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ABSTRACT

Type III secretion systems (T3SSs) are bacterial
membrane-embedded nanomachines that allow a
number of humans, plant and animal pathogens to
inject virulence factors directly into the cytoplasm of
eukaryotic cells. Export of effectors through T3SSs
is critical for motility and virulence of most Gram-
negative pathogens. Current computational methods
can predict type III secreted effectors (T3SEs) from
amino acid sequences, but due to algorithmic con-
straints, reliable and large-scale prediction of T3SEs
in Gram-negative bacteria remains a challenge. Here,
we present DeepT3 2.0 (http://advintbioinforlab.com/
deept3/), a novel web server that integrates different
deep learning models for genome-wide predicting
T3SEs from a bacterium of interest. DeepT3 2.0 com-
bines various deep learning architectures includ-
ing convolutional, recurrent, convolutional-recurrent
and multilayer neural networks to learn N-terminal
representations of proteins specifically for T3SE pre-
diction. Outcomes from the different models are pro-
cessed and integrated for discriminating T3SEs and
non-T3SEs. Because it leverages diverse models and
an integrative deep learning framework, DeepT3 2.0
outperforms existing methods in validation datasets.
In addition, the features learned from networks are
analyzed and visualized to explain how models make
their predictions. We propose DeepT3 2.0 as an inte-
grated and accurate tool for the discovery of T3SEs.

INTRODUCTION

Microbial pathogens secrete a wide range of substrates that
disrupt host homeostasis and immune defenses, thus result-
ing in the establishment of infection (1). However, trans-
porting substrates across cellular membranes is a challeng-
ing biochemical feat, and to achieve this, bacteria have
evolved nine dedicated secretion systems (type I to type
IX) (2,3). Of these, the type III secretion system (T3SS)
is one of the most sophisticated and best-characterized
systems (4,5) and has been widespread in many Gram-
negative bacteria, including symbionts, such as Rhizobium,
and pathogens that are responsible for a range of severe
diseases, such as gastroenteritis (Shigella flexneri), plague
(Yersinia pestis), typhoid fever (Salmonella typhi) and infan-
tile bacterial diarrhea (enteropathogenic Escherichia coli;
EPEC) (6,7). T3SSs are assembled from three main ‘parts’
including a cytoplasmic ring (C-ring) and sorting platform;
a basal body, which is a multi-ring system that embedded
in both bacterial membranes, and a translocation pore that
is inserted into host cell membranes (8). The overall struc-
ture and organization of the T3SS spans three cellular mem-
branes, the bacterial inner membrane, the bacterial outer
membrane and the eukaryotic host cell membrane, which
uses a one-step secretion mechanism to transport substrates
directly from the bacterial cytoplasm into host cells (9,10).

The T3SSs are involved in the manipulation of a vast
array of key cellular processes such as the cell cytoskele-
ton, trafficking, cell death or survival, and the NF-�B and
MAPK signaling pathways (3) and these functions are en-
abled by T3SEs. Unlike other bacterial effectors that exert
their function by introducing covalent, non-reversible mod-
ifications of their target host cell proteins, T3SEs may act by
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mimicking the functions of host cell proteins (11,12). This
strategy seems appropriate to have been adapted by bacteria
which have T3SSs as a central element for the establishment
of a close functional interface that is often symbiotic in na-
ture. Since T3SEs often mimic or override the functions of
host cell proteins, the relevant studies have also provided
remarkable examples of convergent evolution, tools for re-
search and clinical applications, as well as deep insights into
host cell processes (13).

Owing to the high cost and technical challenges of testing
all possible effector candidates experimentally, researchers
have attempted to identify T3SEs by computational meth-
ods. Nearly all current T3SE prediction methods rely on
well-established machine-learning algorithms such as Naı̈ve
Bayes (NB) (14,15), artificial neural network (ANN) (16),
support vector machine (SVM) (17–23), random forest
(RF) (24), Markov Model (MM) (25), gradient boosting
machine (LightGBM) and so on (26). In addition to the
quality and quantity of the data set, another important
challenge for these methods is to define suitable features or
feature sets from data that led to better separation between
different classes. Therefore, the feature extraction can be
crucial for the process of T3SE classification and the accu-
racy of the predictions. Several properties of amino acid se-
quences are found to be important for distinguishing T3SEs
from non-T3SEs and can be separated into two broad
classes. The first class comprises few but specific features of
either N-terminal 30 or 100 amino acids and includes short
peptides (14), N-terminal instability (27), solvent accessi-
bility information (23,24), secondary structure (14,23,24)
and position-specific composition (14,17,20,23,24) or en-
tropy (24) of amino acids. The second class comprises
comprehensive and general features of entire protein se-
quence, e.g. amino acid composition, dipeptide composi-
tion, sequence-order descriptors, physicochemical proper-
ties and evolutionary conservation (26,28). Currently, the
integrated model based on ensemble learning has shown
better performance than training a single machine-learning
algorithm when combined with various features for the
T3SE detection (26,28). For example, Bastion3, one of the
latest predictors, reports a remarkable accuracy value of
0.959 for the two-layer ensemble models, when validated on
the test data (26).

The recent revolution in deep learning techniques for bi-
ology suggests that convolutional neural networks (CNNs)
can serve as an effective tool for ‘sequence-based’ model-
ing of a broad range of biological questions (29–34). Based
on these ideas, several algorithms have been developed to
predict secreted effectors and their types from amino acid
sequences (35–37). DeepT3 was among the first publicly
available methods that used a convolutional neural network
with N-terminal sequence data to train a model for pre-
dicting T3SEs (35). In this study, we introduce DeepT3 2.0,
which is an updated version combines various deep learning
architectures and an integrated framework for improving
T3SE prediction. The major contributions of our work are
fourfold: we systematically and comprehensively explored
the effects of model architectures, hyperparameters, encod-
ing methods and sequence lengths on model performance,
which provides recommendations for future method devel-
opment; we analyzed features extracted from the hidden

layers of the deep learning models to investigate their ability
to distinguish between T3SEs and non-T3SEs; we created
an integrative prediction framework for identifying T3SEs
in whole-genome scale; we evaluated the performance of
our tool on both the aggregate dataset and specific secre-
tion system subsets (e.g. T1SE, T2SE and so on).

MATERIALS AND METHODS

Data collection

We generated a benchmark dataset for building, testing
the model and making comparison with other deep learn-
ing models. We relied on a combination of the positive
training set of the Bastion3 method (26) (which had ex-
perimentally verified and database annotated type III se-
creted effectors for Gram-negative bacteria) together with
the negative set collected from the previous work of Dong
et al (17), which was compiled from eight well-studied
Gram-negative bacterial proteomes, including Escherichia
coli O157:H7, Salmonella enterica serovar Typhimurium,
Pseudomonas syringae DC3000, Yesinia pestis bv. Antiqua,
Chlamydia trachomatics, Shigella flexneri, Yesinia enteroclit-
ica and Burkholderia pesudomallei. We discarded the protein
sequences which are <50 amino acids or with noncanonical
amino-acid symbols (B, Z, J) contained in the records. To
avoid duplicate or homologous proteins, the CD-HIT pro-
gram (38) was used to filter the positive set with a sequence
identity >70% (26) and the negative set >30%. This way,
379 effectors and 755 non-effectors were collected, respec-
tively.

Additionally, to determine how well the DeepT3 2.0 tool
performed when predicting T3SEs from a given species, an
independent test set which included a plant pathogen P. sy-
ringae was created. Proteins experimentally confirmed as
type III effectors from P. syringae were collected from the
study of Baltrus et al (39). Since it is challenging to de-
fine a non-T3SE, we developed a strict filtering criterion
to generate the negative set. We first collected the whole
UniprotKB reviewed entries of the P. syringae and then re-
moved all possible type III effectors using the Uniprot key-
word and QuickGO annotations. We also pruned out pro-
teins with <50 amino acids or containing elements other
than the 20 common amino acids. We further excluded pro-
tein sequences that were already present in our benchmark
dataset and used the CD-HIT to decrease sequence redun-
dancy with a threshold of 30%. Finally, we obtained 32 ef-
fectors and 711 non-effectors form P. syringae.

The Bastion3 independent test set consisting of 108 effec-
tors and 108 non-effectors was used as another independent
test set to evaluate the performance of several state-of-the-
art T3SE predictors.

We collected a set of seven secretion system effectors from
T1SS to T8SS after removing the T3SEs and their homologs
from our previous study (40) to evaluate the specificity of
DeepT3 2.0 in Gram-negative bacterial secretomes. First,
we directly extracted a minority of proteins from Uniprot
according to the ‘Subcellular location’ comments and var-
ious keywords describing their secretory types. Second, we
got information about their protein or gene IDs and corre-
sponding secretory types through a careful literature search,
and then artificially collected them from the three databases
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including UniprotKB, TrEMBL and RefSeq. To ensure an
accurate collection, the proteins with uncertain secretory
types were not selected. With this procedure, we ended-up
with 509 proteins. The 161 T5SEs comprised the largest
subset. The numbers of T1SE and T2SE were relatively
smaller than that of T5SE, including 107 and 106 proteins,
respectively. The remaining proteins in this data set were dis-
tributed as follows: 65 from T4SEs, 8 from T6SEs, 53 from
T7SEs and 3 from T8SEs.

We assessed DeepT3 2.0 running time and whole-genome
scale performance using complete genome of Chlamydia
trachomatis (strain D/UW-3/Cx). The genome of this
Gram-negative bacterial species is 1 042 519 bp long and
hosts 936 genes including T3SS (41). Only RefSeq en-
tries were used, and other proteins were not included.
From the NCBI, we downloaded all the 1774 proteins. All
data sets described herein can be downloaded from http:
//advintbioinforlab.com/data/dataset.zip.

Amino acid representation

For providing the tensors to the deep learning models ap-
propriately, each amino acid in a protein sequence with N
residues is represented by an N × 20 one-hot vector and an
N × 256 embedding vector, respectively. One-hot encoding
provides a mapping mechanism between the residues and
the vectors of zeros with one, for example, alanine can be
encoded as [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]. The embedding vector is a high-dimensional contin-
uous vector that preserve the context of amino-acid sym-
bols in a protein sequence. The benefit of embedding is that
it can create a more compact representation of amino acid
symbols and can yield semantically similar symbols close to
each other in the vector space (42). The embedding process
can be implemented by the embedding layer in the Keras
framework. Specifically, sequences of amino acids are first
dictionary encoded (the amino acids are assigned different
numbers from 1 to 20, for example, alanine can be assigned
to 1), and then passed through the embedding layer to con-
vert each number into a 256-dimensional vector before be-
ing input into other hidden layers in the models.

DeepT3 2.0 model architectures

The DeepT3 2.0 consisted of an integrative framework of
six deep learning models, each model can produce a proba-
bility score between 0 and 1 (that is interpreted as the pre-
dicted likelihood that the protein of interest being a type
III secreted effector or non-effector). The final prediction
of the framework was the sum of the predictions from the
six independent models and determined by an optimized
cutoff. Each model is described sequentially going from the
encoded protein sequence input to predictions in which the
output of a layer is used as the input for the next.

Recurrent neural network with embedding
representation––RNN (dictionary). We selected the
bidirectional long short-term memory (BiLSTM) recurrent
neural network as RNN representation learner because
the recent success of the BiLSTM for the sequence-based
deep representation learning in protein engineering (43).

Bidirectional LSTM processes sequences in both forward
and backward directions, and therefore often captures
the context better. Specifically, the architecture selected
for training was a single-layer BiLSTM with 64 hidden
neurons. Dropout of 0.25 was applied to the BiLSTM
layer for preventing overfitting. We connected the BiLSTM
layer and a single dense output layer with a sigmoid acti-
vation function. The output layer contained one neuron
representing effector (T or 1) or non-effector (F or 0)
classes.

Convolutional and Recurrent neural network with embedding
representation––CNN-RNN(dictionary). We combined a
1D-CNN that extracts sequence-based features, with an
RNN architecture that captures long-term dependency in
the sequences. The first layer was a convolutional layer con-
taining 200 filters, each of which had a 1D kernel with width
of 9. A Rectified Linear Units (ReLU) activation function
was applied to the neuron output. The activation func-
tion introduced nonlinearities to avoid the network suffer-
ing from the vanishing gradient problem (30). The second
layer performed max pooling, which outputted the maxi-
mum value over a non-overlapping sliding window of 2.
The pooling layer was then fully connected to the 64-neuron
BiLSTM layer. The fourth and final layer consisted of only
one neuron producing the final probability score using the
sigmoid function.

Convolutional neural network with embedding
representation––CNN(dictionary). The general ar-
chitecture of CNN consisted of four main components:
convolutional layer, pooling layer, fully connected layer and
an output layer. First, we began by passing the embedding
vectors into a convolutional layer consisting of 250 filters
with width of 5. Each filter covered all 250-dimensional
amino-acid input channels. During training, each filter
scanned along the input sequence and computed a score
for each five amino acids, followed by a ReLU activation
function. These activated scores were then passed through
a pooling layer, where the maximum score was computed
over a window size of 2. Next, the flattened pooling scores
were passed to a single dense layer with 650 hidden neurons.
To prevent overfitting, the dense scores proceed through
a dropout layer with a dropout rate of 0.25. Finally, the
scores were fed into an output layer consisting of a sigmoid
function.

Convolutional and Recurrent neural network with one-hot
encoding––CNN-RNN(onehot). For the CNN, we com-
bined a convolutional 2D layer (50 filters with kernel size
[20 × 3]) using a ReLU activation function with a pooling
2D layer (pooling size [1 × 2]). We chose max pooling to flat-
ten the output and reduce the number of parameters. Sub-
sequently, the pooling layer was followed by a batch nor-
malization layer and a dropout layer. The batch normaliza-
tion layer stabilized the output from the pooling layer and
dropout layer prevented the network from overfitting. We
then passed the output of the dropout layer to a BiLSTM
layer. We trained the BiLSTM with 64 hidden neurons. The
last layer was a sigmoid activation node.

http://advintbioinforlab.com/data/dataset.zip
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Convolutional neural network with one-hot
encoding––CNN(onehot). We used a kernel of 20 ×
11 with step size 1 for convolutional 2D layer, 1 × 2
aggregation regions for Maxpooling 2D layer, and rectified
linear unit nonlinearities for the activation function. The
number of filters in the convolution layer was 100, and the
number of neurons in the dense layer was 650. We used the
dropout with rate of 0.25 for the pooling and dense layers.

Multi-layer perceptron with one-hot encoding––MLP (one-
hot). MLP was constructed from two fully connected lay-
ers. The number of neurons per hidden layer was 512 and
256, respectively. The dropout layer with a dropout rate of
0.25 followed each layer, which finally connected to a sig-
moid activation function that outputted the predicted prob-
ability.

Hyperparameter tuning

The hyperparameters we considered in the DeepT3 2.0
included dropout rate, batch size, embedding dimension,
pooling size, pooling type, convolution kernel size, number
of filters and number of neurons in BiLSTM (44).

We generated eight sets of hyperparameters from the fol-
lowing: dropout rate = (0, 0.25, 0.5), batch size = (20, 40,
60, 80), embedding dimension = (50, 100, 150, 200, 250),
pooling type = (maximum, average), pooling size = (2, 4, 6),
convolution kernel size = (3, 5, 7, 9, 11), number of filter =
(50, 100, 150, 200, 250) and number of neurons in BiLSTM
= (32, 64, 128, 256). We compared the average performance
of each of these parameter sets by Matthew’s correlation co-
efficient (MCC) score for the test data.

We took the sampled parameter set with best perfor-
mance (mean MCC score) and varied each parameter indi-
vidually while keeping the rest constant. We measured the
performance change with respect to the change in each pa-
rameter, again by average performance on test data mea-
sured by MCC score for each model. Based on this analysis,
the final hyperparameters that gave the best average perfor-
mance were dropout rate = 0.25, batch size = 60, embed-
ding dimension = 250, pooling type = maximum, pooling
size = 2 and number of neurons in BiLSTM = 64. In ad-
dition, we observed that the performance of deep learning
models depends critically on the choice of kernel size and
the number of filters. Both hyperparameters control how
and what the convolutional network model can learn. In the
result section, we discussed how different models select their
optimal kernel sizes and the number of filters.

Model training and integrating predictions

We integrated the predictions to improve performance,
where each model was trained on a different random split
of the training data and their predictions were summed.
We began by evaluating our models on the benchmark
dataset of 1134 proteins using the hyper parameter opti-
mization step described in the section above to determine
the best performance of a single model. Here, we first split
the benchmark dataset into mutually exclusive sets for train-
ing and validation (80%) and for testing (20%). Then we
made a 90.0–10.0% train-validation split in Python using

the numpy package and a fixed random seed. The test set
was never used for training so that it could be used to esti-
mate generalization performance when conducting experi-
ments and building models. We trained each model on the
training data for 25 epochs, where an epoch is defined as a
single pass through all the training data (45), and we evalu-
ated the trained model with updated parameters on the val-
idation data at the end of each epoch. After training was
complete, we used the model parameters that performed
best on the validation data and tested the model with those
parameters on the test data. We repeated this procedure
with 10 different random splits of the training and valida-
tion data and averaged the results. After the model perfor-
mance was optimized, we integrated all models to conduct
predictions on new datasets. All models were trained using
the Adam optimizer. Neural networks were implemented
with Keras 2.2.4 (https://keras.io/) using Tensorflow back-
end and Python 3.5. For training, we utilized an NVIDIA
GTX 1060 GPU with CUDA 10.2.95 on a Windows 10
workstation to speed up the gradient descent. A single train-
ing run over 25 epochs took only around 1–2 min.

Exploratory analysis and data visualization

We extracted one-hot vectors and embedding vectors of
each amino acid from the trained DeepT3 2.0 model. We
used Uniform Manifold Approximation and Projection
(UMAP) (46)––a common technique for visualizing high-
dimensional data (as implemented in the UMAP-learn R
package uwot (47), with parameters n neighbors: 4 and
mim dist: 0.1), to project the 20 common amino acids in
a 2D space. We also used this tool to visualize the inter-
nal features learned by each deep learning model. Addi-
tionally, the intermediate output from the hidden layers was
extracted for UMAP projection as well. The intermediate
outputs from the hidden layer can represent how the en-
coded proteins in the training data were processed in the
2D-projection. The related parameter set for the intermedi-
ate output’s projection is (n neighbors: 15, mim dist: 0.001).
Here, all UMAP plots were produced using the R and gg-
plot2 package (48).

Comparison on prediction sets

We trained the six deep learning models separately and com-
pared their prediction outputs using an independent test set
containing 108 effectors and 108 non-effectors. To visualize
the differences and similarities among six prediction sets,
we used the Venn diagrams to display their unions and in-
tersections. A list of set unions in Venn diagrams was built
and analyzed by the UpSetR (49).

Comparison with existing methods

In addition to the previous version of DeepT3 (35), 5 other
methods were selected for comparison of predictive perfor-
mances, including Bastion3 (26), BEAN2 (18), pEffect (19),
Effective T3 (14) and BPBAac (20). Most of the methods
were run through their respective websites. For the method
BPBAac, we downloaded the Perl and R scripts and run lo-
cally on our computers using the default parameters.

https://keras.io/
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Bacterial genome visualization

We applied DeepT3 2.0 to the whole-genome of Gram-
negative bacteria Chlamydia trachomatis. All RefSeq pro-
teins and predicted effectors were mapped to their corre-
sponding positions on the circular genome using the blastx
searches. All known coding sequence, tRNA and rRNA
were also mapped on the corresponding DNA strand of
the genome. We generated the graphical map of circular
genome that shows sequence features, base composition
plots and predicted results using the CGView Server (50).

Predictive performance metric calculation

Prediction performance of all T3SE detection algorithms
was measured using recall, precision (PRE), accuracy
(ACC) and the Matthew’s correlation coefficient (MCC).
These performance metrics are calculated as:

Recall = T P
T P + F N

(1)

PRE = T P
T P + F P

(2)

ACC = T P + TN
T P + F P + TN + F N

(3)

MCC = (T P × TN) − (F N × F P)
√

(T P + F N) × (TN + F P) × (T P + F P) × (TN + F N)
(4)

In the above equations, TP, FP, TN and FN represent
true positives, false positives, true negatives and false nega-
tives, respectively. Each of these metrics has different prop-
erties (51). Recall measures the proportion of true positives
among all truly positives, where precision measures the pro-
portion of true positives among all positively predicted re-
sults. The accuracy denotes the proportion of true results
(true positives and true negative) among the total number of
outcomes. The Matthew’s correlation coefficient is the dis-
crete case for Pearson Correlation Coefficient, which refers
to the quality of the binary classification by considering true
and false positives and true and false negatives (52).

To further evaluate the performance of deep learning
models, receiver operator characteristic (ROC) curves and
the areas under ROC curves (AUC) were utilized. The ROC
curves evaluate the change in true positive rate with respect
to the false positive rate of a predicted class label in accor-
dance with all possible thresholds of a classification score
that can be interpreted as probabilities. The AUC scores are
calculated based on the area under ROC curves using trape-
zoidal rule. The value of the AUC falls in the interval of [0,
1], where a perfect classification would read a score of 1 and
a random guessing would reach a sore of 0.5. We plotted the
ROC curves and calculated the AUC metrics using R pROC
package (53).

RESULTS

Overview of the DeepT3 2.0

The DeepT3 2.0 integration framework is shown in Fig-
ure 1A and described in the Materials and methods sec-

tion. Briefly, we aimed to improve upon previous T3SE pre-
diction methods by developing a tool by integrating differ-
ent deep learning models instead of using a single model.
Consequently, we constructed six models involving two
types of data encodings: one-hot and embedding encod-
ings, and four types of neural networks: convolutional, re-
current, convolutional-recurrent and multilayer neural net-
works. For each protein, we encoded the amino acids us-
ing the one-hot and embedding matrices so that each po-
sition in the sequence became two vectors of length 20
and 256, respectively, containing the information about the
co-occurrences of amino acids (Figure 1B). The architec-
tural components of four types of neural networks were
mainly consisting of the following types of layers: convo-
lution, recurrent, maxpooling and fully connected layers
(Figure 1C). We designed different model architectures that
were of varying layers and connections, and further ex-
amined whether network hyperparameters influenced pre-
dicting T3SEs. Several published studies have shown that
the N-terminal sequences are adequate for the identifica-
tion of T3SEs (20,24,35), we therefore tested whether T3SE
prediction could be refined by learning directly from first
100 N-terminal residues of proteins, instead of full-length
sequences. To prevent information leaking, the sequences
were clustered to remove redundancy from the training, val-
idation and test sets by using CD-HIT (38). We evaluated
the performance of individual models and of their integra-
tion into DeepT3 2.0.

Effect of hyperparameters on performance

We first explored the influence of two hyperparameters on
prediction performance of four convolution-based models.
Then a grid hyperparameter search for each model was per-
formed on the validation set, and the top-performing tuned
models were generated and evaluated on the test set after-
ward. Specifically, we tried a range of kernel size from 3 to
11 in steps of 2, and a range of filter number from 50 to 250
in steps of 50. Optimization results based on MCC for each
of the four models are shown in Supplementary Figure S1.

For these models, hyperparameters tuning on the filter
number and kernel size offered significant performance in-
creases. The maximum increase on MCC across models
ranged from 0.060 for CNN(onehot) to 0.322 for CNN-
RNN(onehot). When utilizing the best hyperparameters,
CNN-RNN(dictionary), CNN(dictionary), CNN(onehot)
and CNN-RNN(onehot) achieved the highest MCC val-
ues of 0.830, 0.798, 0.743 and 0.662, respectively. In addi-
tion, the performance of CNN-RNN(onehot) was found to
be highly sensitive to the choice of filter number. We ob-
served no statistically significant difference in performance
between the kernels (pairwise P values for MCC ranged be-
tween 0.66 and 0.98), but the performance dropped sharply
as the filter number increased. We also evaluated the effect
of the number of convolutional layers on performance (Sup-
plementary Figure S2). The CNN-RNN(dictionary) with
single-layer architecture showed better prediction perfor-
mance, indicating that adding more convolutional layers
would not improve performance for this dataset.
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Figure 1. Overview of the DeepT3 2.0 framework. (A) Detailed description of the RNN(dictionary), CNN-RNN(dictionary), CNN(dictionary),
CNN(onehot), CNN-RNN(onehot) and MLP(onehot) models. The six different models are integrated using a unified framework that uses amino acid se-
quence of interest as input, and output the prediction of the protein being a T3SE or non-T3SE. (B) One-hot and embedding encoded amino acid sequence
matrices. (C) Illustration of different network layers.

Performance comparison of various models

We evaluated and compared six deep learning models,
which were optimized and represented the best from
each proposed architecture, using the held-out test set.
Prediction performance was measured using the accu-
racy, precision, recall and Matthew’s correlation coef-
ficient metrics. We summarize the benchmark results
in the Figure 2A, where the asterisk on the right of
the bars shows the best performance among the mod-
els for each metric. Overall, for models trained with
N-terminal sequences, RNN(dictionary) showed superior

performance for all the metrics, with an accuracy of
0.920. The CNN-RNN(onehot) showed the lowest per-
formance, obtaining an accuracy of 0.849. The accu-
racy of the remaining four models, including CNN-
RNN(dictionary), CNN(dictionary), CNN(onehot) and
MLP (onehot), was 0.916, 0.905, 0.879 and 0.864, respec-
tively. The RNN(dictionary) shows the best performance
because the N-terminal residues appear to provide targeting
information for T3SE translocation or secretion, while bidi-
rectional approach of LSTM is the best candidate for pro-
tein sequences containing secretion signals due to its previ-
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Figure 2. Comparison of models. (A) Performance of six deep learning models trained using two different sequence lengths. (B) ROC curves are shown for
each model and separately for N-terminal sequence (left) and full-length sequence (right).

ous memory recalling capability. To assess the effect of se-
quence length on predictive power, we repeated the training
and testing experiment using the full-length sequence. The
new models achieved no statistically significant difference
in all metrics compared to using N-terminal sequences (P-
values for accuracy, recall, precision and MCC were 0.879,
0.967, 0.930 and 0.941, respectively). The RNN(dictionary)
was also the best one across all metrics with the exception
of recall, where MLP(onehot) showed the highest value
(Figure 2A). The second to fifth ranked performance was
CNN-RNN(dictionary), CNN(dictionary), CNN(onehot)
and MLP (onehot), respectively. The CNN-RNN(onehot)
had the lowest performance in all the metrics, but with a
high precision of 0.943.

The receiver operating characteristic (ROC) curves were
exploited to evaluate the overall performance of models,
which indicate how effectively the probabilities of T3SEs
are differentiated from non-T3SEs (Figure 2B). Regarding
area under ROC curves (AUC), the performance of all mod-

els varied between 0.887 and 0.954, with a median score of
0.934. Collectively, the above results provide the first com-
prehensive comparison of deep learning models for the clas-
sification between T3SEs and non-T3SEs.

Visualizing the hidden feature representations of deep learn-
ing models

To interpret a deep learning model and explain its predic-
tions, we visualized the representations of residues and pro-
teins learned by the models in the two-dimensional uniform
manifold approximation and projection (UMAP) space
(46). First, we ran UMAP on the trained amino acid em-
bedding and one-hot vectors simultaneously (Figure 3A).
UMAP learned to embed similar activation pattern residues
close to each other, while dissimilar residues were embedded
far. On the embedding vector projection, UMAP visually
revealed three main amino acid clusters. One was composed
of eight residues (close to the top left), including alanine
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Figure 3. Visualization of learned features. (A) Two-dimensional UMAP maps of 256-dimensional embedding vectors and 20-dimensional onehot vectors,
colored according to amino acid type. (B) UMAP visualization of inter-layer evolution. Four CNN-RNN(onehot) hidden layers after training. Data points
are colored based on their true class label, where T3SEs and non-T3SEs are represented by red and blue points, respectively. (C) Comparison of the last
hidden layer representations of the training sequences for the six deep learning models.

(A), glutamic acid (E), arginine (R), aspartic acid (D), me-
thionine (M), lysine (K), histidine (H) and glutamine (Q).
Five residues clustered in the center corresponding respec-
tively to serine (S), asparagine (N), proline (P), threonine
(T) and glycine (G). The last cluster contained remaining
seven residues and appeared in the bottom right of embed-
ding space. In contrast, UMAP identified no cluster on the
one-hot vector projection, notably splitting residues into
discrete points. This is consistent with the previous obser-
vation that one-hot vector is much sparser than embed-
ding vector (Figure 1B). To further elucidate model’s inner
workings or shed light on its internal representations, we
visualized the T3SEs and non-T3SEs based on the features
learned at different network layers of CNN-RNN (onehot).
As shown in Figure 3B, the features become more and more
discriminative along the layer hierarchy, with T3SEs and
non-T3SEs mixed without a clear decision boundary at the
input layer, culminating with a clear visual separation be-
tween classes in the BiLSTM layer. These results reveal that
deep learning models have gradually learned sequence de-
terminants in the inter-layer evolution. We further showed

the projections of the last hidden layers representations of
all models. By color-coding the protein representations, we
observed that UMAP clearly separated T3SEs and non-
T3SEs into two distinct clusters on the projections of train-
ing set (Figure 3C) and test set (Supplementary Figure S3),
indicating the robustness and good generalization of mod-
els.

DeepT3 2.0 improves performance by integrating predictions

We asked whether T3SE prediction across models could be
used to create a meta-predictor with even higher accuracy
and coverage. We hypothesized that a protein supported by
most models would be more likely to be a T3SE than a pro-
tein supported by only a few or no models. To confirm this
speculation, we selected the Bastion3 independent set of 108
T3SEs and 108 non-T3SEs for initial analysis (26), as it has
the most abundant and balanced test data for existing pre-
diction methods. We assessed the performance of six models
on the new test set (Supplementary Figures S4 and S5) and
visualized all positive prediction sets and their intersections
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quantitatively (Figure 4A). We found that 69.4% of the pre-
dictions were consistent across all models, while 20 of the
108 T3SEs were correctly identified by only one particular
model. These observations imply that different deep learn-
ing models learn different sets of features that can comple-
ment each other for the task of identifying T3SEs. There-
fore, we derived a voting-based score for a protein based on
its predictions by the different models. This score represents
the minimum number of models that support a protein as a
T3SE. We optimized this score and tested the influence of
its values on the performance of the integrating predictions.
From the Figure 4B, we saw that the ACC and MCC values
were highest when the score was equal to 4. So we consid-
ered T3SEs as those with score ≥ 4 and the non-T3SEs as
those having a score <4. Using the new score, integrating
predictions gave improvements over each model taken in-
dividually, with improved ACC and MCC values ranging
from 0.009 to 0.069 and from 0.003 to 0.131, respectively.

To detect the latent overfitting of the model, we have gen-
erated the learning curve by resampling the data and refit-
ting the untrained models. The training dataset was resam-
pled to 20%, 40%, 60%, 80% and 100% of the original scale.
The independent test dataset was not changed. At every
scale, a 5-fold cross validation on training dataset and inde-
pendent test on independent test dataset were performed for
comparing the ACCs and MCCs. To gain the robustness of
the comparison, we repeated 10 times of the training/testing
comparison of every scale. As the result in Supplementary
Figure S6, the learning curve increased gradually after the
scale >0.6, and the standard variance (reflected by the semi-
transparent shape) reduced to nearly 0.01 finally. The differ-
ence between cross validation and independent test shown
that there is not a significant overfitting of this model since
the difference is only about 5% and the tendency of the
curves are the same.

Based on the finding above, we developed a new tool
to better predict T3SEs called DeepT3 2.0. We compared
DeepT3 2.0 with six existing methods that can also ap-
ply to this task: Bastion3 (26), BEAN2 (18), pEffect (19),
Effective T3 (14), BPBAac (20) and DeepT3 (35). Bench-
marking on the Bastion3 independent test set, the Bas-
tion3 method was proved to be the best predictor with an
accuracy equal to 0.977 (Figure 4B). DeepT3 2.0 fell be-
hind Bastion3 but performed better than other predictors
with an accuracy of 0.903. The performance of Bastion3
and DeepT3 2.0 was followed by BEAN2 (0.879), pEffect
(0.875), DeepT3 (0.815), Effective T3 (0.759) and BPBAac
(0.634). Next, all methods were evaluated and compared us-
ing the P. syringae independent set. The ratio of T3SE to
non-T3SE in P. syringae independent set is approximately
1: 22, which is a clear class imbalance. DeepT3 2.0 had the
best T3SEs and non-T3SEs discrimination across all met-
rics in the P. syringae benchmark, except for recall, for which
it ranked third after Bastion3 and BEAN2 (Figure 4C). Bas-
tion3 had the highest recall, and the second highest accu-
racy and MCC values. Of all the methods tested, Effec-
tive T3 achieved the lowest accuracy, precision and MCC
metrics. Collectively, the above results demonstrate the util-
ity of integrative strategy in improving predictive accuracy
and establish DeepT3 2.0 as an effective method to identify
T3SEs.

DeepT3 2.0 outperforms other methods for Gram-negative
bacterial secretome prediction

We benchmarked the performance of five methods across
seven secretion system datasets used for the specificity eval-
uation. These datasets used in this study vary in the sample
size and secretion type, to represent different levels of chal-
lenges in the classification task and to evaluate how each
method performs in each case. The specificity was calcu-
lated as: Specificity = TN/N, where ‘TN (true negative)’ is
the number of correctly predicted non-T3SEs, and ‘N (neg-
ative)’ is the number of non-T3SEs shown. Figure 5 shows
the performance of all methods on seven selected classes of
secreted proteins. DeepT3 2.0 demonstrated superior speci-
ficity compared with other methods across all types of se-
creted proteins, although Effective T3 achieved the high-
est specificity in T2SP. Specifically, DeepT3 2.0 achieved
a specificity of 83.2%, 87.7%, 76.9%, 82.6%, 87.5%, 96.2%
and 66.7% for predicting non-T3SE for T1SP, T2SP, T4SP,
T5SP, T6SP, T7SP and T8SP, respectively. The performance
of BEAN2 and pEffect on T4SP was worse than other meth-
ods, with a specificity of 21.5% and 16.9%, respectively. Bas-
ton3 performed poorest among all methods on T5SP, below
the average value with a specificity of 34.8%. In addition,
pEffect and Bastion3 failed to correctly predict the three
T8SPs. The otherwise successful methods BEAN2, pEffect
and Bastion3 performed relatively poor for T4SP, T5SP
and T8SP, probably because some of these effectors share
similar evolutionary conserved profiles and sequence mo-
tifs with T3SP, which poses a challenge to distinguish them
accurately. Collectively, these results indicate that DeepT3
2.0 can predict secreted proteins across all secretion systems
and classify them as a negative class with a high accuracy.

Performance of DeepT3 2.0 in whole-genome prediction

We used DeepT3 2.0 to analyze a well-annotated reference
genome of Chlamydia trachomatis, one of the world’s most
common pathogenic bacteria that has been associated with
prevalent bacterial sexually transmitted infection (41). We
first measured the execution time of DeepT3 2.0 across data
subsamples of sizes ranging from 100 to 1774 proteins (Fig-
ure 6A). Across all ranges of subsample sizes, DeepT3 2.0
appeared consistently fast, taking about 5 s for subsamples
of size 100 and 16 s for all 1774 proteins. The running time
of DeepT3 2.0 for genome-wide prediction is short because
the processing of individual protein sequences by DeepT3
2.0 is not dependent on the length of the protein sequence.
In fact, DeepT3 2.0 completed the entire prediction pro-
cess with only the N-terminal 100 amino acids. Moreover,
DeepT3 2.0 detected 14 of the 21 experimentally verified ef-
fectors. DeepT3 2.0 also found new 186 effectors with high
probability, and these may be interesting candidates for ver-
ification (Figure 6B and Supplementary Table S1). To com-
pare DeepT3 2.0 with other methods for large-scale predic-
tion, we applied another tool, Effective T3, to search for
putative effectors using the optimal probability threshold.
The application of Effective T3 to this genome resulted in
more predicted effectors (322 of the 1774 proteins), includ-
ing the 14 known effectors (Figure 6B). We further con-
ducted Gene Ontology (GO) term enrichment analysis (54)
to functionally characterize the predicted effectors and to
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Figure 4. Performance of the integrated model. (A) The intersection diagram of T3SEs for the six deep learning models. The horizontal histogram shows
the number of T3SEs of each model, while the vertical histogram shows the size of different intersections of these six T3SEs sets. (B) Effect of the voting-
based score in the Bastion3 independent set on integrated model’s performance. Performance is measured using the MCC detection and accuracy metric.
(C and D) Benchmarking DeepT3 2.0 performance against existing T3SEs prediction algorithms with independent Bastion3 and P. syringae test sets,
respectively.

analyze the functional prevalence among the effectors. The
GOanna tool, developed as a part of AgBase resource (55)
was used for GO enrichment analysis. The GO terms of pre-
dicted effectors are mainly associated with enzyme regula-
tor activity, such as ‘thiol-dependent ubiquitin-specific pro-
tease activity’, ‘peptidase activity’, ‘cysteine-type peptidase
activity’, ‘hydrolase activity’ and ‘NEDD8-specific protease
activity’ (Supplementary Table S2). We finally visualized the
relationships between genome features and the distributions
of predicted effectors in the Chlamydia trachomatis genome
(Figure 6C).

DISCUSSION

Bacteria have evolved a variety of highly specialized pro-
tein transport nanomachines, also known as secretion sys-
tems, which can export numerous effector proteins into the
target eukaryotic cell cytoplasm or the plasma membrane

(3). These secreted effectors modulate or subvert specific
host cell functions, thereby promoting bacterial adhesion,
adaptation and survival (16). Understanding the link be-
tween effector sequences and secretory origins is a key chal-
lenge for understanding the complex mechanisms of pro-
tein secretion and its role in the interaction between bacteria
and their environment and other organisms. Many methods
have been developed to elucidate the relationship between
secreted effectors and secretion systems (14–28,56,57). Us-
ing the XGBoost algorithm to extract the features solely
from PSSM profiles, Ding et al. introduced an SVM-based
classifier-iT3SE-PX, to improve the prediction performance
on T3SEs with only protein sequences (58). By integrating
the advantages of multiple homology-based biological fea-
tures and various machine learning algorithms, Hui et al.
recently suggested a unified prediction pipeline-T3SEpp, to
more accurately identify T3SEs in novel and existing bac-
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Figure 5. Performance comparison of T3SE prediction methods on seven secretion system effectors in Gram-negative bacteria using the specificity detection
as metric. The number of proteins tested is shown in parentheses.

terial whole-genome sequences (59). More recently, Wang
et al. proposed a universal platform of Gram-negative se-
creted substrates-BastionHub, which is not only the most
comprehensive online database but also helpful for in-depth
analysis of five major types of secreted substrates such as
the type I, II, III, IV and VI secreted proteins (60). Further-
more, there have been several excellent reviews on machine
learning algorithms and protein characterization methods
for T3SE predictions (61–64).

In this study, we developed DeepT3 2.0, a new deep
learning framework using various neural network models
trained on protein sequences to accurately predict Gram-
negative bacterial type III secreted effector in a genome-
wide unbiased manner (Supplementary Figure S7). We have
performed a comprehensive assessment of four types of
neural networks in their ability to distinguish T3SEs from
non-T3SEs using the same benchmark dataset. Our results
suggest that the RNN model with BiLSTM units is the
best performing deep learning approach on this classifica-
tion task. The performance of CNN-RNN varies when us-
ing different encoding methods. The CNN performs bet-

ter than MLP but shows worse overall performance than
RNN. We have also explored the influences of two encod-
ing methods (one-hot encoding and embedding encoding)
and two sequence lengths (N-terminal sequence and full-
length sequence) on model performance. In our analysis,
we found that the embedding encoding is a better feature
representation, preserving the primitive sequences in com-
parison with the one-hot format. The most obvious exam-
ple is the CNN-RNN model, where CNN-RNN(dictionary)
performs the second best, while CNN-RNN(onehot) per-
forms the worst. In addition, we observed that the top three
best-performing models are all embedding-based models.
Various model architectures with different sequence lengths
have been evaluated; we set the lengths of N-terminal and
full-length sequences to 100 and 2500, where two num-
bers were chosen to fit the maximal secretion or translo-
cation signal and the longest sequence in the dataset, re-
spectively. If the length of sequences exceeds 100 or 2500
amino acids, the excess will be ignored; otherwise the ‘X’
character (unknown residue, encoded as a zero vector) will
be padded at the tail of the sequence to fit the set length.
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Figure 6. The application of DeepT3 2.0 to whole-genome prediction in the Chlamydia trachomatis genome. (A) Run times of DeepT3 2.0 for inputs of
varying sizes. (B) Detailed proportions of predicted effector for two T3SE prediction methods. (C) Visualizing features, ORFs, start and stop codons
of Chlamydia trachomatis genome and comparing all RefSeq proteins and DeepT3 2.0 predicted effectors. The proteins are mapped according to their
corresponding positions on the circular bacterial genome.

Despite the differences in parameter scale and run time,
we did not observe a statistically significant difference in
performance among the six different deep learning models
trained using different sequence lengths. However, we noted
that training time is a limiting factor for models trained
on long sequences. In practice, using full-length sequences
to train models requires more running time and consumes
more computational power. Considering these factors, we
chose the N-terminal sequence to develop the subsequent
integration tool. We hope the summary of these deep learn-
ing methods, the detailed comparison results, and the rec-
ommendations and guidelines for model construction can
assist researchers in the development of their own new
methods.

Despite the superior performance of deep learning meth-
ods, there are limitations including interpretability and vi-
sual analysis. Usually, a deep learning model is treated as
a ‘black-box’ model, which only maps a given input to
a classification output. Without a clear understanding of

how and why these neural networks work, the development
of high-quality deep learning models typically relies on a
substantial amount of trial-and-error. To tackle these chal-
lenges, in the present study we have applied a dimensional-
ity reduction technique (UMAP) to interpret and visualize
what the model has learned. We show in detail how to vi-
sually track the inter-layer evolution of learned representa-
tions to understand the model behavior. We also show how
visualizations can be used to explain the model’s predictions
and provide insightful feedback for model design and diag-
nosis. Our proposed visualization strategy can be extended
for any types of networks.

In conclusion, we have demonstrated that DeepT3 2.0
has the potential to be a powerful tool for a large-
scale prediction of T3SEs. We expect DeepT3 2.0 (http:
//advintbioinforlab.com/deept3/) will make better utiliza-
tion of the vast amount of existing well-annotated bacterial
genomes and enable researchers to accurately identify and
annotate T3SEs in their studies.

http://advintbioinforlab.com/deept3/
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