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Ilyobacter polytropus Stieb and Schink 1984 is the type species of the genus Ilyobacter, 
which belongs to the fusobacterial family Fusobacteriaceae. The species is of interest because 
its members are able to ferment quite a number of sugars and organic acids. I. polytropus has 
a broad versatility in using various fermentation pathways. Also, its members do not degrade 
poly-β-hydroxybutyrate but only the monomeric 3-hydroxybutyrate. This is the first com-
pleted genome sequence of a member of the genus Ilyobacter and the second sequence from 
the family Fusobacteriaceae. The 3,132,314 bp long genome with its 2,934 protein-coding 
and 108 RNA genes consists of two chromosomes (2 and 1 Mbp long) and one plasmid, and 
is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain CuHbu1T (= DSM 2926 = ATCC 51220 = 
LMG 16218) is the type strain of I. polytropus, 
which is the type species of the genus Ilyobacter 
[1,2]. Currently, there are four species placed in 
the genus Ilyobacter [1]. The generic name derives 
from the Greek word ‘ilus’ meaning ‘mud’ and the 
Neo-Latin word ‘bacter’ meaning ‘a rod’, referring 
to a mud-inhabiting rod [2]. The species epithet is 
derived from the Neo-Latin word ‘polytropus’ 
meaning ‘versatile’, referring to metabolic versa-
tility of the species [2]. I. polytropus strain CuH-
bu1T was isolated from marine anoxic mud in 
Cuxhaven, Germany, and described by Stieb and 
Schink in 1984 [2]. No further isolates have been 
obtained for I. polytropus. Members of the genus 

Ilyobacter were isolated from anoxic marine se-
diments in Germany [2], Italy [3,4] and of estua-
rine origin [5]. Here we present a summary classi-
fication and a set of features for I. polytropus CuH-
bu1T, together with the description of the com-
plete genomic sequencing and annotation. 

Classification and features 
The 16S rRNA gene sequence of I. polytropus 
shares the highest degree of sequence similarity 
with the type strains of the other two members of 
the genus, I. insuentus (97.3%) and I. tartaricus 
(98.3%), the latter was isolated from anoxic ma-
rine sediment of Canal Grande and Rio Martin in 
Venice, Italy. The degree of sequence identity with 
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the type strains of the other members of the fami-
ly Fusobacteriaceae varies between 89.5% and 
97.8%, with Propionigenium modestum as most 
similar species [6] (Figure 1). The genome survey 
sequence database (gss) contains the 16S rRNA 
gene sequence of human gut metagenome clone 
5192b-5192b-A-con-04 (FI579563) as the best 
hit, which is 91% identical to the 16S rRNA gene 
sequence of strain CuHbu1T. No phylotypes from 
environmental samples database (env_nt) could 
be linked to the species I. polytropus or even the 
genus Ilyobacter, indicating a rather rare occur-
rence of these in the habitats screened so far (as of 
October 2010). A representative genomic 16S 
rRNA sequence of I. polytropus was compared us-
ing NCBI BLAST under default values (e.g., consi-
dering only the best 250 hits) with the most re-
cent release of the Greengenes database [17] and 
the relative frequencies of taxa and keywords, 
weighted by BLAST scores, of taxa and keywords 
were determined. The four most frequent genera 
were Fusobacterium (70.2%), Ilyobacter (13.8%), 
Propionigenium (12.4%) and Clostridium (3.6%). 
Regarding hits to sequences from other members 
of the genus, the average identity within HSPs 
(high-scoring segment pairs) was 96.4%, whereas 
the average coverage by HSPs was 98.4%. The 
species yielding the highest score was I. tartaricus. 
The five most frequent keywords within the labels 
of environmental samples which yielded hits were 
'microbiome' (6.5%), 'fecal' (6.1%), 'feces' (5.7%), 
'calves/microorganisms/neonatal/shedding' 
(5.5%) and 'evolution/gut/mammals/microbes' 
(2.5%). These keywords suggest further, animal 
associated habitats for I. polytropus, beyond the 
anaerobic muds of marine origin as stated in the 
original description [2]. Environmental samples 
which yielded hits of a higher score than the high-
est scoring species were not found. 
Figure 1 shows the phylogenetic neighborhood of 
I. polytropus CuHbu1T in a 16S rRNA based tree. 
The sequences of the eight 16S rRNA gene copies 
in the genome of I. polytropus differ from each 
other by up to three nucleotides, and differ by up 
to three nucleotides from the previously pub-
lished 16S rRNA sequence (AJ307981), which con-
tains two ambiguous base calls. 
The cells of I. polytropus are generally rod-shaped 
(0.7×1.5-3.0 µm) with rounded ends (Figure 2). 
Cells of I. polytropus show irregularly elongated 
rods, when grown on glucose and fructosecontain-
ing media [2]. The cells are usually arranged in 

pairs or chains [2]. I. polytropus is a Gram-negative 
and non spore-forming bacterium (Table 1). The 
organism is nonmotile and no flagellar genes have 
been found in the genome If at all, active movement 
by twitching motility could be possible, as some 
genes related to this phenotype were identified 
(this paper, see below). Interestingly, the original 
description states that “the originally motile rods 
lost motility after several transfers” [2]. The organ-
ism is a strictly anaerobic chemoorganotroph [2]. I. 
polytropus requires 1% NaCl in media for good 
growth [25]. The selective medium for I. polytropus 
is a NaCl-containing mineral media, which contains 
3-hydroxybutyrate as a sole carbon and energy 
source [2]. The organism also grows in salt water 
medium or brackish water medium containing 1% 
NaCl and 0.15% MgCl2.6H2O [2]. Vitamins are not 
required in the enrichment media for at least five 
subsequent transfers [2]. Phosphate (up to 50 mM) 
does not inhibit growth of I. polytropus, when 
grown on 3-hydroxybutyrate [2]. The temperature 
range for growth is between 10°C and 35°C, with an 
optimum at 30°C [2]. The organism does not grow 
at 4°C or at 40°C [2]. The pH range for growth is 
6.5-8.5, with an optimum at pH 7.0-7.5 [2]. No cy-
tochromes are detected from I. polytropus [2]. I. 
polytropus is able to utilize 3-hydroxybutyrate, cro-
tonate, glycerol, pyruvate, citrate, oxaloacetate, glu-
cose, fructose, malate and fumarate and to ferment 
a variety of sugars and organic acids [2]. The organ-
ism does not utilize lactose, sucrose, mannitol, sor-
bitol, xylitol, 1,2-butanediol, 1,3-butanediol, 2,3-
butanediol, maltose, arabinose, cellobiose, man-
nose, melezitose, raffinose, sorbose, rhamnose, tre-
halose, xylose, acetone, diacetyl acetoin, acetoacetyl 
ethylester, acetoacetyl amide, peptone, casamino 
acids, yeast extract, glyoxylate, glycolate, lactate, 
succinate, L-tartrate, poly-β-hydroxybutyrate, 
starch, methanol plus acetate and formate plus ace-
tate [2]. I. polytropus is able to ferment 3-
hydroxybutyrate and crotonate to acetate and bu-
tyrate [2]. Glycerol is fermented to 1,3-propanediol 
and 3-hydroxypropionate [2]. Malate and fumarate 
are fermented to acetate, formate and propionate 
[2]. I. polytropus is able to ferment glucose and fruc-
tose to acetate, formate and ethanol [2]. The organ-
ism does not reduce sulfate, sulfur, thiosulfate and 
nitrate [2]. I. polytropus grows in mineral media 
with a reductant [2]. It does not hydrolyze gelatin 
or urea and does not produce indole [2]. I. polytro-
pus shows acetate kinase, phosphate acetyl transfe-
rase and hydrogenase activities, which are suffi-
cient for involvement in dissimilatory metabolism 
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[2]. Also, pyruvate formate lyase activity was 
shown in crude cell extracts, however, activity was 
extremely low and ascribed to a potential instabili-
ty of this enzyme if traces of oxygen are present 
during the enzyme activity measurement [2]. I. po-
lytropus maintains its energy metabolism exclu-
sively by substrate-linked phosphorylation reac-
tions [2]. I. polytropus differs from other anaerobes 
because the organism exhibits broad versatility in 
its use of various fermentation pathways. However, 

pathway regulation was reported as enigmatic be-
cause neither propionate nor butyrate were formed 
during glucose or fructose fermentation, although 
the necessary enzymes are present [2]. I. polytropus 
is of ecological interest because the organism does 
not degrade poly-β-hydroxybutyrate but only the 
monomeric of 3-hydroxybutyrate [2]. Metabolism 
of the polymer appears to be confined to aerobic 
microbial communities [26]. 

 
 
 
 

 
Figure 1. Phylogenetic tree highlighting the position of I. polytropus CuHbu1T relative to the other type strains with-
in the family Fusobacteriaceae. The tree was inferred from 1,399 aligned characters [7,8] of the 16S rRNA gene se-
quence under the maximum likelihood criterion [9] and rooted in accordance with the current taxonomy. The 
branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support 
values from 900 bootstrap replicates [10] if larger than 60%. Lineages with type strain genome sequencing projects 
registered in GOLD [11] are shown in blue, published genomes in bold [12-15]. Note that Ilyobacter appears as po-
lyphyletic in the tree [16], but none of the relevant branches obtains any bootstrap support. Thus, the current classi-
fication is not in significant conflict with our phylogenetic analysis. 
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Chemotaxonomy 
No chemotaxonomic data are currently available 
for I. polytropus or for the genus Ilyobacter. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [27], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [28]. The genome project is depo-
sited in the Genome OnLine Database [11,29] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Growth conditions and DNA isolation 
I. polytropus CuHbu1T, DSM 2926, was grown 
anaerobically in medium 314 (Ilyobacter polytro-
pus medium) [30] at 30°C. DNA was isolated from 
0.5-1 g of cell paste using MasterPure Gram-
positive DNA purification kit (Epicentre 
MGP04100) following the standard protocol as 

recommended by the manufacturer, with modifi-
cation st/LALM for cell lysis as described in Wu et 
al. [28]. 
Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 sequencing platforms. All general 
aspects of library construction and sequencing can 
be found at the JGI website [31]. Pyrosequencing 
reads were assembled using the Newbler assemb-
ler version 2.0.00.20-PostRelease-10-28-2008-g++-
3.4.6 (Roche). The initial Newbler assembly con-
sisting of 85 contigs in 1 scaffold was converted 
into a phrap assembly by [32] making fake reads 
from the consensus, to collect the read pairs in the 
454 paired end library. Illumina GAii sequencing 
data (387 Mb) was assembled with Velvet [33] and 
the consensus sequences were shredded into 1.5 kb 
overlapped fake reads and assembled together 
with the 454 data. The 454 draft assembly was 
based on 284.7 Mb 454 draft data and all of the 454 
paired end data. Newbler parameters are -consed -
a 50 -l 350 -g -m -ml 20. 

 

 
Figure 2. Scanning electron micrograph of I. polytropus CuHbu1T 
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Table 1. Classification and general features of I. polytropus CuHbu1T according to the MIGS recommendations [18]. 
MIGS ID Property Term Evidence code 
 

Current classification 

Domain Bacteria TAS [19] 
Phylum “Fusobacteria” TAS [20,21] 
Class “Fusobacteria” TAS [20] 
Order “Fusobacteriales” TAS [20] 
Family “Fusobacteriaceae” TAS [20] 
Genus Ilyobacter TAS [2,22] 
Species Ilyobacter polytropus TAS [2,22] 
Type strain CuHbu1 TAS [2] 

 Gram stain negative TAS [2] 
 Cell shape rod-shaped with rounded ends, single or in pairs TAS [2] 
 Motility non-motile TAS [2] 
 Sporulation none TAS [2] 
 Temperature range 10°C–35°C TAS [2] 
 Optimum temperature 30°C TAS [2] 
 Salinity 1% NaCl TAS [2] 
MIGS-22 Oxygen requirement strictly anaerobic TAS [2] 
 Carbon source carbohydrates TAS [2] 
 Energy source chemoorganotroph TAS [2] 
MIGS-6 Habitat marine anoxic mud TAS [2] 
MIGS-15 Biotic relationship free-living NAS 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [23] 
 Isolation marine anoxic mud TAS [2] 
MIGS-4 Geographic location Cuxhaven, Germany TAS [2] 
MIGS-5 Sample collection time 1983 or before TAS [2] 
MIGS-4.1 Latitude 53.87 NAS 
MIGS-4.2 Longitude 8.69 NAS 
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude sea level NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from of the Gene Ontology project [24]. If the evidence code is IDA, then 
the property was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

 
The Phred/Phrap/Consed software package [32] 
was used for sequence assembly and quality as-
sessment in the subsequent finishing process. Af-
ter the shotgun stage, reads were assembled with 
parallel phrap (High Performance Software, LLC). 
Possible mis-assemblies were corrected with ga-
pResolution [31], Dupfinisher, or sequencing 
cloned bridging PCR fragments with subcloning or 
transposon bombing (Epicentre Biotechnologies, 
Madison, WI) [34]. Gaps between contigs were 
closed by editing in Consed, by PCR and by Bubble 
PCR primer walks (J.-F.Chang, unpublished). A to-
tal of 719 additional reactions were necessary to 
close gaps and to raise the quality of the finished 
sequence. Illumina reads were also used to correct 

potential base errors and increase consensus 
quality using a software Polisher developed at JGI 
[35]. The error rate of the completed genome se-
quence is less than 1 in 100,000. Together, the 
combination of the Illumina and 454 sequencing 
platforms provided 215.8 × coverage of the ge-
nome. The final assembly contained 656,481 py-
rosequence and 10,750,000 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [36] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [37]. 
The predicted CDSs were translated and used to 
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search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-

ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Ex-
pert Review (IMG-ER) platform [38]. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Tree genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (14 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 124.8 × Illumina; 91.0 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.0.00.20-PostRelease-10-28-2008-g-3.4.6, phrap 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 
INSDC ID 

CP002281 chromosome I  
CP002282 chromosome II  
CP002283 plasmid 

 Genbank Date of Release November 1, 2010 
 GOLD ID Gc01413 
 NCBI project ID 32577 
 Database: IMG-GEBA 2503538000 
MIGS-13 Source material identifier DSM 2926 
 Project relevance Tree of Life, GEBA 

 

Genome properties 
The genome consists of a 2,046,464 bp long chro-
mosome I with a GC content of 35%, a 961,624 bp 
long chromosome II with 34% GC content, and a 
124,226 bp long plasmid with 32% GC content 
(Table 3 and Figures 3a-c,). Of the 3,042 genes 
predicted, 2,934 were protein-coding genes, and 

108 RNAs; 108 pseudogenes were also identified. 
The majority of the protein-coding genes (73.3%) 
were assigned with a putative function while the 
remaining ones were annotated as hypothetical 
proteins. The distribution of genes into COGs func-
tional categories is presented in Table 4. 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 3,132,314 100.00% 
DNA Coding region (bp) 2,690,412 85.89% 
DNA G+C content (bp) 1,076,435 34.37% 
Number of replicons 3  
Extrachromosomal elements 1  
Total genes 3,042 100.00% 
RNA genes 108 3.55% 
rRNA operons 8  
Protein-coding genes 2,934 96.45% 
Pseudo genes 54 1.78% 
Genes with function prediction 2,230 73.31% 
Genes in paralog clusters 676 22.22% 
Genes assigned to COGs 2,283 75.05% 
Genes assigned Pfam domains 2,359 77.55% 
Genes with signal peptides 719 23.64% 
Genes with transmembrane helices 638 20.97% 
CRISPR repeats 1  
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Figure 3a. Graphical circular map of chromosome I. From outside to 
the center: Genes on forward strand (color by COG categories), 
Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 

 
Figure 3b. Graphical circular map of chromosome II. From 
outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG 
categories), RNA genes (tRNAs green, rRNAs red, other 
RNAs black), GC content, GC skew. Chromosome II was 
identified as a chromosome due to its two 16S rRNA gene 
copies. 
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Figure 3c. Graphical circular map of the plasmid. From 
outside to the center: Genes on forward strand (color 
by COG categories), Genes on reverse strand (color by 
COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. Chromo-
some II was identified as a chromosome due to its two 
16S rRNA gene copies. 

Table 4. Number of genes associated with the general COG functional categories 

Code value % age Description 

J 146 5.8 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 152 6.1 Transcription 

L 124 5.0 Replication, recombination and repair 

B 1 0.0 Chromatin structure and dynamics 

D 27 1.1 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 43 1.7 Defense mechanisms 

T 140 5.6 Signal transduction mechanisms 

M 161 6.4 Cell wall/membrane/envelope biogenesis 

N 21 0.8 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 61 2.4 Intracellular trafficking, secretion, and vesicular transport 

O 69 2.8 Posttranslational modification, protein turnover, chaperones 

C 244 9.7 Energy production and conversion 

G 151 6.0 Carbohydrate transport and metabolism 
 



Sikorski et al. 

http://standardsingenomics.org 312 

Table 4 (cont.). Number of genes associated with the general COG functional categories 
Code value % age Description 

E 245 9.8 Amino acid transport and metabolism 

F 73 2.9 Nucleotide transport and metabolism 

H 134 5.4 Coenzyme transport and metabolism 

I 72 2.9 Lipid transport and metabolism 

P 104 4.2 Inorganic ion transport and metabolism 

Q 38 1.5 Secondary metabolites biosynthesis, transport and catabolism 

R 311 12.4 General function prediction only 

S 190 7.6 Function unknown 

- 759 25.0 Not in COGs 
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