strict criteria for success to describe the results 
from HIT-2. These are two conditions: 1, the number of calculated 
bound cations/anions should be the same as the real bound cation/ 
anions; 2, the distance between each pair (calculated bound ion and 
real bound ion) should be smaller than 5 Å. If these conditions are 
not met, the result is a failure. To find what parameters (simulation 
time, step size, and filling ratio thresholds) lead to success, we ap
plied Logistic Regression (LR) [33], Classification and Regression Tree 
(CART) [34], Random Forest (RF) [35], and Artificial Neural Networks 
(ANN) [36] to address the binary classification problem (success/ 
failure). methods. The number of cases is 3888 with a train/test split 
of 0.7/0.3. For all successful cases with simulation time over 2 ns, we 
further tested the distance between our calculations and targets. The 
average distance of all pairs was measured and regarded as an 
average error for further analysis. The contributions made by si
mulation time, step size, and filling ratio thresholds to average error 
are analyzed. Additionally, the run time of HIT-2 is highly related to 
step size and simulation time so we also consider these criteria 
when determining optimal parameters. The run times of HIT-2 for 
different cases are also measured and compared with the average 
error for step size and simulation time optimization.

After classifications, quantitative analysis was applied to under
stand the relationship between error and related parameters. In 
successful cases, the number and type of calculated bound ions are 
same as that of real bound ions. Each cases includes 20 pairs of real 
bound ions and calculated bound ions. We consider the distance 
between the real and calculated ions as the error and calculate this 
value for the 20 pairs. The average error was plotted against simu
lation time, filling ratio and step size for quantitative analysis. 
Moreover, we also calculated the running time of HIT-2 to further 

Fig. 1. The flow chart and schematic graph of the algorithm. a. The flow chart of HIT-2. b. The preparation of the ionic cloud. C. The ionic cloud cutting partition step. D. The 
calculation of the filling ratio for each cube. E. Removing ions from the ionic cloud after binding site calculations and then increasing the cube size for the next iteration. In this 
diagram, the filling ratio threshold is set as 0.8. In e, the cubes with filling ratio higher 0.8 are regarded as binding sites and all ions in corresponding cubes will be removed from 
ionic cloud before the next iteration. The iterations will run until the cube size is bigger than 10 Å.
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optimize the parameters for users. The PC used for this optimization 
was a Dell-XPS with Intel I7 processor (i7–11700–2.5 GHz) and 16 GB 
memory.

3. Results

3.1. The workflow of HIT-2

HIT-2 involves 4 steps: preparation, ionic cloud cutting, 
screening, and position alignment (Fig. 1a). In the preparation step, 
the relative positions of all ions in all frames from MD simulations 
are calculated and combined into an ionic cloud (Fig. 1b). In the ionic 
cloud cutting step, the ionic cloud is cut into several cubes (Fig. 1c). 
Afterward, the ions are counted and divided by the number of 
frames to calculate the filling ratio of each cube (Fig. 1d). If the filling 
ratios are larger than the threshold (filling ratio threshold), those 
cubes are regarded as binding sites. The mass centers of the binding 
area are the positions of bound ions (Fig. 1e). The ions in the binding 
sites are removed from the ionic cloud before the next iteration. In 
the next iteration, the size of the cube is increased by the step size. In 
the alignment step, the positions of bound ions are calculated by the 
relative positions of bound ions and the mass center of biomolecules 
(Fig. 1a). The simulation time, the filling ratio threshold, and the step 
size are three crucial parameters affecting the results of HIT-2. We 
further optimized these parameters by employing several classifi
cation machine learning methods with different parameters.

3.2. Classification

HIT-2 requires certain conditions to find bound ions from simu
lations. The three parameters, including filling ratio, step size, and 
simulation times are set as inputs, and the success/failure is set as an 
output. Several machine learning methods were applied to obtain a 
better model to search the parameter space for successful results. 
Here, we define two very strict criteria for success: 1, the number of 
calculated bound cations/anions must be the same as the number of 
real bound cation/anions; 2, the distance between each pair (a cal
culated bound ion and the corresponding real bound ion) must be 
shorter than 5 Å.

Fig. 2a illustrates the ROC of Logistic Regression (LR) [33], Clas
sification and Regression Tree (CART) [34,37], Random Forest (RF) 
[35], and Artificial Neural Network (ANN) [36]. LR has an accuracy of 
84% with 0.83 Area Under the Curve (AUC) while the RF, CART, and 
ANN have high accuracy of around 95%. Among these methods, the 
ANN possesses the highest AUC (0.97) and the highest accuracy 
(95%). We further used the ANN model to predict the result from 
different input parameters (simulation time, filling ratio threshold, 
and step size). Millions of cases were generated by the ANN model to 
show the relationship between different parameters and results. 
Fig. 2b shows the predicted success rate by different filling ratio 
thresholds and simulation times. After the 5 ns simulation, the 
success rate for different filling ratio thresholds (≥0.55) is nearly 
100% (Fig. S2). The success rate is highly related to the simulation 
time. This is because ideal ionic clouds are formed when simulations 

Fig. 2. The comparison among several machine learning methods and the results generated by ANN. a. The ROC results of Logistic Regression, Random Forest, CART, and ANN. b. 
The success rate predicted by ANN with different filling ratio thresholds (step size = 0.05). c. The success rate predicted by ANN with different step sizes (The filling ratio is 1.00).
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reach equilibrium. The longer simulations produce more stable 
equilibria. Among different filling ratio thresholds, the thresholds of 
0.95 and 1.00 first reached a 100% success rate after 1 ns. Fig. 2c and 
S3 show the success rate predicted by ANN with different step sizes 
and simulation times. The step size is the increment of cube size in 
iterations. Intuitively, a smaller step size should lead to more accu
rate results. The result shows that when the step size is increased to 
1 Å, only 50% of calculations were correct (even when the simulation 
time is greater than 20 ns). With the decrease in step size, a higher 
success rate is achieved. When the step size is lower than 0.2 Å, there 
is no significant difference. Indeed, all simulations with a step size 
lower than 0.2 Å reached a near 100% success rate after 1 ns. In 
summary, for most simulations a filling ratio of 0.95 and step size of 
0.2 Å is enough to get a nearly 100% success rate after running 
for 1 ns.

3.3. Optimization

Due to the very strict criteria for success, the condition of success 
is enough for HIT-2 to get reliable results. However, we are inter
ested in improving HIT-2 performance as much as possible and we 
were not satisfied with “just success”. The error (distance between 
calculated bound ions and real bound ions) should be further 
quantified to optimize the parameters for users. The average error 
shown in Fig. 4 demonstrates how HIT-2 may still be improved. The 
relationship between the filling ratio threshold and average error is 
shown in Fig. 4a. The average error is decreased when filling ratio 
threshold increases. Average error reaches a minimum when the 
filling ratio threshold is 0.95. When the filling ratio is increased to 
0.99, error slightly increases. In the generated datasets, there is no 
escape or rebinding of ions in the binding sites. In this case, the ideal 
situation (equilibrium system) will cause the lowest error to appear 
at the point of filling ratio equal to 100%. However, in most cases, an 
equilibrium simulation cannot be practically achieved because such 
simulations are time-consuming. In our error analysis, the lowest 
value appeared when the filling ratio equaled 0.95. The filling ratio is 
approximately equal to the occurrence frequency of bound ions. In 
nature, bound ions sometimes are too mobile to be bound tightly, 
resulting in a frequency of occurrence lower than 100%. In this case, 
researchers can choose a better filling ratio for their studies. Ad
ditionally, testing with a range of filling ratio thresholds is also a 
good idea to distinguish the strength of different bound ions. With 
that said, we remark that the filling ratio should always be higher 
than 0.5; otherwise, a binding site would be treated as two binding 
sites and this would likely cause incorrect calculations [12].

Step size and simulation time are highly related to the accuracy 
and the running time of HIT-2. With a decrease in step size, the 
average error linearly decreased until 0.01 Å at the point of step size 
= 0.2 Å. When the step size is lower than 0.2 Å, the average error 
begins to increase (Fig. 3b). This is because the screening step (Al
gorithm section) may count several free ions or miss several bound 
ions from the ionic cloud. A small step size (< 0.2 Å) leads to more 
screening iterations and may cover more unrelated ions into con
sideration, causing the bias. This error can be reduced by performing 
long MD simulations. Moreover, a smaller step size also requires 
calculations be performed for many small cubes which significantly 
increases the computational cost of HIT-2. From Fig. 3b., we see that 
when step size is lower than 0.2 Å, the run time increase from 3 min 
to a maximum of 10 min (Fig. 3b). Therefore, the 0.2 Å step size is the 
best choice for most users. By contrast, after 5 ns, longer simulation 
contributes less to error minimization. The average error decreases 
with an increase of simulation time (Fig. 3c). The simulation time 
and the HIT-2 run time are linearly related because simulation time 
is equivalent to the number of frames, which affects the preparation 
of the ionic cloud (Algorithm section). Compared to the filling ratio 
and step sizes, the simulation time is not that highly related to error 

minimization. However, simulation time is highly related to the 
success rate, which is fundamental to error minimization. So at least 
5 ns simulations with a frequency of less than 10,000 fs/frame are 
suggested to get accurate results.

The heat map showing average error against simulation time and 
filling ratio is shown in Fig. 3d. Simulations longer than 30 ns have 
an average error lower than 0.02 Å. The average error decreases 
dramatically with when the filling ratio increases because the ions in 
the dataset are 100% bound. Overall, the highest average error is 
0.03 Å, which means the average error for any pair is lower than 
0.6 Å (0.03 Å x 20 = 0.6 Å, all error happened at a bound ion) if the 
calculation succeeds. Also, we observe that the presence of red peaks 
diminishes with an increase in simulation time. Additionally, at 
higher simulation times, the error decreases more smoothly with an 
increase in the filling ratio. Thus, longer simulations can reduce the 
standard deviations for average errors, making the results more re
liable.

3.4. Testing and application

In the random ions simulations from NAMD, 10 Na+ and 10 Cl- are 
restrained to simulate bound ions. The calculations by HIT-2 tested 
the ionic cloud from 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 ns. The com
parison between calculations and targets is shown in Fig. S4. No
tably, from 0.5 ns onward, the calculations from HIT-2 are successful. 
We further analyzed the average errors and the associated standard 
deviations (Fig. 4a). We observe the errors and standard deviations 
decreased with the increase in simulation time. These results are 
consistent with the above analysis, further proving the accuracy of 
HIT-2.

In X-ray crystallography experiments, ions are co-crystalized 
with a macromolecule and are thus resolved as a part of the struc
ture. For our tests, we chose the X-ray structure from the PDB bank 
(5L0S [20], 5PB2 [21], and 1ZEH [22]) to do accuracy testing for HIT-2 
to determine the positions of Ca2+ and Zn2+. The errors associated 
with our predictions for Ca2+ are 3.26 Å and 0.88 Å (Fig. 4bc) and 
those for Zn2+ are 0.18 Å and 1.26 Å (Fig. 8 A). All calculations are 
successful (error < 5 Å), but the error exceeds our expectations. The 
main reason is that the binding area may be bigger than the training 
sets, causing the bound ions to have a wider active region. In addi
tion to this result, we observe HIT-2 also works for other biomole
cules, including DNA/RNA (Fig. S5) and biomolecules with significant 
conformational changes (Fig. S6). In short, without inputting the 
number and name of bound ions, HIT-2 directly found the correct 
number and positions of the ions with an error lower than 4 Å for 
various in vitro systems.

We further colored the surface of 1ZEH by electrostatic potential 
(Fig. 4e-g), with and without bound ions. The binding sites without 
bound Zn2+ are negatively charged (Fig. 8e). In vitro, the bound Zn2+ 

imparted a positively charge to the surface of the protein (Fig. 4 f). 
Similarly, with HIT-2, the bound calculated Zn2+ also applied a po
sitive charge (Fig. 4 g).

Some bound ions such as Ca2+ also play vital roles in intracellular 
signaling, such as muscle contractions. Here we simulate with a 
piece of actin-filament with a troponin complex (including troponin 
I, troponin C, and troponin T), globular-actins (G-actin), and tropo
myosin. Three bound calcium ions (Fig. 4 h) were found by HIT-2 
with two of these being located inside the G-actins and tropomyosin 
and the other attached to the troponin. These results are consistent 
with previous studies that show troponin is a receptor for calcium 
ions [38]. Moreover, the calcium is not only bound to troponin but 
also attached to the whole actin filament. The conformational 
changes of the actin filament could be affected by the coverage of 
calcium ions on the actin filament. It requires further deep analysis 
and experimental support.
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4. Discussion

Bound ions are crucial for the function of highly charged bio
molecules. The current implicit solvation model has many limita
tions when applied to highly charged biomolecules. To solve this 

problem, our previous work, HIT, was developed, and works by hy
bridizing bound ions with the implicit solvent model to improve 
electrostatic calculations.

Because the clustering algorithm in our previous version of HIT is 
computationally expensive, we sought to make improvements. Here, 

Fig. 3. The average error and running time plotted against filling ratio, step size, and simulation time. a. The average error against the filling ratio. b. The run time and average 
error against the step size (the filling ratio is 0.99). c. The run time and average error against simulation time (the step size is 0.2 Å). d. The heat map of average error with different 
filling ratio thresholds and simulation times (the step size is 0.05 Å).

Fig. 4. Tests and applications of HIT-2. a. The results from the NAMD testing set (average error is the average distance among 20 pairs of calculated bound cations/anions). b. The 
calculated and real bound Ca2+ in protein (PDB: 5L0S). c. The calculated and real bound Ca2+ in protein (PDB: 5PB2). d. The results from bound Zn2+ testing for the protein (PDB: 
1ZEH) e. The electrostatic surface without bound ions. f. The electrostatic surface with real bound ions. g. The electrostatic surface with calculated bound ions. h. The structure of 
the actin filament with bound calcium ions was produced by HIT-2.

S. Sun, H. Xu, Y. Xie et al. Computational and Structural Biotechnology Journal 21 (2023) 1383–1389

1388



we abandoned the clustering method in HIT and employed machine 
learning approaches in HIT-2. Also, the newest HIT-2 tool is more 
user-friendly by eliminating the need to specify cube size and the 
type and number of bound ions.

To validate our work, we tested HIT-2 on DNA, RNA, and mem
brane-bound proteins. Also, we showed HIT-2 can be applied to 
biomolecules that undergo significant conformational changes, and 
biomolecules with multiple components. Expectedly, our work 
shows HIT-2 can also be used for predicting the location of signal 
ions and associated receptors. Specifically, we demonstrated HIT-2 
can locate the position of Ca2+ in a troponin complex.

In conclusion, HIT-2 is useful for dealing with difficult biological 
problems that cannot be resolved by experimentation. However, 
there are some limitations of HIT-2. First, it performs very well in 
binary systems with one type of cation and one type of anion, but 
when multiple types of cations and anions are involved, the problem 
would require multiple uses of HIT-2. Second, while HIT-2 is able to 
handle the movement of biomolecules in simulations, it cannot 
handle rotations. The rotated biomolecules should be aligned first in 
VMD or other software before the use of HIT-2. In spite of these 
problems, HIT-2 is a useful tool for users who are studying highly 
charged biomolecular systems.
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