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Abstract: In recent years, cadmium (Cd) pollution in soil has increased with increasing industrial
activities, which has restricted crop growth and agricultural development. The heavy metal ATPase
(HMA) gene family contributes to heavy metal stress resistance in plants. In this study, 21 HMA genes
(HvHMAs) were identified in barley (Hordeum vulgare L., Hv) using bioinformatics methods. Based
on phylogenetic analysis and domain distribution, barley HMA genes were divided into five groups
(A–E), and complete analyses were performed in terms of physicochemical properties, structural
characteristics, conserved domains, and chromosome localization. The expression pattern analysis
showed that most HvHMA genes were expressed in barley and exhibited tissue specificity. According
to the fragments per kilobase of exon per million fragments values in shoots from seedlings at the
10 cm shoot stage (LEA) and phylogenetic analysis, five HvHMA genes were selected for expression
analysis under Cd stress. Among the five HvHMA genes, three (HvHMA1, HvHMA3, and HvHMA4)
were upregulated and two (HvHMA2 and HvHMA6) were downregulated following Cd treatments.
This study serves as a foundation for clarifying the functions of HvHMA proteins in the heavy metal
stress resistance of barley.

Keywords: barley; HMA gene family; bioinformatics analysis; Cd stress

1. Introduction

Cadmium (Cd) pollution is one of the negative consequences of industrialization. Cd
is highly toxic to plants and is easily absorbed by the roots and accumulates in the tissues [1],
which influences various processes including water and mineral uptake, respiration, and
photosynthesis, and leads to the inhibition of growth and even death [2]. Cd ions with a
lack of specificity enter the plant through other transporters (Fe2+/Fe3+, Zn2+, and Mn2+)
and compete with other nutrients for plant uptake, resulting in deficient nutrition [3,4]. In
response to Cd poisoning, various defense mechanisms have evolved in plants, such as
extrusion across plasma membrane, chelation in the cytosol, and vacuolar sequestration [5].
Previous studies have identified multiple proteins related to Cd transport, including heavy
metal ATPase (HMA) [6], yellow stripe-like proteins (YSL) [7], and natural resistance-
associated macrophage proteins (NRAMP) [8], to name a few.

HMA, also known as P1B-ATPase, is a type of protein combining ATP hydrolysis
with metal ion transport across membranes [9,10] participating in absorbing and trans-
porting heavy metal ions (Cu2+, Zn2+, Co2+, Cd2+, and Pb2+) [6]. Typical HMA proteins
contain the E1–E2 ATPase domain and haloacid dehalogenase-like hydrolase (Hydrolase)
domain [11]. Additionally, both sides of the N-terminal and C-terminal metal-binding
sites may possess one or more soluble metal-binding domains (MBDs) that interact with or
bind to specific metal ions [6]. At present, a number of HMA genes have been identified
in plants, including 8 in Arabidopsis thaliana [12], 9 in rice (Oryza sativa L.) [12] 11 in maize
(Zea mays L.) [13], 11 in sorghum (Sorghum bicolor L.) [13], 17 in Populus trichocarpa [11], and
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20 in soybean (Glycine max L.) [14]. Studies have demonstrated that AtHMA2 and AtHMA4
are two essential genes mediating Cd translocation in A. thaliana [15]. The translocation
of Cd from the roots to shoots was near-completely abolished in the hma2 hma4 double
mutant. TcHMA3, a tonoplast-localized transporter highly specific for Cd, is responsible
for sequestering Cd into the leaf vacuoles so as to detoxify Cd in Thlaspi caerulescens [16].
OsHMA3, which localizes to vacuolar membranes, was identified as the gene that controls
root-to-shoot Cd translocation rates in rice [17]. These results indicate that the HMA gene
family plays diverse roles in plant resistance to Cd stress.

Barley (Hordeum vulgare L., Hv), an important cereal crop, is widely used in numerous
industries, including animal feed, brewing, and food [18]. The exploration of vital genes
related to heavy metal stress resistance is beneficial for cultivating Cd-tolerant barley vari-
eties. Recent barley genome sequencing accomplishments have facilitated further studies
on barley genomics. Studies on the SBP-box [19], WRKY [20], ABC [21], F-box [22], and
SOD [23] gene family in barley have been successfully completed. Although the functions
of several HMA proteins in barley have been reported [24,25], genome-wide analysis of
the HvHMA family is lacking. In this study, the HvHMA gene family was genome-widely
identified in barley, and the phylogenetic relationships, structural characteristics, physico-
chemical properties, chromosomal location, as well as the tissue expression of identified
members were analyzed. Moreover, the expression of some members following Cd treat-
ment was investigated using quantitative real-time polymerase chain reaction (qRT-PCR).
These combined analyses of the biological characteristics and expression changes of the
HvHMA gene family provide helpful information for studying the function of HvHMA
genes and improve the Cd tolerance of barley varieties.

2. Materials and Methods
2.1. Plant Materials and Treatment

The ‘ZJU3’ barley variety was used in this study. Seeds uniform in size and with a full
shape were selected and sterilized in 2.5% NaClO for 10 min, rinsed with distilled water
four times, and then germinated at 28 ◦C under dark conditions. After 48 h, seedlings with
a root length of approximately 0.5 cm were moved to hydroponic culture boxes (day/night
temperatures of 26 ◦C/24 ◦C, light/dark photoperiod of 14 h/10 h, and light intensity of
18000 Lx). At the one-leaf stage, the seedlings were treated with 1/4 Hoagland’s nutrient
solution. At the two-leaf stage, Cd stress experiments were performed. The CdCl2 solutions
(50 µmol/L and 100 µmol/L) prepared with Hoagland’s nutrient solution were used to
simulate Cd stress, and Hoagland’s nutrient solution without CdCl2 was used as the
control. After 120 h of treatment, more than 10 barley seedlings were selected for each
sample, and quickly stored at −80 ◦C until analysis. The experiment was performed in
triplicate. The Hoagland’s nutrient solution formula was as described by Zhang et al. [26].

2.2. RNA Isolation and cDNA Synthesis

The total RNA was isolated from barley leaves using an RNA extraction kit (Tiangen,
Beijing, China) and reverse transcribed to generate cDNA using a reverse transcription kit
(Yeasen, Shanghai, China). The cDNA obtained was stored at −20 ◦C for qRT-PCR analysis.

2.3. Bioinformatics Analysis of the Barley HMA Gene Family
2.3.1. Identification and Structural Analysis of Barley HMA Genes

The HMA protein sequences of A. thaliana and rice were obtained from TAIR
(https://www.arabidopsis.org/index.jsp; accessed on 3 July 2020) and RiceData
(https://www.ricedata.cn/gene/; accessed on 3 July 2020), respectively. The HMMER
profiles related to the conserved domains of HMA proteins (E1–E2 ATPase: PF00122; Hydro-
lase: PF00702) were downloaded from the Pfam database (http://pfam.xfam.org/; accessed
on 9 July 2020) [27]. First, the candidate protein sequences were uploaded onto the CD-HIT
website (http://weizhong-lab.ucsd.edu/cdhit-web-server/cgi-bin/index.cgi?cmd=cd-hit;
accessed on 16 July 2020) [28] and SMART Web server (http://smart.embl-heidelberg.de/;
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accessed on 17 July 2020) [29] to remove sequences without E1-E2 ATPase and Hydrolase
domains. Afterward, the non-redundant barley HMA proteins were obtained by manu-
ally removing the redundant sequences. The batch sequence search function in the Pfam
database was used to obtain gene annotation files, and TBtools v1.087 (Chen, C.C., South
China Agricultural University (SCAU), Guangdong, China) was then used to draw the
domain map. The molecular characteristics of the HvHMA proteins were analyzed in
ExPASy (Compute pI/Mwtool) (https://web.expasy.org/protparam/; accessed on 26 July
2020) including the number of amino acid (aa) residues, molecular weight (MW), theoret-
ical isoelectric point (pI), and grand average of hydropathicity (GRAVY). WoLF PSORT
(https://wolfpsort.hgc.jp/; accessed on 31 July 2020) [30] was used to predict the subcellu-
lar localization of the HvHMA proteins. The conserved motifs of the HvHMA proteins
were mapped using the MEME online tool (http://meme-suite.org/tools/meme; accessed
on 4 August 2020) [31]. The intron-exon organizations of the HvHMA genes were gener-
ated using Gene Structure Display Server v2.0 (GSDS v2.0, http://gsds.cbi.pku.edu.cn/;
accessed on 6 August 2020) (Center for Bioinformatics (CBI), Beijing, China) [32] by compar-
ing the cDNAs to their corresponding genomic DNA sequences. The HvHMA genes were
mapped to barley chromosomes based on physical location information from the Ensem-
blPlants database (http://plants.ensembl.org/Hordeum_vulgare/Info/Index; accessed on
6 August 2020) using Tbtools v1.087.

2.3.2. Phylogenetic Analysis of the Barley HMA Family

The HMA protein sequences of A. thaliana, rice, and barley were imported into the
MEGA v7.0 program (Sudhir Kumar, Temple University, Philadelphia, PA, USA) and
multiple sequence alignments were performed using ClustalW. The alignment file was then
used to construct a neighbor-joining (NJ) phylogenetic tree, with the following parameters:
p-distance model, 1000 bootstrap replications, and other default parameters [33]. The tree
was displayed and modified using the iTOL website (https://itol.embl.de/; accessed on
12 August 2020) [34].

2.3.3. Expression Profiling of the Barley HMA Family and Candidate Gene Selection

The RNA-Seq data of 15 developmental stages were downloaded from the IPK web-
site (https://apex.ipk-gatersleben.de/apex/f?p=284:10; accessed on 20 August 2020) for
mapping HvHMA expression profiles. The 15 developmental stages were as follows: 4-day
embryos (EMB); roots from seedlings (10 cm shoot stage) (ROO1); shoots from seedlings
(10 cm shoot stage) (LEA); developing inflorescences (INF2); developing tillers, 3rd in-
ternode (5 DAP) (NOD); developing grain (5 DAP) (CAR5); developing grain (15 DAP)
(CAR15); etiolated seeding, dark conditions (10 DAP) (ETI); inflorescences, lemma (42 DAP)
(LEM); inflorescences, lodicule (42 DAP) (LOD); dissected inflorescences (42 DAP) (PAL);
epidermal strips (28 DAP) (EPI); inflorescences, rachis (35 DAP) (RAC); roots (28 DAP)
(ROO2); and senescing leaves (56 DAP) (SEN). The expression of HvHMA genes was
normalized and represented in fragments per kilobase of exon per million fragments
mapped (FPKM). The HvHMA expression profile based on the FPKM values was then
drawn using the Multiple Experiment Viewer (MeV) (J. Craig Venter Institute, La Jolla, CA,
USA) [35]. Based on the FPKM values at the 10 cm shoot stage and phylogenetic analysis,
the candidate genes were selected for qRT-PCR experiments.

2.4. Quantitative RT-PCR Analysis of Barley HMA Genes

Five pairs of primers related to specific genes were designed using Primer Premier v5.0
(PREMIER Biosoft, San Francisco, CA, USA) for qRT-PCR (Table 1). The barley actin gene
HvActin (HORVU1Hr1G002840) was used as an internal control. The qRT-PCR analysis was
performed on the CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA),
and the data were analyzed using the 2−∆∆Ct method with three biological replicates [36].
IBM SPSS Statistics v20 (IBM, Armonk, NY, USA) statistical software was then used to

https://web.expasy.org/protparam/
https://wolfpsort.hgc.jp/
http://meme-suite.org/tools/meme
http://gsds.cbi.pku.edu.cn/
http://plants.ensembl.org/Hordeum_vulgare/Info/Index
https://itol.embl.de/
https://apex.ipk-gatersleben.de/apex/f?p=284:10


Plants 2021, 10, 1849 4 of 13

analyze significance (*, **, and *** indicates p < 0.05, p < 0.01, and p < 0.001 respectively).
Histograms were drawn with SigmaPlot v10.0 (SYSTAT, San Jose, CA, USA).

Table 1. Primer sequences designed for qRT-PCR analysis.

Gene Name Gene ID Forward Primer Sequence (5′-3′) Reverse Primer Sequence (5′-3′)

HvHMA1 HORVU7Hr1G097240.1 TGGCGAAGAAATGCTGTGCT AACCGCCTGTTGATACATTCTC
HvHMA2 HORVU6Hr1G033380.2 TGGAGGTGTCATTTCAGAAGTGG CAACACCATCAACTGGGACCTT
HvHMA3 HORVU5Hr1G094430.8 ACATCGCCGTGAGGACAAGT GCGTCTTGGACTTGCTCTGC
HvHMA4 HORVU7Hr1G108890.1 TCAGCCTAAGTCACAGAAGACATTG CCTGGACGATTTCATCCTTGC
HvHMA6 HORVU7Hr1G100160.2 GCTAAGGCATCTATCGGTTCC ATGCAGAACACTTTACTGCCTCT
HvActin HORVU1Hr1G002840 TGGATCGGAGGGTCCATCCT GCACTTCCTGTGGACGATCGCTG

3. Results
3.1. Identification and Molecular Characteristics of Barley HMA Proteins

Through multiple bioinformatics analyses, a total of 21 barley HMA proteins were
screened by removing redundant sequences and validating domains, which were named
HvHMA1-21. The basic information on HvHMA1-21, including the number of amino acid
residues, molecular weight, theoretical isoelectric point, grand average of hydropathicity,
and subcellular localization, which indicated molecular characteristics of barley HMA
proteins, is listed in Table 2. The results showed that the 21 HvHMA proteins contained
672 (HvHMA5) to 1083 (HvHMA21) amino acid residues with molecular weights ranging
from 73112.29 (HvHMA5) to 118116.93 (HvHMA21) Da. The theoretical isoelectric points
of the 21 HvHMA proteins ranged from 5.00 (HvHMA8) to 7.82 (HvHMA17), with the ma-
jority constituting acidic proteins. The GRAVY numeric values of the 21 HvHMA proteins
varied from−0.090 (HvHMA1) to 0.422 (HvHMA3), indicating that these proteins were
likely amphoteric proteins. Additionally, the subcellular localization results showed that
the 18 HvHMA proteins were localized in the plasma membrane, whereas three proteins
(HvHMA9, HvHMA14, and HvHMA19) were localized in the endoplasmic reticulum.

Table 2. Physicochemical properties and subcellular localization of HMA proteins in barley.

Gene Name Protein Number ORF (aa) MW (Da) PI Subcellular Localization Hydrophilicity Index

HvHMA1 A0A287XH51 1009 108464.81 6.68 Plasma membrane −0.090
HvHMA2 A0A287TV87 987 106112.96 5.58 Plasma membrane 0.171
HvHMA3 A0A287SBM8 765 80511.64 5.80 Plasma membrane 0.422
HvHMA4 A0A287XS00 1023 102819.64 5.27 Plasma membrane 0.268
HvHMA5 A0A287J245 672 73112.29 6.19 Plasma membrane 0.277
HvHMA6 A0A287XKH5 871 92584.78 7.59 Plasma membrane 0.106
HvHMA7 M0X9Y2 761 80246.05 5.36 Plasma membrane 0.223
HvHMA8 A0A287NAD1 1050 113188.47 5.00 Plasma membrane 0.193
HvHMA9 A0A287N6A1 1000 109664.92 5.72 Endoplasmic reticulum 0.171

HvHMA10 M0WLW4 946 100370.69 7.04 Plasma membrane −0.016
HvHMA11 A0A287FY78 981 107543.64 6.42 Plasma membrane 0.083
HvHMA12 A0A287E4C3 1039 114071.38 6.95 Plasma membrane −0.042
HvHMA13 A0A287QI47 1033 111820.68 6.07 Plasma membrane 0.183
HvHMA14 A0A287EJS4 1049 113618.24 5.49 Endoplasmic reticulum 0.140
HvHMA15 M0WME5 962 105942.79 6.15 Plasma membrane 0.094
HvHMA16 A0A287DYP4 983 107457.12 6.10 Plasma membrane 0.063
HvHMA17 A0A287JG07 1010 106141.11 7.82 Plasma membrane 0.074
HvHMA18 A0A287RKR1 690 73747.50 6.73 Plasma membrane 0.219
HvHMA19 M0WL52 1020 110187.74 6.21 Endoplasmic reticulum 0.220
HvHMA20 A0A287Q5Y4 994 109774.70 7.45 Plasma membrane 0.142
HvHMA21 A0A287P785 1083 118116.93 5.49 Plasma membrane 0.034
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3.2. Phylogenetic Analysis and Classification of Barley HMA Genes

To explore the evolutionary characteristics of HvHMA genes and the evolutionary
relationships between the AtHMA, OsHMA, and HvHMA genes, HMA sequences from A.
thaliana, rice, and barley, including 8 AtHMA proteins, 8 OsHMA proteins, and 21 HvHMA
proteins, were subjected to phylogenetic analysis. As shown in Figure 1, the HvHMA
genes were divided into five groups (A–E). Among the 21 HvHMA genes, 2 belong to
group A, 6 to group B, 6 to group C, 3 to group D, and 4 to group E. The phylogenetic
tree indicated that members of groups A, D, and E were homologous to the AtHMA and
OsHMA proteins. Moreover, compared to dicotyledonous A. thaliana, monocotyledonous
barley and rice were more closely related. With the exception of the E1-E2 ATPase and
Hydrolase domains, some HvHMA proteins contained other domains including an HMA
domain, Cation_ATPase_N domain, Cation_ATPase_C domain, Cation_ATPase domain,
Hydrolase_3 domain, and CaATP_NAI domain, which revealed that the HvHMA proteins
contained more abundant domains than the AtHMA and OsHMA proteins. Thus, it is
inferred that members of the barley HMA gene family are more functionally diverse and
therefore worth exploring. Additionally, there were some differences among groups in
the domain distribution of the HvHMA proteins. The HMA domains were concentrated
in groups D and E, the Cation_ATPase_N domains and Cation_ATPase domains were
distributed in groups B and C, and Cation_ATPase_C domains were all distributed in group
B. In relation to other groups, there were more types of domains in group B, indicating that
members of group B might be complex in terms of function.
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3.3. Chromosomal Location of Barley HMA Genes

According to the genome annotations, 18 of the 21 HvHMA genes were distributed on
the six barley chromosomes (Figure 2), with the largest number of genes located on Chr4 (5),
followed by Chr5 (4), Chr7 (4), Chr1 (2), Chr2 (2), and Chr6 (1). However, HvHMA7,
HvHMA12, and HvHMA16, without clear localization information, were not positioned
onto barley chromosomes. In addition, most of the HvHMA genes were concentrated on or
near the end of the barley chromosomes. These results suggested that the distribution of
HvHMA genes was uneven.
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HvHMA genes was obtained from the EnsemblPlants database.

3.4. Motif Composition of the Barley HMA Proteins

Conserved motif analysis of the HvHMA proteins helped elucidate the conservation
as well as the diversification of this family, and a total of 10 distinct conserved motifs
were revealed. As exhibited in Figure 3, all HvHMA proteins contained common motifs
including motif 1 and motif 10, which suggested that the two motifs might be the charac-
teristic motifs of HvHMA proteins. With the exception of HvHMA21, all HvHMA proteins
contained motif 3. Additionally, HvHMA proteins within the same group were generally
found to show a similar motif composition. For example, motif 2 was distributed in all
groups except group A, whereas motif 4, motif 5, motif 6, motif 8, and motif 9 were unique
to group C. Moreover, the differences in motif composition among groups combined with
the phylogenetic analysis results supported the reliability of the group classifications and
indicated that HvHMA genes in distinct groups might be functionally divergent.

3.5. Intron-Exon Structure of Barley HMA Genes

The introns disrupted the coding sequences of most HvHMA genes. As shown in
Figure 4, there were some differences among the HvHMA genes in terms of the number
and size of the introns, which might be caused by intron deletion and insertion events.
With the exception of HvHMA16 without introns, all HvHMA genes contained 2–33 introns
(13 with 2–8 introns, 6 with 12–20 introns, and 1 with 33 introns). Additionally, several non-
coding regions were distributed in the 18 HvHMA genes, with the exception of HvHMA16,
HvHMA18, and HvHMA20.
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3.6. Expression Pattern Analysis of Barley HMA Genes and Target Gene Screening

The analysis of gene expression patterns contributed to gene function prediction.
The expression profiles of the HvHMA genes (Figure 5) revealed that the expression
of some genes was tissue-specific. For example, the expression levels of HvHMA5,
HvHMA9, and HvHMA15 were high during grain development; the expression levels of
HvHMA3, HvHMA6, HvHMA7, HvHMA8, HvHMA13, and HvHMA18 were high in the
leaves; HvHMA2, HvHMA12, and HvHMA19 were specifically expressed in the inflores-
cences; and HvHMA4, HvHMA10, and HvHMA11 were specifically expressed in the tillers,
roots, and epidermal strips, respectively. These results indicated that these genes might
play specific roles in the relevant tissues. Moreover, the clustering results of the expression
data unclearly correspond to the groupings based on phylogenetic analysis, implying
that the expression pattern similarity incompletely depended on the sequence similarity.
Based on a comprehensive consideration of the FPKM values at the 10 cm shoot stage and
phylogenetic analysis, a total of five HvHMA genes were screened for expression analysis
under Cd stress.
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Figure 5. Expression profiles of HvHMA genes in different tissues and development stages. Data were obtained from a
publicly available database. Columns represent HvHMA members, while rows show different developmental stages and
tissues. The expression level of HvHMAs is shown by the intensity of the color, where red represents high expression
and green represents low expression. EMB, 4-day embryos; ROO1, roots from seedlings (10 cm shoot stage); LEA, shoots
from seedlings (10 cm shoot stage); INF2, developing inflorescences; NOD, developing tillers, 3rd internode (5 DAP);
CAR5, developing grain (5 DAP); CAR15, developing grain (15 DAP); ETI, etiolated seeding, dark conditions (10 DAP);
LEM, inflorescences, lemma (42 DAP); LOD, inflorescences, lodicule (42 DAP); PAL, dissected inflorescences (42 DAP);
EPI, epidermal strips (28 DAP); RAC, inflorescences, rachis (35 DAP); ROO2, roots (28 DAP); and SEN, senescing leaves
(56 DAP) (color figure online).
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3.7. Expression Analysis of Barley HMA Genes in Response to Cd Treatment

HMA proteins participate in the distribution of non-essential heavy metal ions in-
cluding Cd2+, which greatly affect the plant response to heavy metal stress. To analyze
the expression of HvHMA genes under Cd stress, five members (Table 1) were carefully
selected from 21 HvHMA genes, and qRT-PCR experiments were further performed at the
seedling stage. The results (Figure 6) revealed that three genes (HvHMA1, HvHMA3, and
HvHMA4) were upregulated and two genes (HvHMA2 and HvHMA6) were downregu-
lated. Compared with the control, the expression levels of all five genes were significantly
different under the 100 µmol/L CdCl2 treatment, whereas four genes, except for HvHMA4,
were significantly different under the 50 µmol/L CdCl2 treatment. With the increase of
Cd concentration, the expression of HvHMA1 and HvHMA4 was significantly higher un-
der the high-concentration stress than under the low-concentration stress. Moreover, the
expression changes of HvHMA2, HvHMA3, and HvHMA6 were similar after the two Cd
treatments: the expression of HvHMA2, HvHMA3, and HvHMA6 was slightly higher under
the high-concentration stress than under the low-concentration stress.
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4. Discussion

The HMA family, which plays a significant role in heavy metal transport, exists
widely in plants. In this study, 21 HMA genes were identified in barley. According to
phylogenetic analysis, the 21 HvHMA genes could be divided into five groups (A–E).
Compared to groups B and C, members belonging to groups A, D, and E possessed
higher homology to the proteins of A. thaliana and rice. Except for the E1-E2 ATPase
and Hydrolase domains, members of groups B and C contained the Cation_ATPase_N
domains. In addition, members of group B contained the Cation_ATPase_C domains. The
Cation_ATPase_N domains and the Cation_ATPase_C domains, which are metal-binding
domains, participate in metal ion transport in plants. As indicated by the conserved motif
analysis, motifs 4–6 and motifs 8–9 were only distributed in group C. Therefore, it is
speculated that the domains as well as motifs unique to groups B and C resulted in the
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separation of groups B and C from the other groups in the phylogenetic tree. Furthermore,
the characteristics of groups B and C illustrated the differences in evolution between barley
and other species.

The subcellular localization results revealed that most of the HvHMA members were
predicted as plasma membrane proteins, with the exception of HvHMA9, HvHMA14,
and HvHMA19, which were all located in the endoplasmic reticulum and were placed in
the same group (group B). These results suggested that there were certain corresponding
relationships between the phylogenetic groupings based on sequence similarity and sub-
cellular localization. Therefore, homologous genes may be similar in gene function and
signal transduction process.

According to the presence or absence of introns, eukaryotic genes can be divided into
intron-containing and intronless genes. Most eukaryotic genes belong to the former, but
some belong to the latter. Previous studies identified that there are 5846 (21.7%) intronless
genes in A. thaliana and 11,109 (19.9%) in rice [37]. Among the 21 HvHMA genes, 20
members with 2–33 introns are intron-containing genes, whereas HvHMA16 is an intronless
gene. Some plausible explanations may account for the origin of intronless genes. It has
been suggested that intronless genes evolved owing to a loss of introns [38]. Another
probability is that intronless genes formed as a result of reverse transcription [39]. During
the process of retroposition, mRNAs are reverse-transcribed into cDNAs and inserted into
new genomic positions that lack introns [40]. Therefore, it can be inferred that intron loss or
retrotransposition events impacted on the intron-exon structures of HvHMA genes, leading
to the presence of an intronless gene (HvHMA16) in the barley HMA gene family. By
comprehensively analyzing the results of the evolutionary tree and the expression values
at the 10 cm shoot stage, five genes were screened that might be related to stress responses.
Among them, the expressions of HvHMA1, HvHMA3, and HvHMA4 were significantly
upregulated under Cd stress. HvHMA1 was highly homologous to OsHMA2, which
participates in the root-to-shoot translocation of Cd [41–43]. Compared to the wild-type
(WT), the Cd concentration in the grains of OsHMA2-overexpressing rice was decreased
by approximately half [44]. HvHMA3 was homologous to OsHMA3, which sequesters
Cd into the vacuoles of root cells in rice, thereby controlling the rate of Cd translocation
from the roots to shoots [45]. Additionally, HvHMA4 was homologous to OsHMA9, whose
expression was induced by a high concentration of Cd [46]. The above results indicated
that the changes in expression after Cd treatment were in line with theoretical expectations
and that the phylogenetic analysis results were credible.

Cd stress negatively effects plant growth and development. The qRT-PCR results
suggested that Cd stress can promote or inhibit the expression of HvHMA genes, which
indicated that different HvHMAs exhibit diverse mechanisms to protect barley from stress
damage. The expression of HvHMA1 gradually increased with the growth of Cd concen-
tration. Mills [47] found that the corresponding HvHMA gene conferred Cd sensitivity to
wild-type yeast due to transport activity. It was speculated that HvHMA1 changed the
transport activity of Cd in response to Cd stress in barley. Lei [48] found that HvHMA3
played a crucial role in grain Cd accumulation. In this study, HvHMA3 were significantly
upregulated after Cd treatment. Therefore, it was speculated that HvHMA3 might be
involved in Cd distribution in stress condition. Following Cd stress, the expression levels
of HvHMA2 and HvHMA6 decreased significantly, indicating that Cd stress negatively reg-
ulated the expression of the two genes. According to this, it is inferred that the expression
regulation pathways related to HvHMA2 and HvHMA6 may be similar. Among experi-
mental groups, HvHMA1 and HvHMA4 were significantly upregulated with increasing Cd
concentration, which indicated that the two genes were sensitive to the change of Cd stress.
However, the molecular mechanisms of these HvHMA genes in response to Cd stress need
further exploration.
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5. Conclusions

The barley HMA gene family was explored herein using bioinformatics analysis. The
results revealed the characteristics of the barley HMA gene family in terms of physicochem-
ical properties, phylogenetic relationships, domain distribution, chromosomal location,
motif composition, intron-exon structure, as well as tissue expression. Moreover, five
HvHMA genes were selected for expression analysis which indicated that the five genes
responded differently to Cd stress. HvHMA1, HvHMA3, and HvHMA4 were strongly
activated by Cd stress, whereas HvHMA2 and HvHMA6 were significantly restrained. This
study preliminarily confirms that HvHMA1, HvHMA3, and HvHMA4 play vital roles in
Cd tolerance, providing a theoretical basis for further research on the functions of related
genes and the improvement of barley varieties.
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