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Catalytic enantioselective oxidative coupling of
saturated ethers with carboxylic acid derivatives
Gang Wang1, Xiaodong Xin2, Zehua Wang2, Gang Lu2, Yudao Ma2 & Lei Liu 1,2

Catalytic enantioselective C–C bond forming process through cross-dehydrogenative cou-

pling represents a promising synthetic strategy, but it remains a long-standing challenge in

chemistry. Here, we report a formal catalytic enantioselective cross-dehydrogenative cou-

pling of saturated ethers with diverse carboxylic acid derivatives involving an initial oxidative

acetal formation, followed by nickel(II)-catalyzed asymmetric alkylation. The one-pot, gen-

eral, and modular method exhibits wide compatibility of a broad range of saturated ethers not

only including prevalent tetrahydrofuran and tetrahydropyran, but also including medium-

and large-sized cyclic moieties and acyclic ones with excellent enantioselectivity and func-

tional group tolerance. The application in the rapid preparation of biologically active mole-

cules that are difficult to access with existing methods is also demonstrated.
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The cross-dehydrogenative coupling (CDC) of two readily
available C–H components has emerged as a powerful
approach for C–C bond construction whereby the only loss

is H2 formally1–3. The design of the catalytic asymmetric variant
is particularly attractive, but remains a challenging task4–6.
Although impressive progress has been made in enantioselective
CDC during the last decade, current studies predominantly
focused on N-arylated amine7–19 and xanthese substrates20–25. In
contrast, enantioselective CDC of ethers has remained scarce, and
the unique existing two examples still focused on specific, acti-
vated benzylic and allylic ethers26,27. Our group described an
enantioselective bimolecular CDC of cyclic benzylic ethers and
aldehydes with high enantioselectivity26. Scheidt reported a
delicate asymmetric intramolecular CDC of allylic ethers with
appended β-keto esters, providing substituted tetrahydropyran-4-
ones with excellent diastereo- and enantioselectivities27. On the
other hand, optically pure saturated ethers with diverse α-alkyl
substitutions represent ubiquitous structural motifs in numerous
bioactive natural products and synthetic pharmaceuticals28–30.
However, each catalytic asymmetric method is typically suitable
for a single class of tetrahydrofuran (THF), tetrahydropyran
(THP), or acyclic ether skeleton with a specific α-alkyl substitu-
tion pattern31–46. A general and modular catalytic enantioselec-
tive method to rapidly access saturated ethers with diverse
skeletons and α-alkyl substituent patterns from readily available
starting materials has remained elusive. Diverse saturated ether
skeletons are basic feedstocks, and many of which, such as THF,
THP, and diethyl ether, are daily used solvents in both academia
and industry. Therefore, the development of catalytic asymmetric
synthetic method starting from such abundant, low value che-
mical resources and sp3 C–H components is highly desirable.
Herein, we report a formal catalytic enantioselective CDC of
saturated ethers and carboxylic acid derivatives. The one-pot
method exhibits wide compatibility of a broad range of saturated
cyclic and acyclic ethers with excellent enantioselectivity. The
application in the rapid preparation of biologically active mole-
cules that are difficult to access with existing methods has also
been demonstrated.

Results
Reaction design. Presumably, two major challenges hamper the
design of catalytic asymmetric oxidative coupling starting from
saturated ethers. First, due to the low reactivity of saturated
ethers, the C–H cleavage process requires strongly oxidative
conditions, making the compatibility with delicate asymmetric
catalysis system difficult to achieve47. Second, while catalytic
asymmetric addition to aromatic oxocarbenium ions has received
considerable attentions48–53, the lack of any site on non-aromatic
oxocarbenium ions for substrate–catalyst interactions makes
asymmetric synthesis of α-substituted saturated ethers via such
intermediates remains elusive54–56. Herein, we communicate a
one-pot catalytic asymmetric synthetic method involving a broad
range of saturated ethers and diverse carboxylic acid derivatives
as starting materials. The one-pot synthetic method was designed
as follow: saturated ether reacting with a combination of a protic
additive and peroxide furnished a racemic acetal, which then
ionized to corresponding oxocarbenium intermediate for enan-
tioselective C–C bond forging process.

Reaction condition optimization. The reaction of THF (1a) and
acetyloxazolidinone 2a was selected for optimization using
bisoxazoline L1/Mg(ClO4)2 as chiral catalyst (Table 1)57–61. An
initial survey revealed that oxidation of THF with hexanoic acid
proceeded smoothly in the presence of tBuOOH and a suitable
additive, including TBAI, Fe(acac)3, Cu(acac)2, Cu(OAc)2, and

CuOAc62. However, these catalytic amount of additive exhibited a
dramatic effect on the subsequent enantioselective C–C bond
forming reaction in the presence of BF3·OEt2/2,4,6-collidine, and
CuOAc was identified to be optimal, providing expected 3a in
14% yield with 17% ee as a separable mixture of diastereomers (d.
r.= 50:50) (entries 1–5, Table 1). Lowing the loading of CuOAc
afforded an improved reaction efficiency and ee (entry 6, Table 1).
Acetyloxazolidinethione 2aa proved to be a better component
with regard to ee and yield (entry 7, Table 1). An extensive
investigation of the combination of Lewis acid with chiral ligands
L1-L6 revealed that diphosphine L6 and Ni(OTf)2 provided the
highest yields and enantiocontrol (entries 8–17, Table 1). By
using pre-prepared L6·Ni(OTf)2 as catalyst, the yield increased
from 55% to 61% without detriment to ee (entry 18, Table 1). By
increasing the loading of BF3·OEt2, the enantioselectivity and
yield were improved to 90% and 86%, respectively (entry 19,
Table 1). The reaction was also highly dependent on the solvent
choice, and the nucleophilic addition stage worked the best in a
mixed THF/CH2Cl2 (entry 20, Table 1). The effect of protic
additives was further explored, and reaction with PhCOOH
furnished the product in 81% yield and 98% ee as a 67:33 mixture
of diastereomers, which were separable through silica gel chro-
matography (entry 21, Table 1). The combination of BF3·OEt2/
2,4,6-collidine proved to be crucial to the expected reactivity (See
Supplementary Table 1). No desired product was detected when
BF3·OEt2 was replaced with TMSOTf or 2,4,6-collidine with dii-
sopropylethylamine. Lowering the reaction temperature for the
asymmetric C–C bond forming process did not provide any
improvement on the diastereoselectivity (entry 22, Table 1).

Scope of acetic acid derivatives. The scope of acetic acid deri-
vatives was then explored (Fig. 1). A variety of electron-donating
and -withdrawing substituents at the ortho-, meta-, and para-
positions of the aryl ring were well compatible with the reaction
conditions, providing respective α-aryl acetamide substituted
THF 3a–3l in good yields with moderate diastereoselectivity and
excellent enantioselectivity (93–98% ee) for both isomers. (α-
Heteroaryl) 3o, as well as (α-nathphyl)acyl oxazolidinethiones 3m
and 3n were suitable components in high enantioselectivities. N-
phenylacyl thiazolidinethione was also well tolerated, as demon-
strated by the generation of 3p in 96% ee.

To further expand the synthetic utility of the method, we next
investigated the possibility of α-alkenyl acetic acid derivatives as
coupling components (Fig. 2). Thiazolidinethione 3r was superior
to oxazolidinethione 3q in terms of ee and yield. In general, the
reaction exhibited excellent regioselectivity, and the alkylation
occurred exclusively at the α-position of 3-butenoyl derivatives
with olefin geometry highly conserved. Electronically varied γ-
aryl substituted 3-butenoyl 2s and 2t together with γ-alkyl
substituted 2u–2x were competent components, providing
corresponding 3s–3w in good yields with 90–96% ee. γ-
Disubstituted 2y and 2z were also well tolerated in excellent
enantiocontrol. The method had an excellent functional group
tolerance, with common functionalities including terminal alkyne
(3ba), benzoate (3bb), silyl ether (3bc), halide (3bd), and azide
(3be) well tolerated in 90–92% ee for further manipulation. No
expected product 3bf was observed when α-alkyl acetic acid
derivative 2bf was used as the coupling partner.

Scope of saturated ethers. The scope of saturated cyclic ethers
was next examined (Fig. 3). Under the standard conditions, 1,1-
disubstituted THF proved to be competent substrates, furnishing
trisubstituted THF 4a–4c in good yields with 94–96% ee and
moderate d.r.. Enantioselective reaction of THP with α-aryl and
α-vinyl substituted acetic acid derivatives also proceeded
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smoothly, giving corresponding 4d–4j with excellent enantio-
control. The success in the prevalent THF and THP frameworks
encouraged us to further investigate the feasibility of enantiose-
lective functionalization of larger cyclic ethers. Delightedly,
medium-sized cyclic, aliphatic ethers, such as oxepane and oxo-
cane, were tolerated, providing 4k and 4l in 96% ee and 92% ee,
respectively. Albeit slightly decreased efficiency, large-sized cyclic,
saturated ethers were also identified as competent substrates, as
demonstrated by the generation of 13-membered 4m and 16-
membered 4n in 96% ee and 95% ee. Although the scope of
saturated cyclic ethers was not exclusively investigated, these
results provide a proof-of-concept for the generality and mod-
ularity of the asymmetric synthetic method.

The tolerance of large-sized, cyclic ether prompted us to
further explore the generality of the method for acyclic saturated
ethers (Fig. 4). Pleasingly, enantioselective reaction of commonly

used solvents, such as diethyl ether, dipropyl ether, and dibutyl
ether, with 2aa proceeded smoothly, providing 6a–6c in good
yields with 90–94% ee. Aside from symmetric acyclic ethers,
unsymmetric ones also proved to be suitable substrates, as
demonstrated by the highly enantioselective reaction of methyl n-
butyl ether (6d) and methyl n-hexyl ether (6e). The reaction
exhibited excellent regioselectivity, and no substitution at primary
C–H bond was observed. Acyclic ethers bearing a variety of
commonly encountered functional groups, such as ether (6f),
halide (6g), and acetate (6h), were also well tolerated for further
manipulation. No improvement on the diastereoselectivity was
observed when bulky tert-butyl ethyl ether (6i) was employed.

Synthetic applications. The synthetic utilities of the method was
next explored (Fig. 5). First, the oxa- and thiazolidinethione

Table 1 Reaction condition optimizationa
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Entry L/Lewis acid Additive Yield (%)b d.r.c ee (%)d

1 L1/Mg(ClO4)2 TBAI <5 n.d. n.d.
2 L1/Mg(ClO4)2 Fe(acac)3 7 50:50 6/9
3 L1/Mg(ClO4)2 Cu(acac)2 9 50:50 10/12
4 L1/Mg(ClO4)2 Cu(OAc)2 11 50:50 13/14
5 L1/Mg(ClO4)2 CuOAc 14 50:50 17/16
6e L1/Mg(ClO4)2 CuOAc 19 50:50 23/21
7e,f L1/Mg(ClO4)2 CuOAc 27 51:49 28/26
8e,f L1/Ni(ClO4)2 CuOAc 25 55:45 34/35
9e,f L1/Cu(ClO4)2 CuOAc <5 n.d. n.d.
10e,f L2/Ni(ClO4)2 CuOAc 21 54:46 26/23
11e,f L3/Ni(ClO4)2 CuOAc <5 n.d. n.d.
12e,f L4/Ni(ClO4)2 CuOAc 40 53:47 49/46
13e,f L5/Ni(ClO4)2 CuOAc 38 55:45 60/61
14e,f L6/Ni(ClO4)2 CuOAc 50 62:38 79/78
15e,f L6/NiBr2 CuOAc <5 n.d. n.d.
16e,f L6/Ni(OTf)2 CuOAc 54 64:36 82/81
17e,f L6/Ni(SbF6)2 CuOAc 55 63:37 80/80
18e,f,g L6·Ni(OTf)2 CuOAc 61 64:36 82/81
19e,f,g,h L6·Ni(OTf)2 CuOAc 86 66:34 90/88
20e,f,g,h,i L6·Ni(OTf)2 CuOAc 80 68:32 96/95
21e,f,g,h,i,j L6·Ni(OTf)2 CuOAc 81 67:33 98/98
22e,f,g,h,i,j,k L6·Ni(OTf)2 CuOAc 12 66:34 96/97

n.d., not determined
aReaction condition: hexanoic acid (0.5 mmol, 2.5 equiv), additive (0.02mmol, 10 mol%), and tBuOOH in decane (0.5 mmol, 2.5 equiv) in THF (1 mL) at 80 °C for 2 h, followed by addition of 2a
(0.2 mmol, 1.0 equiv), L (0.024mmol, 12 mol%), Lewis acid (0.02mmol, 10 mol%), 2,4,6-collidine (0.6 mmol, 3.0 equiv), and BF3·OEt2 (0.6 mmol, 3.0 equiv) in CH2Cl2 (0.4 mL) at rt for 2 h, unless
otherwise noted
bIsolated yield of the two diastereomers
cDetermined by 1H NMR spectroscopy
dDetermined by chiral HPLC analysis
eCuOAc (0.005mmol, 2.5 mol%) used
fAcetyloxazolidinethione 2aa used
gPre-prepared L6·Ni(OTf)2 used
hBF3·OEt2 (0.8 mmol, 4.0 equiv) used
iTHF/CH2Cl2 (3:1, v/v) as solvent for nucleophilic addition step
jPhCOOH instead of hexanoic acid as protic additive
kAsymmetric nucleophilic addition reaction performed at 0 °C
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Fig. 2 The scope of α-alkenyl acetic acid derivatives. Conditions: PhCOOH (0.5 mmol, 2.5 equiv), CuOAc (2.5 mol%), tBuOOH in decane (2.5 equiv) in THF
(1.0 mL) at 80 °C for 2 h, followed by 2 (1.0 equiv), L5·Ni(OTf)2 (10mol%), 2,4,6-collidine (3.0 equiv), and BF3·OEt2 (4.0 equiv) in CH3CO2CH3/CH2Cl2
(0.3 mL/0.1 mL) at rt for 2 h
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Fig. 1 The scope of α-aryl acetic acid derivatives. Conditions: PhCOOH (0.5 mmol, 2.5 equiv), CuOAc (2.5 mol%), tBuOOH in decane (2.5 equiv) in THF
(1.0 mL) at 80 °C for 2 h, followed by 2 (1.0 equiv), L6·Ni(OTf)2 (10mol%), 2,4,6-collidine (3.0 equiv) and BF3·OEt2 (4.0 equiv) in THF/CH2Cl2 (0.3 mL/
0.1 mL) at rt for 2 h

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08473-x

4 NATURE COMMUNICATIONS |          (2019) 10:559 | https://doi.org/10.1038/s41467-019-08473-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


1

+

R'
N

O

X

S

2

tBuOOH, CuOAc
PhCO2H, 80 °C

then L6•Ni(OTf)2
BF3•OEt2, 2,4,6-collidine

CH2Cl2, rt, 2 h 4
R'

N

O

X

S
n

4a, 76%, d.r. = 3.5:1
95% ee / 95% ee

H
O H

R

R

n

O

R

R H

4d, 60%, d.r. = 1.9:1
96% ee / 96% ee

Ph
N

O

O

S

O
H

4g, 63%, d.r. = 2.5:1
94% ee / 94% ee

N

O

S

S

O
H

O
Ph

N

O

O

S

H

Et

Et

4b, 77%, d.r. = 3.8:1
94% ee / 95% ee

O
Ph

N

O

O

S

H

4c, 72%, d.r. = 4:1
95% ee / 96% ee

O
Ph

N

O

O

S

H

4e, 56%, d.r. = 2:1
94% ee / 95% ee

N

O

O

S

O
H

Me

4f, 65%, d.r. = 2.3:1
97% ee / 97% ee

N

O

O

S

O
H

Cl

4h, 51%, d.r. = 1.5:1
92% ee / 89% ee

N

O

S

S

O
H

Ph

4i, 49%, d.r. = 1.7:1
95% ee / 91% ee

N

O

S

S

O
H

4j, 60%, d.r. = 1.6:1
90% ee / 87% ee

N

O

S

S

O
H

CF3

OMe

4k, 58%, d.r. = 1.5:1
96% ee / 94% ee

4l, 46%, d.r. = 1.3:1
92% ee / 93% ee

Ph

Ph
N

O

S

S

O
H

8

4m, 33%, d.r. = 1.3:1
96% ee / 94% ee

Ph
N

O

S

S

4n, 29%, d.r. = 1.1:1
95% ee / 94% ee

Ph
N

O

S

S

O O
H

13

H

16

Ph
N

O

S

S

O
H

7

Fig. 3 The scope of cyclic saturated ethers. Conditions: PhCOOH (0.5mmol, 2.5 equiv), CuOAc (2.5 mol%), tBuOOH in decane (3.0 equiv) in ether
(1.0 mL) at 80 °C for 6–12 h, followed by 2 (1.0 equiv), L5·Ni(OTf)2 or L6·Ni(OTf)2 (10mol%), 2,4,6-collidine (3.0 equiv), and BF3·OEt2 (4.0 equiv) in
CH2Cl2 (0.4mL) at rt for 2 h
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Fig. 4 The scope of acyclic saturated ethers. Conditions: PhCOOH (0.5mmol, 2.5 equiv), CuOAc (2.5 mol%), tBuOOH in decane (3.0 equiv) in ether
(1.0 mL) at 80 °C for 6–12 h, followed by 2 (1.0 equiv), L6·Ni(OTf)2 (10mol%), 2,4,6-collidine (3.0 equiv), and BF3·OEt2 (4.0 equiv) in CH2Cl2 (0.4 mL) at
rt for 2 h
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moieties can be readily converted to other synthetically valuable
functional groups. For example, the adduct 3a was converted to
corresponding alcohol 7, ester 8, thioester 9, and Weinreb amide
10 in high efficiency with the ee highly conserved (Fig. 5a).
Enantiopure diastereomers 12a and 12b are potent and selective
dopamine transporter inhibitors (Fig. 5b)63. However, traditional
synthetic method, which relied on menthol or 1-indanol

mediated resolution technology, required seven steps for each
isomer preparation starting from 3,4-dihydro-2H-pyran. Our
method exhibited moderate diastereoselectivity, which afforded
an opportunity to rapidly access both 12a and 12b in excellent ee
through a two-step process consisting of asymmetric reaction of
THP (1d) with 11 and esterification. Second, given the tolerance
of a broad range of carboxylic acid derivatives, we envisioned that
removing the exocyclic stereocenter would further enhance the
synthetic utility of the protocol. Therefore, we designed a concise
two-step sequence involving DIBAL-H mediated reduction of
oxa- or thiazolidinethione to aldehyde followed by Ru(PPh3)3Cl
catalyzed decarbonylation, providing α-alkyl substituted saturated
ethers 13–17 that are difficult to prepare by other methods
(Fig. 5c).

Discussion
Control experiments were conducted to gain a preliminary
understanding of the reaction mechanism (Fig. 6). First, in the
presence of CuOAc and tBuOOH, THF (1a) reacted with
PhCO2H giving acetate 18 in 88% yield (Fig. 6a). Subjecting 18 to
the standard condition furnished expected 3aa with comparable
results to that observed in the reaction starting from THF (1a)
(Fig. 6b). The observations implied the intermediacy of 18 in the
process. Second, the alkylation of 18 with 2aa proceeded
smoothly under the standard reaction condition in the absence of
oxidation elements (Fig. 6c). No expected 3aa was observed when
the combination of L6 and CuOAc was used as the catalyst
(Fig. 6d). These results suggested that the species binding to
diphosphine ligand should be Ni(OTf)2 but not CuOAc.

Based on the above observations, a plausible catalytic cycle is
outlined in Fig. 7. Carboxylic acid derivative 2aa coordinates with
L6·Ni(OTf)2 complex giving rise to 19, in which the acidity of the
hydrogen α to the carbonyl moiety increases. 2,4,6-Collidine
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promotes the enolization of 19 providing chiral Ni-bound Z-
enolate 2064. 20 Reacts with cyclic oxocarbenium 21 generated
in situ from acetal 18 and BF3·OEt2 yielding 22. Product dis-
sociation completes the catalytic cycle. Notably, no reactivity was
detected when diisopropylethylamine was used instead of 2,4,6-
collidine, indicating that the role of latter might not simply act as
a base. Fujioka and Kita reported that in the presence of a suitable
Lewis acid, the acetal reacted with 2,4,6-collidine furnishing
corresponding pyridinium-type salt65. During our in situ 1H
NMR study of the mixture of acetal 18, BF3·OEt2, and 2,4,6-
collidine, a peak at δ ~ 6.4 ppm was observed, which is char-
acteristic for such type of pyridinium species65,66. Accordingly,
we envisioned that 2,4,6-collidine might react with oxocarbenium
21 reversibly furnishing pyridinium 23. Adduct 23 possessing
weak electrophilicity might be considered as a reservoir of 21 to
prevent the decomposition before the capture by enolate 20.

The stereochemical induction model based on the Ni-bound Z-
enolate with chiral bidentate phosphine ligand L6 (MeO-
BIPHEP) was proposed in Fig. 8. The P-bound phenyl group on
the ligand (in red) shields the top face (Re face) of the enolate

substrate (in blue), which disfavors the electrophilic attack by the
oxocarbenium intermediate. In contrast, the addition of the
oxocarbenium ion to the Si face of the enolate substrate is favored
due to less repulsive interactions with the ligand. This model is
consistent with the experimentally observed stereochemistry. The
low to moderate diastereoselectivity observed for saturated ethers
might be ascribed to the lack of Lewis basic site on corresponding
oxocarbenium ion intermediates for substrate–catalyst
interactions.

In summary, a one-pot catalytic enantioselective reaction of
saturated ethers with diverse carboxylic acid derivatives is
described. The general and modular method exhibits wide com-
patibility of a broad range of saturated cyclic ethers not only
including prevalent THF and THP, but also including medium-
and large-sized cyclic moieties with excellent enantioselectivity
and functional group tolerance. The generality of the method is
further demonstrated by application in saturated acyclic ethers.
The synthetic application in the rapid preparation of biologically
active molecules that are difficult to access with existing methods
is demonstrated. We envision that the general, modular, and
highly enantioselective reaction of abundant, low value saturated
ethers outlined herein will provide a topologically straightforward
synthetic planning for both complex target molecules and a
plethora of analogs for lead discovery and optimization.

Methods
General procedure for the reaction of THF (1a) with 2aa. In an oven-dried
Teflon septum screw-capped tube, PhCOOH (61 mg, 0.5 mmol), CuOAc (0.6 mg,
0.005 mmol, 2.5 mol%), and tBuOOH in decane (0.5 mmol) were added to THF
(1.0 mL). The solution was stirred at 80 °C for 2 h before the solvent was evapo-
rated. Then carboxylic acid derivative 2aa (44.3 mg, 0.2 mmol), L6·Ni(OTf)2
(18.7 mg, 0.02 mmol), 2,4,6-collidine (79.3 μL, 0.6 mmol), and BF3·OEt2 (98.7 μL,
0.8 mmol) in THF/CH2Cl2 (0.3 mL/0.1 mL, v-v) was added. After stirring at rt for
2 h, solvents were removed and the residue was purified by silica gel column
chromatography (CH2Cl2/ethyl acetate= 99:1) giving the expected 3aa in 81%
yield (47.2 mg) with 98% ee as a separable mixture of diastereomers (d.r.= 2:1).

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information files. The X-ray
crystallographic coordinates for structures reported in this article have been
deposited at the Cambridge Crystallographic Data Center (3p: CCDC 1858037, 3p’:
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These data could be obtained free of charge from The Cambridge Crystallographic
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