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Abstract

Modern soil mapping is characterised by the need to interpolate point referenced (geostatis-
tical) observations and the availability of large numbers of environmental characteristics for
consideration as covariates to aid this interpolation. Modelling tasks of this nature also
occur in other fields such as biogeography and environmental science. This analysis
employs the Least Angle Regression (LAR) algorithm for fitting Least Absolute Shrinkage
and Selection Operator (LASSO) penalized Multiple Linear Regressions models. This anal-
ysis demonstrates the efficiency of the LAR algorithm at selecting covariates to aid the inter-
polation of geostatistical soil carbon observations. Where an exhaustive search of the
models that could be constructed from 800 potential covariate terms and 60 observations
would be prohibitively demanding, LASSO variable selection is accomplished with trivial
computational investment.

1 Introduction

Global soils have been estimated to contain the largest pool of terrestrial organic carbon in the
biosphere, storing more carbon than all land plants and the atmosphere combined [1]. The
importance of the dynamic equilibrium between carbon in soils and carbon in the atmosphere
has been illustrated by such estimates as there having been 3.3 times the amount of carbon in
the atmosphere as CO,(g) present in global soils [2]. More than half of the global soil carbon
pool has been estimated to be comprised of organic compounds collectively referred to as soil
organic carbon (hereafter SOC) [2]. SOC may be depleted to as little as 25% of capacity when
natural ecosystems are converted into agricultural systems with the majority of this carbon lost
to the atmosphere as CO,(g) [2]. The contribution such SOC losses would have made to terres-
trial carbon dynamics may be appreciated in the context of the estimate that 34% of the global
land surface had been devoted to agriculture by 2007 [3]. Recharging SOC levels by
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sequestering CO,(g) in agricultural soils has been demonstrated to provide direct benefits to
agriculture, in addition to providing an opportunity to partially offset anthropogenic green
house gas emissions [4]. Consequently, it is a key feature of national and international carbon
accounting endeavours.

The effort and cost associated with sampling SOC via laboratory analysis of soil core sam-
ples has led to a need to improve soil core sample based maps of SOC through statistical
modelling using more readily attainable environmental variables as covariates. Covariates are
also referred to as explanatory or independent variables. Improving predicted maps by using
environmental variables as covariates in the models that produce these maps is common in
modern soil carbon modelling [5-10]. S1 Table also summarizes some of the diversity of soil
carbon modelling studies that have been completed to date globally. Predicting quantitative
maps of soil characteristics from empirical data has been referred to as digital soil mapping
[11, 12]. This task has been characterized by limited numbers of geostatistical (spatial point ref-
erenced) observations of the response variable [12] (the variable a model predicts, also referred
to as the dependent variable) and much finer resolution geostatistical data and or full cover
areal data on diverse collections of environmental characteristics of potential relevance as
covariates for modelling the response, again see S1 Table for examples. As such, the methodo-
logical challenges of digital soil mapping bear marked similarities to those encountered in
other fields where a set of ‘ground truthed’ geostatistical or non-contiguous areal observations
(plots or quadrats) are sought to be interpolated with the aid of other environmental data avail-
able across the area on interest. Examples of this analysis task outside soil science include
modelling above ground biomass in forests [13] and semi-arid regions [14] along with species
distribution modelling and biogeography [15]. In each case a model is built from some collec-
tion of environmental characteristics to interpolate and or extrapolate from a set of response
observations. Such modelling is often accompanied by two challenges. The first is spatial mis-
alignment of observations of different variables and or observations and the locations (or cov-
erage extents and resolutions) to which the response variable is to be interpolated. This
challenge is recognised in statistics and methods exist to address it [16, 17]. The second is the
availability of large numbers of potentially relevant covariates coupled with the belief that some
of these covariates will be more useful for predicting the response variable (soil carbon in this
study) than others. Selection of a subset of available covariates for use in a model is variously
referred to as variable selection and subset selection. This is a broad area of statistics that over-
laps with the area of machine learning concerned with finding sparse solutions to supervised
learning problems [18]. In this paper, spatial misalignment between different variables in the
data is addressed and the main focus is selection of a parsimonious subset of covariates to aid
interpolation of the response variable under an ultrahigh dimensional scenario (the scenario
where the number of covariates exceeds the number of observations [19]). This is achieved by
showcasing the performance of Least Absolute Shrinkage Selection Operator (LASSO) penal-
ized Multiple Linear Regression (MLR) models on data from a real world case study of soil
core derived observations of %SOC across 137ha of agricultural land in New South Wales, Aus-
tralia. The remainder of the article is structured as follows. Section 2 describes the field site
along with the data collection, collation and spatial realignment for the case study. In Section 3
the motivation for the selection of LASSO variable selection is outlined and the key characteris-
tics of this method are summarized. Section 4 contains the results and discussion of the analysis
of the case study data. In Section 4, LASSO variable selection is compared to four popular vari-
able selection methods in terms of the set of covariates selected and the predictive performance
of the models selected. Section 4 also contains a description of fitting regression models using
covariates calculated from the spatial coordinates of the observations of the response variable
(spatial polynomial regressions) to the residuals from the environmental covariate based
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modelling for more precise interpolation of %SOC. The correction of predictions from the
covariate based modelling of the response variable with predictions from regression models fit-
ted to the residuals of this first round of modelling and production of a full cover predicted ras-
ter for %SOC is also described. Section 5 contains discussion of this work and promising
avenues for future research.

2 Data Collection & Preparation
2.1 Data Collection & Collation

The case study data were collected from a 137ha area of native pasture with remnant woody
vegetation on the Sustainable, Manageable, Accessible, Rural Technology (SMART) Farm of
the University of New England near Armidale, New South Wales, Australia. The 60 observa-
tions of the response variable, percentage soil organic carbon (%SOC), include 57 values less
than 2.55% while the remaining three values are 3.08%, 5.01% and 5.13%. The 63 environmen-
tal characteristics considered here as potential covariates are summarized in Table 1. The Digi-
tal Elevation Model (DEM) derived covariates (see Terrain and Hydrology metrics in Table 1)
were calculated with the System for Automated Geoscientific Analyses (SAGA software v2.1.0)
[20] and the rasters produced for each of these covariates were read into R [21] with the
‘RSAGA’ [22] package. The remaining raster covariates were read into R with the R package
‘raster’ [23]. Further details regarding the study site, field methodology and covariates are pro-
vided in Appendices A and B in S1 Appendices.

2.2 Spatial Realignment of Covariate and Response Observations

The data used in this analysis consists of two types of spatial data: point referenced data and
areal data [24]. Point referenced data are also referred to as geostatistical data [24]. The soil
core derived %SOC observations and the covariates observed via the All Terrain Vehicle
(ATV) survey (see Appendices A and B in S1 Appendices for more details on the ATV survey)
are examples of geostatistical data from the case study. The areal data utilized in this work con-
sists of observations of regular grids of rectangular pixels; such data are often referred to as ras-
ter data. The DEM derived covariates, the foliar projective cover layers and the y ray
radiometric survey data are all examples of raster data. The geostatistical observations of the
response variable are available at one set of spatial point locations over the study area while the
observations of the covariates available as geostatistical data are available at a separate set of
spatial point locations over the same area. Thus the geostatistical covariate observations are
spatially misaligned [17] from the geostatistical observations of the response variable. To
model the observations of the response variable with these spatially misaligned covariate obser-
vations the covariates must first be interpolated to the locations at which the response variable
was observed, thereby addressing a point to misaligned point class of change of support prob-
lem [16, 17]. There is also a change of support problem inherent in the use of the pixels of
covariate rasters to predict the geostatistical observations of the response variable. In the termi-
nology of Banerjee et al. [17] this involves a block to point class of change of support. Elegant
methods exist to address these change of support problems via hierarchical approaches to
regression (also referred to as multi-level modelling) [25]. As the primary objective in this
work is exploration of variable selection methods to aid interpolation, the simpler approach of
realigning the data to address the change of support problems encountered prior to conducting
variable selection has been adopted. As the majority of the covariate rasters for the case study
are derived from the 25m? resolution DEM, all covariates are realigned to square 25m by 25m
pixels centered on each observation of the response variable. Geostatistical covariates are inter-
polated to regularly spaced rectangular arrays of 100 by 100 points spanning these 25m by 25m
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Table 1. The 63 potential covariates.

Source Covariate Name Acronym
ATV Top of Pasture Surveys 12 covariates Soil Apparent Electrical Conductivity ECA
from each of February, May & November = 36 covariates Near InfraRed Reflectance NIR
Red Reflectance RED
Simple Ratio SR
Difference Vegetation Index DVI
Normalized Difference Vegetation Index NDVI
Soil Adjusted Vegetation Index SAVI
Non-Linear Vegetation Index NLVI
Modified Non-Linear Vegetation Index MNLVI
Modified Simple Ratio MSR
Transformed Vegetation Index TVI
Re-normalised Difference Vegetation Index RDVI
Terrain & Hydrology Metrics Calculated Catchment Area CatAr
from 25m? resolution DEM = 16 Covariates Catchment Height CatHe
Catchment Slope CatSlI
Cosine(Aspect) CosAsp
Elevation Elev
Slope Length Factor LSF
Plan Curvature PlanC
Profile Curvature ProfC
Sky View Factor SVF
Slope Sip
Stream Power Index SPI
Terrain Ruggedness Index TRI
Topographic Position Index TPI
Vector Terrain Ruggedness VTR
Visible Sky VS
Wetness Index Wi
Foliar Projective Cover Layers = 2 Covariates 2011 FPCI
2012 FPCII
Electromagnetic Channels = 6 Covariates 1to6 Magl—MagVI
y Radiometric Layers = 3 Covariates Potassium K
Thorium Th
Uranium U

doi:10.1371/journal.pone.0162489.1001

square pixels via thin plate splines with the R package ‘fields’ [26]. The covariate value accom-
panying each observation of the response variable is calculated as the mean of the covariates
values interpolated to the array centered on that observation of the response variable. The ras-
ter covariates are realigned to these 25m by 25m square pixels centered on each observation of
the response variable by a similar process. In this process, the values of raster covariates are
queried at these same rectangular arrays of 100 by 100 points that spanned the 25m by 25m
square pixels centred on each observation of the response variable. The realigned value of each
of these covariates to accompany each of the response observations is taken as the mean of the
values of the covariate across the array of points centered on that observation of the response

variable.
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3 Statistical Background
3.1 Choice of Modelling Method

A variety of statistical and machine learning techniques have been applied to soil carbon
modelling. Such techniques include ANOVA [27], multiple linear regression (MLR) [28], MLR
with stepwise variable selection [5, 29-32], MLR on the principal components of the covariate
observations [33], regression fitted by partial least squares [34], MLR with stepwise variable
selection within groups of the data identified via neural networks [35] and regression kriging
[7, 36]. Binary tree based methods applied to soil carbon modelling include Classification And
Regression Trees (CART) [37, 38], Random Forests [38] and CUBIST [8-10, 39, 40]. The
advantages and disadvantages of a range of statistical and machine learning techniques are
evaluated in terms of the objective of covariate assisted interpolation, associated computational
demands and appropriateness for application to data with the three defining characteristics of
the case study data: (1) more potential covariate terms than observations (ultrahigh dimension-
ality) (2) a high degree of collinearity among the potential covariate terms and (3) suspected
importance of non-linear effects of covariates and interactions of covariate effects. The MLR
based approaches considered include: ridge regression [41], LASSO modified MLR fitted via
quadratic programming [42], LASSO modified MLR fitted by the Least Angle Regression
(hereafter LAR) algorithm [43] and the Bayesian LASSO [44]. The CART based techniques
considered include: Bayesian CART [45], bagged regression trees [46], random forests [47],
boruta all relevant variable selection [48], boosted regression trees [49], cubist [50] (https://
www.rulequest.com/cubist-info.html) and Bayesian treed regression [51]. This evaluation is
summarised in Appendix C in S1 Appendices.

The case study analysis is conducted with LASSO modified MLR fitted via the LAR algo-
rithm. Model-averaging the predictions from the LASSO solutions obtained from LAR execu-
tions within a cross validation scheme yields an aggregate estimate in a manner similar to
random forests, bagged trees and boosted trees. A cross validation based approach also facili-
tates estimation of the shrinkage parameter for the LASSO fits (4 in Eq 1). The choice of LASSO
modified MLR allows the importance of covariate terms (linear, non-linear and interaction) to
be compared in terms of which have coefficients that are shrunk to zero and which are assigned
non-zero values. In contrast, whether the overall role of a covariate within the aggregated esti-
mate from random forests, bagged or boosted trees is closer to linear or non-linear (and if non-
linear what manner of non-linear) would be harder to judge from the results of such a fit. This
ease of interpretability of the LASSO modified MLR comes with the cost of having to recenter
and rescale (to mean zero and magnitude one) all covariates in each training set (a requirement
of the LAR algorithm [43]) and mirror those transformations on each associated validation set.
Whereas, such transformations are unnecessary for binary tree based techniques.

3.2 LASSO Variable Selection as a Special Case of PLS

Penalized Least Squares (PLS) coefficient estimates (8 in Eq 1) are calculated by identifying the
coefficient estimate vector that minimizes the sum of the residual sum of squares and the result
of applying some penalty function to the coefficients. Simple PLS estimates use the L, norm

»
Z| b j|}' of the coefficient vector # for some y > 0 as the penalty function so that

! R n P I
ﬁargpmin{z (yiﬁozxijﬁj)2+;“2|ﬁj|y}v Y >0 (1)
1 j=1 j=1

i=

where the tuning parameter A controls the degree to which f8 is shrunk towards the zero vector
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[52]. When y is set to 1, the solution to Eq 1 is the L, PLS estimate of B, also known as the Least
Absolute Shrinkage and Selection Operator (LASSO) [42]. When y is set to 2, the solution to Eq
1 is the L, PLS estimate of # which is referred to as a ridge regression estimate [41]. Other penal-
ized least squares techniques including adaptive LASSO [53], Smoothly Clipped Absolute Devia-
tion (SCAD) [54] and Minimax Concave Penalty (MCP) [55] are derived through use of more
complex penalty functions in place of the L, norm in Eq 1. Solving Eq 1 with y set to a value of 2
or less results in the values of some coefficients being estimated as zero exactly (how many
depends on the value of the tuning parameter 1) [52]. Since a coefficient estimate of zero is
equivalent to exclusion from the selected model such a solution effectively performs both vari-
able selection and shrinkage. As such, L, penalized estimation with y < 2 is applicable to the
case study where the number of potential covariates exceeds the number of observations (p > n).

The requirement for a computational solution to L; penalized estimation (stemming from
the presence of the absolute value in Eq 1) was originally addressed via relatively computation-
ally expensive quadratic programming [42] and has been addressed more recently by the com-
putationally efficient Least Angle Regression (LAR) algorithm [43]. From the PLS family of
techniques, L, penalized estimation has been selected for use in the case study analysis for
three reasons: 1)] suitability for variable selection and modelling with correlated covariates, 2)
suitability for variable selection in scenarios with p > #n, and 3) the computational efficiency of
the LAR algorithm [43].

The LAR algorithm has been designed such that covariates continue to be added to the
model until either the available degrees of freedom are exhausted or there are no covariates
outside the current model that have a correlation with the current residual vector greater in
magnitude than some user-specified threshold value. In the case of the LASSO modification of
the LAR algorithm, while steps of the algorithm may result in a covariate being removed from
the current model, the algorithm still proceeds to add and remove covariates from the current
model until either of the above criteria are met. Subsequently, the LAR algorithm (and the
LASSO variant thereof) returns a sequence of selected models from which it is necessary to
choose a parsimonious final model. Efron et al. [43] derive a C, style stopping criterion for the
LAR algorithm but note that this is most appropriate in scenarios with less potential covariates
than observations. Alternative stopping criteria, applicable to more general scenarios, also exist
[56] though cross validation is a popular approach for ultrahigh dimensional problems [57-
59]. Hence, a cross validation based approach to making the final selection from the sequence
of selected models produced by the LAR algorithm is adopted here. All analysis is conducted in
the R language and environment for statistical computing [21] and all graphics are produced
with the R package ‘ggplot2’ [60]. The data and R code associated with this work are provided
via a repository located at https://github.com/brfitzpatrick/larc.

4 Methods and Results
4.1 Comparison of Variable Selection Methods for MLR

LASSO variable selection is compared to the more generic variable selection methods: exhaus-
tive search, forward stepwise selection, backwards stepwise selection and sequential replace-
ment selection (also known as stepwise forwards-backwards variable selection) on the case
study data. Due to the complexity of interacting processes that may influence the formation,
distribution and loss of SOC across the study site, polynomial terms up to order four for each
covariate and all possible pairwise interactions of the covariates are considered. The full set of
potential covariates thus expands from 63 to 2205 potential covariate terms (63 * 4 + (6;) ).
With 60 observations of the response variable, if it were desired to explore all possible models
from an intercept only model up to those that used the available degrees of freedom, some
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60
Z () ~ 2.27 % 10" different models would need to be fitted and compared in an exhaus-
i=1

tive search. To reduce the number of covariates considered and thus the required breadth of
exhaustive search, the design matrix (the matrix of the covariate observations organised such
that the covariate observations associated with particular response observations form the rows
of the matrix and the observations of each covariate forms the columns of the matrix) is filtered
to ensure that no remaining pairs of covariates have correlation coefficients greater in magni-
tude than some critical value. Since the correlation of a potential covariate with the response
variable may be a poor indicator of the explanatory utility of this covariate in the presence of
other covariates, the selection of covariates to retain from highly correlated pairs of covariates
is based upon the spatial resolution at which each covariate is available. The motivation behind
this decision being an effort to optimise the spatial accuracy of the interpolation of the response
variable. For covariates with the same spatial resolution, the one derived from the simpler func-
tion of observed data is chosen, otherwise the choice is made at random. These criteria are dis-
cussed in more detail in Appendix D in S1 Appendices.

Filtering the design matrix to enforce a maximum correlation coefficient magnitude (hereaf-
ter MCCM) of 0.4 between remaining covariate pairs results in a design matrix with 27 covari-

ate terms. The branch-and-bound algorithm implemented in the ‘leaps’ package [61] requires
28
only a subset of the Z (*) ~ 2.68 x 10° models it is possible to construct from this design

i
i=1

matrix to be fitted in order to determine the optimal model that would be returned from a full
exhaustive search [62]. The objective of building models for interpolation of the response vari-
able motivated the decision to compare the results of the variable selection techniques trialed
in terms of the ability of the models selected to predict data held out from the fitting process.
These comparisons are conducted on 500 unique divisions of the data into training and valida-
tion sets in a cross validation scheme. This cross validation scheme uses training sets of 35
observations and validation sets of 25 observations. The selection of a training set size is dis-
cussed in Appendix E in S1 Appendices.

Training sets constructed from the design matrix composed of 27 covariate terms are sup-
plied to each of the variable selection methods (LASSO variable selection, forward selection,
backward selection, sequential replacement and exhaustive search variable selection). In each
case the final selection from the sequence of models returned is made to minimise the valida-
tion set element prediction error (here after VSEPE) sum of squares. The distributions of
VSEPE absolute values from each variable selection technique are summarized in Table 2.

Table 2. Summary statistics for the absolute values of validation set element prediction error (VSEPE) distributions from each variable selection
method conducted on design matrices filtered to enforce a maximum correlation coefficient magnitude between covariate pairs of 0.4 or 0.95 (|r| <
0.4 or |r| < 0.95). The final column contains the coefficient of determination (R?) values for the model-averaged predictions (MAP) from the models resulting
from the combinations of variable selection technique and design matrix filtering austerity specified by that row. LAR = Least Angle Regression Variable
Selection, Exh = Exhaustive Search Variable Selection, Seq = Sequential Replacement Variable Selection, Fwd = Forward Stepwise Variable Selection,
Bwd = Backward Stepwise Variable Selection, Min. = Minimum, 1st Qu. = First Quartile, 3rd Qu. = Third Quartile and Max. = Maximum.

VSEPE MAP
Method I < Min. 1st Qu. Median Mean 3rd Qu. Max. R?
LAR 0.95 1.332e-05 0.1482 0.3184 0.4744 0.5446 4.437 0.5963
LAR 0.40 1.097e-05 0.1517 0.3324 0.4776 0.5695 4.063 0.3666
Exh 0.40 5.571e-05 0.1644 0.3419 0.4964 0.5997 4.290 0.2882
Seq 0.40 5.571e-05 0.1677 0.3448 0.4960 0.6044 3.961 0.3055
Fwd 0.40 5.571e-05 0.1604 0.3392 0.4955 0.5994 4.063 0.3046
Bwd 0.40 1.036e-05 0.1654 0.3593 0.5053 0.6037 4.422 0.2382

doi:10.1371/journal.pone.0162489.t002
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When applied to these austerely filtered design matrices, all five variable selection techniques
yield very similar VSEPE distributions. The first three quarters of the ordered VSEPE absolute
values obtained from LASSO variable selection are slightly more compressed towards zero
than those from any other technique considered.

Given a collection of models, a model-averaged prediction of an observation is the average of
the predictions from each of these models of that observation. In this case the collection of mod-
els is comprised of the models selected for the 500 training sets and the averages computed are
weighted averages. Predictions from the 500 selected models (one per training set) are model-
averaged with weights inversely proportional to the prediction error sum of squares on the asso-
ciated validation sets. Taking 7 to index the 500 divisions of the data into training and validation
sets, the weights for model-averaging, W, are calculated following Eq 2. Here e, ; is the predic-
tion error of the j™ element of the i validation set where each validation set has v elements.

i=1 &2 .
E : i

=

The noticeable improvement in accuracy of the model-averaged predictions from the mod-
els selected by LAR is shown in the column of coefficient of determination values in Table 2.
Corresponding summary statistics for the absolute values of the VSEPE obtained from model
fitted to 800 term design matrices that result from using a much less stringent MCCM of 0.95
are also included in Table 2 along with the coefficient of determination for the associated
model-averaged predictions. Similar improvements, with greater magnitude, are observed
between the LAR selected models for the 27 covariate design matrices and the 800 covariate
design matrices as were observed between models selected by other variable selection tech-
niques and LAR selected models. These improvements come with an increased computational
cost, but application of the LAR algorithm to these expanded design matrices is still feasible
requiring 21 minutes on a mid range laptop computer run to completion on all 500 training
sets (an average of 2.52 seconds per training set). In contrast, exhaustive search variable selec-
tion on these expanded design matrices would be infeasible. The positive outliers in all the
VSEPE distributions are likely the result of the three positive outliers in the observations of the
response variable. When these are drawn as members of a validation set, models built from the
associated training set likely under-predict these values in the validation set.

The distributions of the numbers of covariates selected by each of the variable selection
methods from the 27 covariate design matrices are depicted in Fig 1. The LASSO method results
in intercept only models far less frequently and larger numbers of covariates per model more
frequently than the other techniques. The differences in predictive accuracy and numbers of
covariates selected per model, between the LASSO and the forwards stepwise OLS based method
may be explained in terms of the comparative theoretical properties of these algorithms. At each
step in the respective algorithms, both approaches choose the covariate most correlated with the
current residual vector for inclusion in the current model. However, LAR adds this new covari-
ate to the model in such a manner that the resulting prediction vector is equiangular between
the previous prediction vector and this new covariate vector and only proceeds along this new
prediction vector until some other covariate outside the current model is as correlated with the
current residual vector as the most recently added covariate before repeating this procedure.
Forwards selection, backwards stepwise variable selection and sequential replacement variable
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Fig 1. Histograms depicting the distribution of subset sizes selected by each variable selection technique applied to training sets constructed
from the 27 covariate design matrix. LAR = Least Angle Regression Variable Selection, Exh = Exhaustive Search Variable Selection, Seq = Sequential
Replacement Variable Selection, Fwd = Forward Stepwise Variable Selection, Bwd = Backward Stepwise Variable Selection, Min. = Minimum, 1st Qu. =
First Quartile, 3rd Qu. = Third Quartile and Max. = Maximum.

o

doi:10.1371/journal.pone.0162489.g001

selection lack this facility to compromise between the correlated covariates. Furthermore, the
differences between the results of LASSO variable selection and the exhaustive search variable
selection may well stem from exhaustive search variable selection using OLS model fitting while
the LASSO variable selection uses PLS based model fitting.

4.2 Frequently Selected Covariates

The numbers of the 500 selected models in which particular covariate terms occur can serve as
an indicator of the relative importance of these terms for predicting the observations of the
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Table 3. The 15 most frequently selected covariates from the LAR variable selection executions on
the 500 unique, 35 observation training sets constructed from the design matrix created by filtering
the full design matrix to enforce a maximum permitted correlation coefficient magnitude between
remaining covariates pairs of 0.95. The second column contains the frequencies with which the selected
covariates occurred in the 500 selected models. Accompanying each selected covariate in the final column
are the covariates from the full design matrix that had correlation coefficient magnitudes with the covariate in
question greater than 0.95 and thus were excluded from the design matrix supplied to the variable selection.
Colons denote interaction terms for the two covariate terms which the colon separates. Numeric superscripts
denote polynomial terms for the covariate indicated by the acronym. Acronyms are expanded in Table 1.

Covariate Freq | Correlated Covariates

ECA.Nov* 219 |-

LSF® 139 | SIp®, TRI®, LSF*, SIp*, TRI*

DVI.May 102 | SAVI.May, NLVI.May, MNLVI.May, RDVI.May

Wi 100 |-

ECA.Feb:Slp 95 ECA.Feb:TRI

Mag.ll:FPCI 95 -

SVF:Mag.lV 94 |-

Sip? 89 LSF:Slp, LSF:TRI, Slp:TRI, TRI:WI, TRI?

ECA.Feb:SR.May 88 ECA.Feb:NDVI.May, ECA.Feb:SAVI.May, ECA.Feb:MSR.May, ECA.Feb:
TVI.May, ECA.Feb:RDVI.May

LSF:SVF 82 LSF:VTR, SVF:Slp, SVF:TRI

ECA.Nov:DVI.Nov 78 ECA.Nov:MNLVI.Nov

Elev:SVF 76 -

ECA.Feb:DVI.Nov 74 ECA.Feb:MNLVI.Nov, ECA.Feb:RDVI.Nov

ECA.Nov® 73 -

ECA.Feb:Elev 72 -

doi:10.1371/journal.pone.0162489.t003

response variable. Table 3 lists the 15 most frequently selected terms from LAR variable selec-
tion on the 800 column design matrices. Table 3 also lists covariate terms from the 2205 col-
umn design matrix which were very highly correlated (|r| > 0.95) with these top 15 covariates
and were thus excluded from the analysis in the design matrix filtering step. A chord diagram
depicting the selection frequencies of all 800 covariate terms is presented in Fig 2. The com-
plexity of interacting processes producing the spatial distributions of SOC in agricultural land-
scapes like that of the case study site is reflected in the diversity of the categories of covariates
terms selected (soil EC,, vegetation indices, DEM derived metrics, magnetic imagery, radio-
metric imagery and foliar projective cover layers) and the mixture of linear terms, higher order
polynomial terms and interactions of linear terms selected for these covariates.

4.3 Modelling Spatial Component of Error

Following the model-averaging described above, regression models are fitted to the residual %
SOC variation at each soil core location using a set of explanatory variables comprised of poly-
nomial and interaction terms calculated from the spatial coordinates of each soil core observa-
tion. This allows spatial position to serve as a locally appropriate proxy for all the unobserved
processes and interactions that may influence the spatial distribution of %SOC at the case
study site. An alternative approach would be to use Kriging to spatially interpolate the residu-
als, but this requires the comparison of numerous pairs of orthogonal, directional, empirical
semivariograms. A more attractive alternative is to calculate an empirical semivariogram raster,
in which pairwise differences between geostatistical observations are assigned to two dimen-
sional displacement bins and the empirical semivariance is calculated for each bin. The result-
ing raster may then either be smoothed [25] or simply examined directly and the spatial
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Fig 2. The frequencies with which covariate terms were selected across 500 selected models. These selected models were obtained by applying
the Least Angle Regression variable selection algorithm to training sets constructed by taking 35 observation subsets of a design matrix. This design
matrix was produced by filtering the full design matrix to enforce a maximum permitted correlation coefficient magnitude between covariate pairs of 0.95.
The curved lines (Poincaré segments) represent interaction terms between the covariates they connect. Covariate acronyms are expanded in Table 1.

doi:10.1371/journal.pone.0162489.9002

symmetry of the resulting values considered. However, the small sample size in the case study
data would result in moderate numbers of pairs per bin only when a relatively large bin size is
used. The resulting coarse spatial resolution would make characterisation of any detected
anisotropy infeasible. Thus a simpler approach of fitting spatial polynomial regression models
to the residuals and model-averaging the results via the same procedure used for the covariate
based modelling is adopted.

The computational efficiency of the LAR algorithm enables us to explore design matrices
that include single term polynomials for Easting and Northing values up to polynomial order
12 and interaction terms constructed from subsets of these single term polynomials such that
all possible product terms which equate to an overall polynomial order of 6 or less are included
in this exploration. Interaction terms considered range from pairwise interaction terms to
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interaction terms equivalent to a polynomial term of half the order of the maximum order of
single polynomial terms considered. This limit is imposed to avoid confounding between inter-
action terms of order equivalent to the higher order single polynomial terms. The results of fit-
ting spatial polynomial regression models to training sets of 35 observations constructed from
the design matrix filtered to enforce a MCCM between covariate pairs of 0.95 are used for simi-
lar reasons involved in this decision for the covariate based variable selection. Again, 500
unique divisions of the data into training and validation sets are constructed and explored by
LAR variable selection and final selections are made from each LAR model choice trajectory on
the basis of which model minimizes the associated VSEPE sum of squares. Model-averaging is
conducted with weights inversely proportional to the VSEPE sums of squares as per Eq 2.

4 4 Full Cover Inference

As the majority of the covariates are derived from the DEM all other covariates are interpolated
to the pixels of the DEM and the final prediction raster for %SOC is the result of evaluating the
models at each of these pixels. The 500 selected models (each selected for one of the unique
training sets) yield 500 predicted values for %SOC at every pixel in the final prediction raster.
A %SOC prediction for each of these pixels is calculated via the weighted model-averaging pro-
cedure described in Section 4.1. An uncertainty estimate for these predictions is also calculated.
Here the uncertainty associated with the model-averaged prediction at a pixel is quantified by
the width of the interval containing the middle 95% of the predictions for that pixel. A panel of
two rasters is presented in Fig 3. The areal prediction of %SOC levels across the study area plus
the areal prediction of the spatial component of the errors from the covariate based modelling
is presented as the top raster in Fig 3. The predictions for each pixel from the covariate based
modelling are constructed by model-averaging the predictions for that pixel from the models
selected by LAR exploration of the 500 unique, 35 observation training sets constructed by sub-
setting the 800 column design matrix. The estimate of the uncertainty associated with these
predictions is presented as the bottom raster in Fig 3. The predicted spatial distribution of %
SOC levels is overall quite uniform across the study site with only a few localized regions of
notably elevated or depressed values. The estimated uncertainty associated with the predicted
%SOC levels is relatively low across the majority of the study site with a few regions of notably
elevated uncertainty. Alternative colour versions of Fig 3 are included as S1 and S2 Figs.

5 Discussion

This work demonstrates the suitability of LASSO modified MLR as implemented through the
LAR algorithm for covariate assisted interpolation of a univariate, geostatistical response vari-
able in a pedological context. While the case study presented here involved digital soil mapping
of %SOC this analysis task occurs in a variety of pedological, ecological and environmental
modelling contexts. The computational efficiency of the LAR algorithm is such that it is feasible
to explore 500 unique, 35 observation subsets of a design matrix composed of 800 potential
covariate terms, whereas the application of exhaustive search variable selection to this task
would not have been computationally feasible. While LAR is often applied to the exploration of
potential model spaces composed solely of linear main effects it may also be applied to the
exploration of potential model spaces which include both polynomial terms for covariates and
terms for the interactions of two or more covariates implemented through products of these
terms. Efron et al. [2004] illustrate the exploration of such a model space in their simulation
study which compares LAR, LAR-LASSO and Stagewise solution paths obtained from a poten-
tial model space comprised of linear main effects, interaction terms and quadratic terms. In
such cases, the LAR algorithm is executed upon a design matrix that includes appropriately
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associated uncertainties in the rasters. (a) The sum of the covariate based predictions and the predictions
from the model for the spatial component of the errors from the covariate based model. The more westerly
pixel annotated with a vertical cross represents a predicted %SOC value of 17.92 and the more easterly pixel
annotated with a vertical cross represents a predicted %SOC value of 9.54. (b) The uncertainty estimated to
accompany the %SOC predictions. The three pixels annotated with vertical crosses represent estimates of
the uncertainty associated with the model-averaged predicted %SOC values of 20.57, 21.66 and 43.66 units
on the predicted %SOC scale. The estimated uncertainty of 43.66 being the most westerly of these three
pixels and the estimated uncertainty of 20.57 being the most northerly of these three pixels.

doi:10.1371/journal.pone.0162489.9g003

recentred and rescaled columns for polynomial terms and interaction terms. In the case study
63 covariates are expanded to 2205 potential covariate terms by considering polynomial terms
for all covariates up to polynomial order 4 and all possible pairwise linear interaction terms.
Filtering this full design matrix to enforce a MCCM between covariate pairs of 0.95 results in a
design matrix comprised of 800 potential covariate terms. The L, penalty in LASSO regression
allows for exploration of design matrices that include such highly collinear pairs of covariates.
In contrast, it would be advisable to discard a great deal more of these covariates to reduce the
degree of collinearity in the design matrices examined prior to conducting the variable selec-
tion with OLS based approaches such as information criteria based stepwise variable selection.
Concern regarding discarding numerous members of correlated pairs of covariates prior to
conducting the variable selection appears justified in the case study. The VSEPE distributions
arising from models fitted to design matrices filtered to enforce a MCCM between covariate
pairs of 0.4 are more dispersed about zero than the VSEPE distributions arising from models
fitted to design matrices filtered to enforce MCCM between covariate pairs of 0.95. Further-
more, it is the model-averaged predictions of the models selected from exploration of training
sets constructed from this less stringently filtered design matrix that have the greatest coeffi-
cient of determination.

A key assumption of the analysis presented in this work is that correlations between covari-
ates and the response variable do not vary across the study area. That is, spatially stationary
regression coefficients are assumed in the first stage of modelling the spatial distribution of %
SOC. Using spatially non-stationary linear regression coefficients could have resulted in quite
similar predictive accuracies to those obtained in the modelling conducted for the case study
analysis if some of the covariates varied in a spatially correlated manner. If there is spatial non-
stationarity in a correlation between a covariate and some component of the response variable,
this variation could well have been captured in the models presented here by the selection of a
polynomial term for the covariate in question were it also varying spatially. If this were the
case, it would be difficult to show one of these two interpretations to be more valid without
additional information beyond that available for the case study. Given the primary objective
here of interpolating the response variable, the mechanism by which this interpolation is
achieved (spatially stationary coefficients of polynomial terms or spatially non-stationary coef-
ficients of linear terms) is less important than it would be if the analysis were being conducted
in an attempt to identify the pedological and edaphic processes that produced the observed dis-
tribution of %SOC.

Limitations of the analysis presented here include the interpolation of the covariates to the
locations at which the response variable was observed being accomplished via separate models
before the variable selection is performed. Further limitations stem from these interpolations
being accomplished in a manner contingent upon the assumption of isotropic spatial depen-
dence (see for example [63] for an explanation of this term) in the mean deviations of the
covariates being realigned. Realigning the covariates by means external to the model in which
variable selection is conducted is equivalent to assuming that the covariate values supplied to
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the variable selection process are observed without error at the locations at which the response
variable was observed. However, there was uncertainty associated with both the collection of
the covariates and the interpolation of the covariates to the locations at which the response var-
iable was observed. The hierarchical Bayesian models for spatially misaligned data outlined by
Banerjee et al. [2004] would be an interesting extension in this regard if these models could be
extended to accomplish the variable selection task encountered in this case study. The advan-
tage of such an approach would be a more realistic propagation of uncertainty, including the
uncertainty associated with the spatial realignment of the data layers, through the model hier-
archy to that associated with the final full cover areal predictions rather than the more limited
cross validation based estimation of the uncertainty associated with areal prediction calculated
in the analysis presented here. If this were combined with a Bayesian LASSO, where the shrink-
age parameter could be assigned a hyperprior and estimated as part of the model structure, the
need for cross validation would no longer be as strong but the computational challenge would
likely be substantial.

Covariates related to soil water and runoff appear useful for predicting the observed distribu-
tion of %SOC (see Table 3). Given this apparent influence of water movement on the observed
%SOC distribution, information regarding which catchment basin an observation was collected
from could also prove useful for predicting the %SOC level associated with this observation.
Namely, some catchment basins may have more %SOC moving through them than others and
thus the case could be made for models that assign these catchments higher basal levels of %
SOC which are then modified by the values of other covariates observed at the soil core points.
Observations within a particular catchment could also be more related to other observations
within this catchment than to observation from different catchments basins. Such heightened
dependence among observations from the same catchment would violate the assumption of
independent and identically distributed errors across all observations inherent in multiple linear
regression based modelling. Thus it could be interesting to examine the utility of incorporating
into the models information regarding the identity of the catchment basins from which observa-
tions were drawn and worthwhile attempting to model the covariance structure among these
observations in a manner which reflects the grouping of the observations into catchment basins.
Both these aims could be addressed via linear mixed effects models [64]. The effect of catchment
basins within which individual observations were nested could be incorporated by random
effects for each of the catchment basins while covariate effects at the soil core locations could
continue to be treated as fixed effects. Such a treatment would be accompanied by a covariance
structure that reflects the potentially heightened dependence among observations from the
same catchment basin in the model structure. Should a larger variable selection task be feasible,
random effects for all covariates could be considered in addition to the fixed effects for these
covariates and the random effects for catchment basin membership (random intercept terms).
The random effects for covariates provide catchment specific modifications to the slope parame-
ters for individual covariates provided by the fixed effects. Shrinkage methods (such as LASSO
and related methods) for fitting and conducting variable selection for linear mixed effects mod-
els are reviewed in Miiller et al. [65]. Miiller et al. [65] found that methods for implementing
shrinkage on the parameters for both fixed and random effects had only been proposed in three
articles at that time. These papers [66-68] use SCAD [54] or Adaptive LASSO [53] penalization
and either expectation-maximization algorithm derived methods or original methods to esti-
mate parameters. Alternatively, catchment basin effects could be incorporated into a Bayesian
hierarchical (multi-level) approach via a spatial regression [17] whereby some covariates are
used at the level of the geostatistical soil core observations (or at the level of the DEM pixels) in
the spatial hierarchy and the covariates encoding catchment basin membership are used at the
catchment basin level in the spatial hierarchy.
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Linear mixed effects models also provide a means of accounting for temporal correlations
among observations from multiple time periods. If we had both covariate and response obser-
vations from a couple of time periods, some from a summer survey and some from a winter
survey for instance, random effects could be introduced for the different time periods and a
covariance structure could be selected to account for the dependence of observations from the
same time period by treating time periods as clusters of dependent observations [64]. In addi-
tion to random intercept terms and fixed effects for covariates, random effects could be intro-
duced for covariates to explore the potential for different relationships between covariates and
the response in different seasons. Linear mixed effects models also encompass methods for
modelling temporal autocorrelation in time series data (also known as longitudinal data) via a
variety of covariance structures [69]. Thus, if we had observations from numerous time peri-
ods, linear mixed effects models could be fitted that account for temporal dependence in the
data [69].

Other penalized likelihood methods such as adaptive LASSO [53], SCAD [54] and MCP
[55] could all form interesting comparisons to the LASSO modified MLR fitted with the LAR
algorithm utilised in this work. Further interesting comparisons could be conducted with
Bayesian LASSO [44], model-averaged Bayesian CART [45], random forests [47], boosted
regression trees [49] and model-averaged Bayesian treed regression [51] with Bayesian LASSO
implemented in the terminal node MLRs.
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