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Abstract
Disturbances to aquatic habitats are not uniformly distributed within the Great Lakes 
and acute effects can be strongest in nearshore areas where both landscape and 
within lake effects can have strong influence. Furthermore, different fish species re-
spond to disturbances in different ways. A means to identify and evaluate locations 
and extent of disturbances that affect fish is needed throughout the Great Lakes. 
We used partial Canonical Correspondence Analysis to separate “natural” effects on 
nearshore assemblages from disturbance effects. Species-specific quadratic models 
of fish abundance as functions of in-lake disturbance or watershed-derived distur-
bance were developed separately for each of 35 species and lakewide predictions 
mapped for Lake Erie. Most responses were unimodal and more species decreased 
in abundance with increasing watershed disturbance than increased. However, eight 
species increased in abundance with current in-lake disturbance conditions. Optimum 
Yellow Perch (Perca flavescens) abundance occurred at in-lake disturbance values less 
than the gradient mean, but decreased continuously from minimum watershed dis-
turbance to higher values. Bands of optimum in-lake conditions occurred through-
out the eastern and western portions of the Lake Erie nearshore zone; some areas 
were less disturbed than desirable. However, watershed-derived disturbance condi-
tions were generally poor for Yellow Perch throughout the lake. In contrast, optimum 
Smallmouth Bass (Micropterus dolomieu) abundance occurred at in-lake disturbance 
values greater than the gradient mean and continuously increased with increasing wa-
tershed disturbance. Smallmouth Bass responses to disturbance indicated that most 
of the nearshore zone was less disturbed than is desirable and were most abundant 
in areas that the Yellow Perch response indicated were highly disturbed. Mapping 
counts of species response models that agreed on the disturbance level in each spatial 
unit of the nearshore zone showed a fine-scale mosaic of areas in which habitat resto-
ration may benefit many or few species. This tool may assist managers in prioritizing 
conservation and restoration efforts and evaluating environmental conditions that 
may be improved.
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1  |  INTRODUC TION

The Laurentian Great Lakes Region is a vast system of aquatic and 
terrestrial habitats of widely varying conditions, supporting a diverse 
array of living communities, including fish which are valuable as har-
vestable resources, key ecological components, and indicators of en-
vironmental conditions. However, fish are threatened by numerous 
environmental disturbances and influenced by natural conditions 
(Loftus & Regier, 1972; Ryder, 1972). Disturbances are extensive in 
the Great Lakes and degrade biodiversity and ecological function 
(Allan et al., 2017; Christie et al., 1972; Johnson et al., 2016; Uzarski 
et al., 2017). Resources to manage and rehabilitate fish populations 
and fish habitats are limited, as is knowledge of where aquatic habitat 
does and does not support healthy fish populations, and what may 
be degrading conditions for fish (Kovalenko et al.,  2018; Regier & 
Loftus, 1972). Tools that effectively identify areas where management 
investment is likely to benefit the most species and ecosystem ser-
vices could assist with prioritization of resources (Allan et al., 2017).

Extensive environmental disturbances are caused by human 
activities, which are among the few factors that humans may ma-
nipulate to manage fish populations (Smith et al., 2015). These dis-
turbances have numerous sources and are not uniformly distributed 
in space or time (Allan et al., 2013; Kovalenko et al., 2018; McKenna 
& Kocovsky, 2020; Wehrly et al., 2013). There has been extensive 
work to identify environmental stressors that affect fishes in the 
Great Lakes (e.g. Colby et al.,  1972; Johnson et al.,  2016; Uzarski 
et al., 2017). Most of these studies associate metrics and multimet-
ric indices to measures of fish community conditions (e.g., species 
and guild richness) to make lake- or region-wide estimates of the 
extent of degraded conditions. Important ecological monitoring pro-
grams are based on some of these efforts (e.g., Great Lake Coastal 
Wetland Monitoring program (GLCWM), Uzarski et al.,  2017 and 
Great Lakes Ecological Indicators (GLEI) program). These programs 
have focused on either stressors within a watershed or those oc-
curring within the Great Lakes proper, and a few have used both 
(Kovalenko et al., 2018). Two recently developed multimetric distur-
bance indices that address each of these realms are the Great Lakes 
Environmental Assessment Mapping (GLEAM) (Allan et al.,  2013) 
and landscape watershed (Wehrly et al., 2013) indices. The GLEAM 
index describes a combination of factors mostly from within lake 
or coastline sources, while the Wehrly watershed index combines 
watershed-derived disturbances that are transferred to the Great 
Lakes through the region's river networks, mostly to the near-
shore zone. Together these indices encompass the vast majority of 

significant disturbance factors affecting the Great Lakes and include 
both US and Canadian regions.

Coastal wetlands and coastline habitats are important for Great 
Lakes fishes (Johnson et al.,  2016; Kovalenko et al.,  2018; Uzarski 
et al.,  2017), but face numerous degrading influences. A recent 
study used the GLEAM and Wehrly indices, along with data from the 
GLCWM and GLEI programs, to evaluate anthropogenic disturbances 
to wetlands and coastal fish habitats (Kovalenko et al.,  2018). The 
study showed degradation of numerous areas, based on reduced spe-
cies richness and intolerant species occurrences (and other metrics), 
but also identified high quality areas with few anthropogenic effects. 
The nearshore zone is also a critical realm for Great Lakes fish life cy-
cles (e.g. Goodyear et al., 1982; Lane et al., 1996; McKenna, 2008, for 
example). However, the nearshore zone is at the interface between in-
fluence from watersheds and within lake processes and little is known 
about how various anthropogenic factors affect fishes in this realm.

The typical expectation is that the greater the disturbance, the 
worse conditions are for fish. However, increasing disturbance lev-
els are not consistently detrimental to all fishes. Measures of “tol-
erant species” are common metrics (Karr, 1981; Riseng et al., 2004) 
and some studies have noted a relatively high occurrence of intol-
erant species in areas experiencing high anthropogenic disturbance 
(Kovalenko et al.,  2018). It is logical to expect that different fish 
species have different preferences for environmental conditions 
and will therefore exhibit different responses to disturbance in any 
given location. Differential changes to Great Lakes fishes in re-
sponse to changing environmental conditions have been observed 
(Smith, 1972). So-called tolerant species may actually be enhanced 
by increasing disturbance, not just tolerant of those conditions. 
Also, fish are mobile, responding to both natural and disturbed con-
ditions and moving to different areas to satisfy their needs at differ-
ent life stages (e.g. Atchison et al., 1987; Stabell, 1984). Therefore, 
we would not expect all fish species to be distributed uniformly in 
space or time; the greatest abundances are likely to be in the best 
available habitats. Previously developed multimetric indices of an-
thropogenic disturbances may not behave as expected when spe-
cies responding positively to increasing disturbance are included as 
a measure of degradation for fish communities. Because natural re-
source managers focus on disturbances and have limited resources, 
separating the influence of “natural” conditions from anthropogenic 
disturbances is important. We present a process to make this sepa-
ration and display the spatial distributions of the effects of human 
disturbances from the fishes' perspectives, statistically (sensu 
Magnuson et al., 1980).
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In this study, we used the extensive fish and habitat datasets 
for the Great Lakes Region and build on the statistical approaches 
of previous researchers to determine the responses of Great Lakes 
fish abundances to disturbance indices throughout the Great Lakes 
nearshore zone. Given the assumption that fish can move away from 
areas of poor condition to accessible areas with better conditions, we 
can use statistical ordination approaches to control for the effects of 
“natural” influences and detect the response of fish abundances to 
multiple stressors. We quantify species-specific responses of abun-
dance to within-lake and watershed-derived disturbances and report 
on species' preferences along gradients from high to low disturbance 
conditions. We determine the fish-disturbance relationships for all of 
the Great Lakes, but use Lake Erie to illustrate the spatial distribution 
of fish-perceived disturbance conditions in the nearshore zone of an 
entire lake. We use ordination and quadratic regression to develop 
the relationships between each species' abundance and degree of 
disturbance, and a geographic information system (GIS) to map the 
distribution of disturbance and spatial agreement among species, 
providing a tool that highlights locations with habitat that may be 
considered for protection or restoration for multiple species.

Our objectives were to (1) separate the “natural” influences from 
anthropogenic disturbances affecting fish abundances in the Great 
Lakes, (2) develop quantitative, species-specific abundance models of 
response to multimetric indices that include all of the known significant 
disturbances to fish and fish habitats throughout Great Lakes near-
shore zones, (3) use those models and the distribution of disturbances 
to predict abundance responses for each species at each location 
(30-m spatial cell) within the Lake Erie nearshore zone, and (4) quantify 
species agreement about disturbance conditions in each location by an 
overlay of those species-specific maps. The resulting species-specific 
disturbance distributions and degrees of species agreement can assist 
managers with decisions about species on which to focus and in what 
locations to conduct restoration or protection activities.

2  |  METHODS

2.1  |  Study area

The Great Lakes nearshore zone was defined as water of ~3–30 m 
depth, except in Lake Erie, where maximum nearshore zone depth 
was 15 m (Riseng et al., 2018; Wang et al., 2015). “Natural” environ-
mental data (variables resistant to anthropogenic influence) and an-
thropogenic disturbance data used in this study were attributed to the 
nearshore zone at the 30-m spatial cell resolution. The entire nearshore 
zone of the Laurentian Great Lakes consisted of 53,478,427 spatial 
cells. These spatial units are grouped within large circulation units 
called Aquatic Lake Units (ALUs) within each Great Lake (McKenna & 
Castiglione, 2010). Because the availability of disturbance indices and 
fish observations was greatest in Lake Erie, we use its nearshore zone 
to illustrate application of fish prediction models and spatial agreement 
of fish abundance response to disturbed conditions throughout a great 

lake. The Lake Erie nearshore zone consisted of 9,770,077 30-m cells 
(Forsyth et al., 2016; Riseng et al., 2018).

2.2  |  Data

This empirical analysis was possible because of extensive databases 
from throughout the Great Lakes collected by many people and agen-
cies. Fish data were provided by the US Geological Survey and collabo-
rators using standardized trawl collections throughout the Great Lakes 
(US Geological Survey, Great Lakes Science Center, 2018; Figure 1, 
Appendix 1). Abundance of each fish species at each trawl event loca-
tion was effort-standardized to number of fish per 1000 m2 of area 
swept by the trawl (catch per unit effort, CPUE) and ln-transformed. 
There were 4332 nearshore fish assemblage samples with matching 
habitat and disturbance values throughout the Great Lakes (1540 
from Lake Erie, 619 from Lake Huron, 293 from Lake Michigan, 
1154 from Lake Ontario, and 837 from Lake Superior), and included 
80 species, 35 of which occurred at least 100 times (Appendix  1). 
Collection station depth ranged from 0.55–15.55 m and of the 4332 
collections, 1586 were from sites in depths ≤3 m. Although modeled 
because of their presence in other lakes, four species do not occur 
in Lake Erie (Cisco (Coregonus artedi), Bloater (Coregonus hoyi), Pygmy 
Whitefish (Prosopium coulterii), and Round Whitefish (Prosopium cy-
lindraceum); Van Meter & Trautman, 1970; Scott & Crossman, 1973; 
Page & Burr, 1991); Cisco is a species of interest because of historic 
populations in Lake Erie (Oldenburg et al., 2007, Great Lakes Fishery 
Commission – Lake Erie Committee (glfc.org), September 2021). Each 
fish species was also classified according to its general habitat usage 
(pelagic vs. benthic or demersal).

Environmental and disturbance data were available for all fish 
observation locations throughout the Great Lakes proper and for 
every 30-m spatial cell within Lake Erie. Data for 50 environmental 
variables, provided by the Great Lakes Aquatic Habitat Framework 
project (GLAHF) (Forsyth et al.,  2016; Riseng et al.,  2018; Wang 
et al.,  2015), and the Great Lakes Regional Aquatic Gap Analysis 
Project, (McKenna et al., 2015; McKenna & Castiglione, 2010), were 
available to characterize “natural” habitat and aquatic conditions 
(Appendix  2). Anthropogenic disturbance data came from three 
sources (Allan et al., 2013; Hillyer, 1996; Wehrly et al., 2013) and con-
sisted of the GLEAM index of Allan et al.  (2013), the Wehrly index 
(Wehrly et al., 2013), and the Coastal Modification Index (Hillyer, 1996; 
Appendix 3). The GLEAM and Wehrly indices are composite indices of 
numerous stressors. The GLEAM index consists of 34 variables fo-
cused mostly on the open waters and coastline of each Great Lake. 
The Wehrly index consists of five synoptic variables affecting aquatic 
habitat within the watersheds emptying into each Great Lake and 
focused on nearshore stressors. The third disturbance variable was 
the coastline “protection” metric provided by the US Army Corps of 
Engineers (Hillyer, 1996), which is a measure of the extent of great-
est shoreline modification projected out to each spatial cell in each 
lake. These disturbance measures represent the human perceptions 

http://www.glfc.org/lake-erie-committee.php
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of disturbances that are likely stressors for fish. These three stress 
factors were combined into composite variables in the partial canoni-
cal correspondence analysis (pCCA) described below.

2.3  |  Ordinations

Our objectives were accomplished by a methodological process that 
began with ordination followed by regression, classification, and 
GIS mapping (Figure 2). Multivariate methods help reduce complex 
relationships among multiple species and with their environments 
to fewer, simpler relationships (Pielou, 1977). These provide insight 
into the influence of and preferences for various types of condi-
tions by each species of a biotic community (e.g. McKenna, 2013; 
McKenna & Castiglione,  2010; Kovalenko et al.,  2018; ter 
Braak, 1995). Correspondence analysis uses unimodal responses to 
identify important patterns of differences and similarities in spe-
cies optimal conditions. In the canonical correspondence analysis 
(CCA) used here, the ordination was constrained to use combina-
tions of the habitat variables to build the best composite variable 
that explained the variation in the fish abundance data. We used the 
CANOCO program to conduct CCA with forward selection of each 
environmental variable, using a permutation test for significance (99 
permutations), to identify each species' preferred environmental 
conditions (ter Braak & Smilauer, 2012). The full CCA used spatially 
matched ln-transformed fish CPUE and environmental data for all 
Great Lakes nearshore zones (ter Braak, 1995). The forward selec-
tion procedure identified those environmental variables that signifi-
cantly affected fish abundance. The full CCA identified 26 of the 
50 environmental variables as influential (all inflation factors were 
<6.6, Figure 3, Appendix 2, Table S1). Weighted linear combinations 
of those variables were used to construct composite environmental 

indices represented by each ordination axis (each axis is composed 
of all 26 environmental variables, but with different weightings), 
with the first axis explaining the most variability within the data and 
subsequent orthogonal axes explaining additional portions of the re-
maining variation. A triplot diagram shows the clustering of samples 
and associations of each species' optimal conditions with the envi-
ronmental variable gradients and each Great Lake (Figure 3).

We then used partial CCA ordination to parse out the effects 
of the natural environmental factors and isolate the effects of the 
disturbance factors on fish abundances; the 26 influential environ-
mental variables identified in the full CCA were co-variables with the 
three anthropogenic disturbance variables. As with the full ordina-
tion, the partial CCA process used weighted linear combinations of 
the three disturbance variables to construct composite disturbance 
variables represented by each axis, hereafter called disturbance gra-
dients. We used the first two axes (i.e., disturbance gradients) be-
cause they explain the most variability (Figure 4).

2.4  |  Quadratic model fit

Predictive quadratic models were developed from these simplified 
multivariate relationships of species response to disturbance gradi-
ents in the two partial CCA unimodal models. All species included in 
the nearshore dataset (80 species) were included in the ordinations. 
However, most species were rare and to help ensure detectable re-
sponses to habitat and disturbance conditions, only species which 
occurred at least 100 times in the dataset (35 species) were used 
to develop the quadratic response models. We used the CANOCO 
program to fit those quadratic models of the response of fish abun-
dance (ln[CPUE]) for each species, separately to each composite 
disturbance gradient, assuming a Poisson distribution and using an 

F I G U R E  1 Map of fish collection 
within the nearshore zone of each of 
the Great Lakes and boundaries of 
the aquatic Lake units (fine gray lines 
subdividing the interior of each Lake). 
Each point represents multiple sample 
locations in that general vicinity that are 
indistinguishable at this map scale. The 
shaded polygons represent the aquatic 
Lake units (ALU) within the Great Lakes 
(McKenna & Castiglione, 2017).
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F I G U R E  2 Flowchart summarizing the methodological process used to develop species-specific models of abundance response to 
disturbance conditions. Each parallelogram represents data and each rectangle represents a product generated at each step of the process. 
Black polygons at the top of the diagram indicate steps accomplished using only data from locations where fish collections were made. Light 
Gray polygons at the bottom of the diagram indicate steps accomplished using disturbance data from every 30-m spatial cell within the 
nearshore zone. Arrows indicate the direction of process flow and are numbered to indicate the order of process steps all flow pathways 
were followed and the “&” symbol indicates that both flow pathways of a given step must be executed. Information in the ovals explains the 
action taken at each step. CCA is canonical correspondence analysis.
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F-test for model significance at the α = 0.05 level (see ter Braak & 
Smilauer, 2012, section 5.4.4). The optimum is the disturbance value 
associated with the maximum predicted abundance. The tolerance 
is a measure of the spread of a unimodal curve along the distur-
bance gradient. Together these describe the shape of unimodal re-
sponse patterns, the same characteristics as that of a Gaussian curve 
(Jongman et al., 1995; ter Braak,  1995; See Figure S1). Monotonic 
increasing or decreasing response curves can also result from quad-
ratic model regression (Figure 5). If the second order term was not 
significant or the linear form of the model (i.e., model without the 
second order term) contained more information than the quadratic 
form (i.e., greater Akaike Information Criterion [AIC] value), the linear 
model was selected.

These predicted species abundance patterns reflected fish re-
sponse to disturbed conditions. Composite disturbance index values 
for each 30-m spatial cell within Lake Erie's nearshore zone were com-
puted by applying the weightings of the linear combinations for each 
disturbance gradient (i.e., partial CCA axis) to the values of the three 
original disturbance variables at each spatial location. These compos-
ite index values formed the independent variable data for quadratic 
model predictions and species-specific abundance predictions were 

then made for each Lake Erie nearshore zone spatial unit (cell) for 
each disturbance gradient. To simplify interpretation and comparison 
of disturbance conditions between species and among geographic 
areas, predicted disturbance values were classified according to the 
number of relative deviation units of those values from the optimum 
disturbance gradient value (i.e., at maximum abundance). Unimodal 
responses of fish abundance were placed into associated distur-
bance classes of multiple tolerance units (t) and coded for display and 
quantification purposes as +3 (<−2 t), +2 (<−1 t to ≥−2 t), +1 (<−0.5 t 
to ≥−1 t), 0 (≤0.5 t to ≥−0.5 t), −1 (>0.5 t to ≤1 t), −2 (>1 t to ≤2 t), 
−3 (>2  t). This scale highlights small negative code values (e.g., −3) 
as highly degraded, large positive numbers as hyperoptimal (defined 
here as less degraded than preferred), and 0 as preferred conditions 
(Figure 5). For example, an abundance value within ½ tolerance unit 
away from the predicted maximum would be associated with a dis-
turbance level within ½ tolerance unit from the optimum disturbance 
level and would be given a disturbance class label of 0. An abundance 
value associated with a disturbance gradient value more than 2 tol-
erance units greater (i.e., more disturbed) than the optimal value was 
labeled −3. This tolerance unit scale divides the area under a sym-
metric unimodal curve of predicted fish abundance into four units on 

F I G U R E  3 Hyperspace of the first two full canonical correspondence analysis (CCA) axes using all environmental variables identified as 
significant by forward selection testing. Species optima are indicated by open triangles. Samples within each great Lake are indicated by a 
different symbol and enclosed by color shaded polygons, Lake Erie with open black circles, Lake Huron with open green diamonds (dashed 
line), Lake Michigan with open blue squares, Lake Ontario with brown Xs, and Lake Superior with solid yellow circles. Red arrows show the 
direction in which each environmental variable increase in value within the plane depicted by the first two CCA axes (each of which is a 
variable that is a linear combination of all the environmental variables). Species codes are provided in Appendix 1 and environmental vector 
codes are provided in Appendix 2. A cluster of unlabeled species optima within the Lake Erie group include, BUFF, BULL, CCGF, CRAP, 
DRUM, EMRL, GIZZ, GLDF, GRED, LOGP, MIMC, MUSK, PUNK, QUIL, RHSP, SAND, SAUG, SBUF, SCHB, SHRH, SLMP, WALL, WBAS, 
WCRP, WHPR, and YBUL. The optima for bluegill (BLUE), brook trout (BROK), largemouth bass (LBAS), and Lake whitefish (WFSH) are 
indicated by blue arrows.
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either side of the optimum disturbance value (splitting the 0 class into 
½ t units). These relative measures of deviation from the optimum dis-
turbance value were necessary because maximum abundance values 
and, thus, optimal disturbance values could occur anywhere along 
the disturbance gradients and differed by species. For best compar-
ison, monotonic response model predictions of abundance were as-
signed to four similar disturbance classes, based on quintiles of the 
areas under those curves from the disturbance value associated with 
the maximum abundance value as follows: <20%, 20%–40%, 40%–
80%, and >80% (Figure 5b). These indicate degrees of degradation 
for species whose abundance decreased with increasing disturbance 
gradient values and the degree of hyperoptimality for species whose 
abundance increased with increasing disturbance gradient values. 
The associated disturbance class labels were 0, 1, 2, or 3 and were 
positive or negative depending on whether the curve was increasing 
or decreasing. These classifications provide comparable measures of 
the degree of disturbance for each fish species in response to each 
disturbance gradient in each spatial unit.

2.5  |  Disturbance distributions

Classified model predictions of disturbance at each spatial location 
within the Lake Erie nearshore zone were then used in a GIS to deter-
mine spatial distributions of disturbance. A separate map layer was 
generated for each species for each of the two disturbance gradi-
ents. Each spatial cell was colored coded according to the associated 
disturbance class label for a given species. Yellow Perch (Perca flave-
scens) and Smallmouth Bass (Micropterus dolomieu) were selected to 
illustrate how species may respond differently to levels and changes 
in anthropogenic disturbances because of their clearly opposing 
responses.

2.6  |  Disturbance level agreement

Overlay of these species-specific distributions allowed us to count 
the number of species whose predicted abundances were classi-
fied into the same disturbance class (i.e., in agreement about the 
level of disturbance). All species-specific maps of disturbance were 
geographically aligned such that the disturbance class value for 
each species at each 30-m spatial location of the nearshore zone 
were stacked one on top of the other. Then, for each disturbance 
class, a count was made of the number of species in the stack whose 
predicted disturbance fell into that class at that location. Thus, the 
number of species associated with the most highly disturbed condi-
tions (class −3) was recorded for a given spatial location. Then the 
number associated with moderately disturbed conditions (class −2) 
at that same location was recorded, and so forth for each distur-
bance class. The process was then repeated for every 30-m spatial 
location. These counts of species agreement were made separately 
for each disturbance gradient and mapped to show the spatial dis-
tribution of high and low agreement about disturbance throughout 
Lake Erie's nearshore zone. The predictive models developed for 
the four species that do not exist in Lake Erie, but are present in 
other Great Lakes, were excluded from the counts of agreement 
for Lake Erie.

3  |  RESULTS

Environmental and anthropogenic disturbance index values were 
available for all of the >53 million 30-m spatial cells throughout 
all of the Great Lakes nearshore zones. Anthropogenic distur-
bances were not uniformly distributed throughout the nearshore 
zones (Figure S2; see Allan et al., 2013; Riseng et al., 2018; Wehrly 
et al., 2013 for distribution maps of the entire Great Lakes Region). 
In Lake Erie, the highest values (i.e., interpreted as most disturbed) 
of the predominately in-lake GLEAM disturbance index occurred 
in sections along the south shore and Buffalo, New York area, 
with many other areas having less disturbed conditions (Figure 
S2a). The highest values of the predominately watershed derived 

F I G U R E  4 Hyperspace of partial canonical correspondence 
analysis (pCCA) diagram of first two ordination axes showing 
distribution of locations of species optima (triangles) and 
disturbance vectors indicating relative influence and direction of 
increasing effect within the hyperspace (arrows), after influence of 
habitat variables were removed. An example unimodal response for 
eastern sand darter as a function of the Axis 1 composite is shown 
by a dashed line. Species codes are provided in Appendix 1. The 
unlabeled species optima include, AEEL, ALEW, BBUL, BLOT, BLUE, 
CARP, CCGF, CRAP, DRUM, DSCL, GIZZ, JOHN, LCHB, LKHR, 
LSUK, LTRT, MIMC, PUNK, QUIL, RHSP, SCHB, SFSH, SHRH, 
SIST, SLIM, SLMP, SMLT, SPOT, STK3, STK9, TRPR, WALL, WBAS, 
WFSH, WHPR, and WSUK.
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Wehrly disturbance index were concentrated in the westernmost 
portion of the lake (Figure S2b). Shoreline modifications also var-
ied spatially, with the most extensive modifications in scattered 
patches along the southern coast of the lake and a few other areas 
(Figure S2).

3.1  |  Regionwide ordination

The full CCA ordination provided indications of the effects of “natu-
ral variability” on distributions and abundances of the fishes in the 
Great Lakes. The ordination explained 18.6% of total variation and 
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>75% of fitted variation with the first two canonical axes (Table 1). 
Those CCA axes were dominated by the influences of cumulative 
degree-days (measured from mean daily surface water temperature 
with base 0°C), distance to nearest tributary mouth, mean summer 
wave height, ice duration, and water depth (Figure 3, Appendix 2). 
Species optima (shown by open triangles in Figure 3) indicate the hy-
perspace location where environmental conditions were associated 
with the highest abundance values for each species, i.e., optimum 
conditions. For example, Largemouth Bass (Micropterus salmoides) 
and Bluegill (Lepomis macrochirus) have similar (but not the same) 
habitat optima, while Lake Whitefish (Coregonus clupeaformis) habi-
tat conditions are quite different from Brook Trout (Salvelinus fon-
tinalis) habitat. There was relatively strong separation by Great Lake 
based on distinct groups of species optima and associated condi-
tions, with a clear gradient from Lake Ontario (negative values) to 
Lake Superior (positive values) along the second axis, but with Lake 

Erie being most distinct and located in the negative portion of the 
first axis and at approximately average values of the second axis.

3.2  |  Disturbance ordination

Partial CCA filtered out the natural variability and determined 
how the remaining variability was affected by disturbance fac-
tors (GLEAM, Wehrly, and Coastal Modification) (Anderson & 
Gribble,  1998; Esselman et al.,  2011), revealing the effects of an-
thropogenic disturbances (as defined by our disturbance indices 
and coastal modification metric) on fish distributions and identify-
ing “optimal” disturbance conditions for each species (Figure 4). The 
first two axes of the partial CCA explained 0.56% of total remain-
ing variation, but >84% of the association between disturbance 
and fish abundances (Table 1). Forward selection included all three 

F I G U R E  5 Illustration of quadratic response models and disturbance class units showing selected curves of predicted fish abundances 
as functions of the watershed disturbance gradient and lines marking boundaries of class units. The thin, solid vertical line with tic 
marks indicates the “average” disturbance gradient value of zero and is the ordinate for fish abundances, except for yellow perch (Perca 
flavescens). (a) tolerance classes of two different unimodal responses where the solid curve (green) represents predicted emerald shiner 
(Notropis atherinoides) abundance catch per unit effort (CPUE) and the dashed curve (brown) represents predicted round Goby (Neogobius 
melanostomus) abundance (CPUE). Vertical lines indicate disturbance values three tolerance units from the optimum value (yellow dotted 
lines), two tolerance units from the optimum (green dashed lines), and one tolerance unit from the optimum (black dash-dot lines); legend 
labels for emerald shiner tolerance boundary lines are followed by an “S” and those for round Goby are followed by a “G”. Note that the −3 t 
line for round Goby is nearly coincident with the −0.5 t line for emerald shiner and that the labels for the round Goby +2 and +3 disturbance 
classes overlap with emerald shiner classes and are not shown. Optimum disturbance occurred where predicted abundance was maximum 
and is indicated by a black arrow. Disturbance class labels are provided within each interval (+3, +2, +1, 0, −1, −2, −3), with negative code 
values indicating perceived degradation and positive values indicating hyperoptimality. (b) Percentile classes of two different monotonic 
responses, where the solid curve (yellow) represents predicted yellow perch abundance (CPUE) and the dashed curve (purple) represents 
predicted smallmouth bass (Micropterus dolomieu) abundance (CPUE). Vertical lines indicate disturbance values at the 80-percentile class 
(yellow dotted lines), the 40-percentile (green dashed lines), and the 20-percentile (black dash-dot lines); legend labels for smallmouth bass 
percentile boundary lines are followed by a “B” and those for yellow perch are followed by a “P”. Disturbance class labels are the same as for 
the unimodal responses; +3 is associated with smallmouth bass and −3 is associated with yellow perch. The inset chart shows the parabolic 
response for walleye abundance as a function of watershed disturbance.

TA B L E  1 Summary of full and partial canonical correspondence analysis (pCCA) ordination results using all available habitat and 
disturbance variables and matching fish abundances throughout the Great Lakes within the nearshore zone. The pCCA ordination used 
explanatory environmental variables of the full CCA as co-variables and disturbance indices as explanatory variables

Analysis Axis
Total 
variation

Explained 
variation

Adjusted 
explained 
variation Eigenvalues

Cumulative 
explained 
variation

Pseudo-
canonical 
correlation

Cumulative 
explained 
fitted 
variation

Axis 
weighting

Full CCA All 7.77597 18.60% 18.11%

Axis 1 0.7062 9.08% 0.9604 48.82%

Axis 2 0.3813 13.99% 0.8652 75.18%

Axis 3 0.0662 14.84% 0.6207 79.76%

Axis 4 0.0561 15.56% 0.5814 83.64%

Partial CCA All 6.33966 0.56% 0.49%

Axis 1 0.019 0.3% 0.3459 53.86% 53.86%

Axis 2 0.011 0.47% 0.2947 84.34% 30.48%

Axis 3 0.0055 0.56% 0.2299 100%

Axis 4 0.2846 5.05% 0
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disturbance variables (inflation factors were <4.3). Values of the 1st 
CCA axis were determined by,

and by

for values of the 2nd CCA axis (Table 2), where G is the value of the 
GLEAM index, W is the value of the Wehrly index, and S is the value of 
the Coastal Modification index.

As with the full CCA ordination diagram, the lengths and direc-
tions of the arrows in Figure 4 indicate that the Wehrly index (water-
shed effects) focused in the nearshore zone had the most influence 
(longest vector), but was very closely aligned with Axis 2 (which ex-
plains less variation then Axis 1), while the GLEAM index (essentially 
open lake and coastal effects), the second longest vector, is closely 
aligned with Axis 1. The coastal modification index (KM9PROTC) had 
the least influence, but contributed approximately equally to each 
CCA axis. Because the first CCA Axis was so strongly dominated 
by the GLEAM index and the second CCA Axis was strongly domi-
nated by the Wehrly index (Table 2, Figure 4), we hereafter refer to 
these disturbance gradients as in-lake disturbance and watershed 
disturbance, respectively. The clusters of sample points showed no 
separation by lake. The ordination used only locations where match-
ing fish, habitat, and disturbance values existed. However, values of 
each of the three original disturbance variables were available for 
every 30-m spatial cell within the nearshore zone, and because each 
disturbance gradient is a weighted combination of those three origi-
nal disturbance variables, the values of disturbance were computed 
for each spatial cell and subsequently used in fish prediction models. 
Each species optimum represents the peak of a unimodal response 
to changes in fish abundance along each ordination axis, at which a 
specific combination of disturbance conditions occurs (based on the 
three variables; Figure 4).

3.2.1  |  Spatial distribution of disturbance

Given the dominance of each ordination axis by one of the distur-
bance indices, it is no surprise that the distributions of disturbance, 

based on the composite ordination variables, resemble aspects of 
the three original disturbance variables (Figure 6). Values of the in-
lake disturbance gradient were highest closest to shore in Maumee 
Bay, Ohio, near Buffalo, NY, near the mouth of the Raisin River, 
Michigan, and in a large section of the south shore from Sandusky 
Bay to the Pennsylvania border with Ohio. Western sections of 
the north shore and offshore areas of the western ALU were least 
disturbed. The second CCA Axis (Watershed-dominated gradient) 
showed most disturbed areas in a band along the western end of the 
lake from the Detroit River to Cedar Point, OH and in large patches 
along the south shore and a few other scattered areas; other areas 
experienced moderate to low disturbance.

3.3  |  Responses to disturbance

Quadratic models fit responses of fish abundance to each distur-
bance gradient well for most of the 35 species that occurred at 
least 100 time in the dataset (Table  3). Of the 70 possible mod-
els, no model could be successfully fitted to three species, Burbot 
(Lota lota) and Bluegill in response to watershed disturbance, and 
Common Carp (Cyprinus carpio) in response to in-lake disturbance. 
Seven of the remaining models were significant (p ≤ .05) as linear, but 
not quadratic models; all linear models had negative slopes, except 
that for Smallmouth Bass (Table 4). All other models were significant 
(p ≤ .05) quadratic models.

Quadratic models produced four patterns of fish abundance 
response to the two disturbance gradients, monotonic decreasing, 
monotonic increasing, unimodal, and concave up parabolic (Figure 5, 
Table 4). Monotonic decreasing models indicated that maximum fish 
abundance occurred at the smallest observed disturbance gradient 
value (or less) and decreased with increasing disturbance values. 
Monotonic increasing models indicated that maximum fish abun-
dance occurred at the largest observed disturbance gradient value 
and decreased with decreasing disturbance values. The unimodal 
models indicate that fish abundance was maximal at intermediate 
disturbance values. Thus, lower abundances occurred at both higher 
and lower disturbance values than that associated with the optimum. 
Parabolic models may be truncated bimodal curves and could sug-
gest ecological displacement from optimum conditions due to com-
petition (Fresco, 1982), but that investigation is beyond the scope 
of this study; species with parabolic response models for a given 
disturbance gradient were excluded from further analysis (Table 3).

The majority of response patterns were unimodal within each 
disturbance gradient (62% of responses to in-lake disturbance and 
65% of responses to watershed disturbance; Table 3). Those mod-
els were divided into three classes for this analysis, optima near the 
mean (within ½ disturbance gradient unit) disturbance gradient value 
(defined here as a disturbance value of zero), those with optima less 
than the mean class, and those with optima greater than the mean 
class (Table 4).

Species were listed in order of sensitivity to each disturbance 
gradient, with relative sensitivity defined by location of maximum 

Axis 1 = 1.9675 G − 0.1488W − 0.0684 S,

Axis 2 = 0.1937 G + 1.4048W − 0.3321 S

TA B L E  2 Composite variable weightings by partial canonical 
correspondence analysis (pCCA)axis. GLEAM is the Great Lakes 
environmental assessment mapping disturbance index (Allan 
et al., 2013) and Wehrly is the watershed disturbance index 
(Wehrly et al., 2013), and coastline modification is the shoreline 
disturbance index (Hillyer, 1996).

Index Axis 1 Axis 2

GLEAM 1.9675 0.1937

Wehrly −0.1488 1.4048

Coastline Modification −0.0684 −0.33211
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predicted abundance along the disturbance gradient and more sen-
sitive species having maxima associated with lower disturbance 
values than less sensitive species (Figure  7, Tables  3 and 4); more 
steeply sloped monotonic curves were ranked as more sensitive 
than those with shallower slopes. Six species clearly showed de-
creasing abundance with increasing in-lake disturbance, while eight 
species clearly showed decreasing abundance with increasing wa-
tershed disturbance. Among those species with an optimal response 
to in-lake disturbance, two species optima were less than the mean 
in-lake disturbance (by more than 0.5 units), 14 were near the mean, 
and two optima were greater than the mean disturbance. Among 

those species with an optimal response to watershed disturbance, 
seven species optima were less than the mean watershed distur-
bance, eight were near the mean, and four optima were greater than 
the mean disturbance. Five species preferred high levels of in-lake 
disturbance, while two species preferred high levels of watershed 
disturbance. Coregonine species and Yellow Perch were notably 
classified as most sensitive (or nearly so, more than 0.3 below the 
mean) to both types of disturbance. More species were sensitive to 
watershed disturbances (52%) than to in-lake disturbances (28%). 
Conversely, defining “malphilic” species as either those with increas-
ing abundances with increasing disturbance or those with optima 

F I G U R E  6 Spatial distributions 
of composite partial canonical 
correspondence analysis (pCCA) 
disturbance variables for (a) Axis 1 (in-lake 
dominated) and (b) Axis 2 (watershed 
dominated) in Lake Erie.
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more than the mean disturbance level, there were seven malphilic 
species associated with in-lake disturbance and six malphilic species 
associated with watershed disturbance, including Smallmouth Bass, 
which responded positively to both disturbance gradients (Table 4). 
Several species clearly responded differently to the two types of 
disturbance. For example, Alewife (Alosa pseudoharengus) and White 
Sucker (Catostomus commersonii) preferred high levels of in-lake dis-
turbance, but were among the most sensitive species to watershed 
disturbance. Round Goby (Neogobius melanostomus) and Channel 
Catfish (Ictalurus punctatus) were among the most sensitive species 
to in-lake disturbance, but preferred high levels of watershed distur-
bance. None of the species were classified into the same response 
class for both types of disturbance.

3.4  |  Distributions of disturbance

Predictions from all successful models were used to map the spa-
tial distributions of disturbance for each species (Figures S2–S13). 
In general, the distribution of the most disturbed conditions mani-
fested as patches or extensive bands of habitat along the western 
and southern shores of Lake Erie and at the eastern end in the 
Buffalo, NY area, while offshore areas and parts of the western por-
tion of the north shore in the Central ALU (Figure 1) had patches of 
better habitat (Figure S2). However, the extent and specific locations 
of degraded, optimal, and hyperoptimal conditions varied by spe-
cies and differed for each type of disturbance gradient. Several of 
the species (e.g., Alewife and Smallmouth Bass) that were associated 

Response type

Disturbance gradient

In-lake dominated 
(pCCA Axis 1)

Watershed dominated 
(pCCA Axis 2)

Linear decreasing

Pygmy Whitefish, Round 
Whitefish

Alewife, Bloater, Pumpkinseed, 
Quillback, White Sucker

Monotonic decreasing

Round Goby, Cisco, Nine-spine 
Stickleback, Lake Whitefish

Freshwater Drum, Yellow Perch, 
White Perch

Optimum < mean

Channel Catfish, Johnny Darter Lake Whitefish, Silver Chub, 
Emerald Shiner, Pygmy 
Whitefish, White Bass, 
Mimic Shiner, Cisco

Optimum near mean

Yellow Perch, Bloater, Spottail 
Shiner, Walleye, Quillback, 
White Bass, Freshwater 
Drum, Silver Chub, White 
Perch, Trout-perch, Gizzard 
Shad, Bluegill, Pumpkinseed, 
Emerald Shiner

Rainbow Smelt, Round 
Whitefish, Three-spine 
Stickleback, Deepwater 
Sculpin, Nine-spine 
Stickleback, Lake Trout, 
Johnny Darter, Slimy Sculpin

Optimum > mean

Mimic Shiner, Smallmouth Bass Trout-perch, Spoonhead 
Sculpin, Longnose Sucker, 
Round Goby

Monotonic increasing

Alewife, Longnose Sucker, 
Rainbow Smelt, Spoonhead 
Sculpin, White Sucker

Channel Catfish

Linear increasing

Smallmouth Bass

TA B L E  4 Type of response of each 
species to each disturbance gradient. 
Parabolic models were excluded. 
See Appendix 1 for species scientific 
names. The pCCA is partial canonical 
correspondence analysis.
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with increasing disturbance had optimal conditions along the west-
ern and southern shores and at the eastern end of the lake, but hy-
peroptimal conditions in other areas.

We focus on two common and important fishery species from 
Lake Erie, Yellow Perch and Smallmouth Bass, and one extirpated 
species (Cisco) to illustrate differences in the association with dis-
turbance conditions by different fish species in the nearshore zone. 
The Yellow Perch optimum (PRCH) in the partial CCA ordination 
space was located in the quadrant where values of each type of dis-
turbance were less than the average (origin) (Figures 5 and 7). The 
Yellow Perch response to in-lake disturbance showed a typical un-
imodal response, increasing in abundance to a maximum at just a 
little less than average disturbance conditions (−0.306, “optimum” 
disturbance) and then decreasing with greater disturbance (Table 3, 
Figure  8a inset). Yellow Perch responded to watershed distur-
bances with a monotonic curve, decreasing as disturbance increased 
(Figure 8b inset). Maps of these classified disturbance values (using 
the −3 through +3 scale) at each spatial location displayed the distri-
bution of disturbance to Yellow Perch habitat conditions throughout 
the nearshore zone of Lake Erie (Figure 8). The map of in-lake dis-
turbance showed the highest disturbances (class −3) in bands along 
the lake shore at the western end, along the south shore from Cedar 
Point, OH east to Presque Isle, PA, in the Buffalo, NY area, and scat-
tered among other areas of the eastern ALU (14.3% of the nearshore 
zone; Figure 8a). Less disturbed habitats occurred in bands moving 

offshore (29.5% of zone) and optimal disturbance conditions oc-
curred in two large bands in the western ALU and around some of 
the islands, as well as in the eastern half of the lake (19.4% of zone). 
Several relatively large patches of habitat farthest offshore in the 
western ALU and western half of the north shore in the central ALU, 
and scattered in a few other places, were considered to be less dis-
turbed than preferred by Yellow Perch (36.7% of zone). The map of 
watershed-derived disturbance indicated that nearly the entire lake 
was either highly (class −3) or moderately (class −2) disturbed for 
Yellow Perch, with <1% of the nearshore having suitable conditions 
(Figure 8b).

The Smallmouth Bass optimum (SBAS) in the partial CCA ordi-
nation space was located in the quadrant where values of each type 
of disturbance were greater than the averages (Figures  5 and  7). 
The Smallmouth Bass response to in-lake disturbance showed a un-
imodal response, increasing in abundance to a maximum at a dis-
turbance value much greater than that of average conditions (1.88, 
optimum disturbance) and then decreasing with greater disturbance 
(Table 3, Figure 9a inset). The map of classified in-lake disturbance 
values for Smallmouth Bass in the Lake Erie nearshore zone was 
characterized by the most disturbed conditions (−3) in patches 
along the south shore in Ohio, including Maumee Bay, and near 
Buffalo, NY (Figure 9a). Narrow bands of less disturbed conditions 
occurred in the same areas. Optimal habitat occurred throughout 
most of Sandusky Bay, OH, and narrow bands offshore of degraded 

F I G U R E  7 Relative disturbance preferences, based on optimal (unimodal model) or maximal slope (monotonic) disturbance value 
associated with each species for which a successful non-parabolic model was available for both disturbance gradients. Species codes are 
defined in Appendix 1.
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conditions along most of the lake's coast, except for the western 
half of the north shore. All remaining areas were considerably less 
disturbed than preferred (hyperoptimal). Smallmouth Bass was one 
of only two species that responded positively to watershed-derived 
disturbances with a monotonic curve increasing as disturbance in-
creased (Figure 9b inset). The map of those “disturbance conditions” 
showed a band of optimal habitat along the western shore of the 
lake from the Detroit River to Cedar Point, OH (Figure 9b). All other 
areas of the lake were less disturbed than preferred by Smallmouth 
Bass. The preferences of other species for disturbance throughout 
the nearshore zones of Lake Erie tended to grade between these 
two examples (Figures S2–S13 species maps).

Interest in Cisco restoration to Lake Erie makes identifying re-
lationships between Cisco abundance and disturbance conditions 
highly desirable. The Cisco optimum (LKHR) in the partial CCA or-
dination space was also located in the quadrant with lower than 
average disturbances (Figure 7). Its quadratic model in response to 
in-lake disturbance was monotonically decreasing and its response 
model to watershed disturbance was unimodal with an optimum 
at −0.679, indicating that it was sensitive to both types of distur-
bance. Highly or moderately degraded Cisco habitat conditions 
were associated with in-lake disturbance throughout the Lake 
Erie nearshore zone (Figure S3a). Watershed-derived disturbance 
was patchy with optimal conditions for Cisco in narrow bands or 

F I G U R E  8 Maps of predicted yellow 
perch (Perca flavescens) perception of 
disturbance throughout the nearshore 
zone of Lake Erie based on quadratic 
models of abundance as a function of (a) 
in-lake disturbance and, (b) watershed-
derived disturbance. Disturbance 
classes range from the most degraded 
(−3) through optimal (0) to the most 
hyperoptimal (+3). The palest blue area 
was outside of the nearshore zone and 
not considered here. The inset shows 
the associated quadratic model of yellow 
perch abundance as a function of the 
disturbance gradient.
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patches throughout the nearshore zone; the most extensive op-
timal conditions were predicted be along the northeastern shore 
(S10g.). Highly degraded conditions were generally closer to shore, 
with the most degraded conditions along the western and south-
ern shores, and hyperoptimal conditions generally offshore. A 
fine-scale mixture of predicted disturbance conditions occurred in 
several places, including Sandusky Bay, OH, Presque Isle, PA, and 
Buffalo, NY.

A cursory examination of general habitat use (pelagic vs benthic) 
showed a broad mixture of habitat use across the different responses 
to in-lake disturbance. However, those species classified as generally 

pelagic were most sensitive (or within the average disturbance class, 
but with optima ≤0.0) to watershed disturbance.

3.5  |  Disturbance agreement

At any given location, predictions of species' abundance-disturbance 
relationships will differ. Summing the number of species within a 
particular disturbance class at a particular location gives a measure 
of agreement among species about disturbance level. Twenty-five 
of the 35 species that occurred >100 times in the dataset were 

F I G U R E  9 Maps of predicted 
smallmouth bass (Micropterus dolomieu) 
perception of disturbance throughout 
the nearshore zone of Lake Erie based 
on quadratic models of abundance as a 
function of (a) in-lake disturbance and, 
(b) watershed-derived disturbance. 
Disturbance classes range from the most 
degraded (−3) through optimal (0) to the 
most hyperoptimal (+3). The palest blue 
area was outside of the nearshore zone 
and not considered here. The inset shows 
the associated quadratic model of yellow 
perch abundance as a function of the 
disturbance gradient.
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native to Lake Erie, six were established exotics, one was extir-
pated (Cisco), and three never occurred in Lake Erie (Bloater, Pygmy 
Whitefish, and Round Whitefish). Discarding species with parabolic 
models and those absent or extirpated, 25 species models remained 
for each of the disturbance gradients. Thus, if all species' responses 
indicated the same level of disturbance at a particular location, the 
agreement measure would be 25, the maximum number of species 
that could agree. Counts of species' agreement were determined for 
each of the seven disturbance classes for each disturbance gradi-
ent. For example, if 20 species' model predictions indicated that the 
most degraded watershed disturbance conditions existed within 
a spatial cell near Buffalo, NY (orange patches on Figure 10b), and 

five indicated less degraded conditions, then the agreement meas-
ure is 20 and 80% of the species indicate that conditions are highly 
degraded. Computation of agreement was completed for each of 
the nearly 10 million 30-m spatial cells composing the Lake Erie 
nearshore zone for each disturbance class for each disturbance gra-
dient, and mapped. This created 14 maps of the spatial distribution 
of fish disturbance throughout Lake Erie's nearshore zone (Figures 9 
and 10, and Figures S15–S19).

The greatest degree of agreement among species occurred for 
the most highly degraded disturbance class (−3). Agreement among 
species about where in-lake disturbances were worst, ranged from 
0 to 20 (Figure  10a). Between 18 and 20 species indicated that 

F I G U R E  1 0 Maps of the distribution 
of agreement among species that 
disturbance conditions are perceived 
as the most degraded (−3) in each 30-m 
spatial cell of the Lake Erie nearshore zone 
due to (a) in-lake dominated disturbance 
or (b) watershed dominated disturbance. 
Ranges of the number of species in 
agreement compose each color-coded 
class, with the greatest agreement shown 
in red and no agreement shown in gray.
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conditions were highly disturbed in Maumee Bay, off the mouth of 
the Raisin River, MI, and large sections along the south shore of the 
lake from Cedar Point, OH, to Presque Isle, Pennsylvania, as well 
as in areas near Buffalo, NY; agreement was greatest closest to the 
shoreline and decreased moving offshore. Fewer than four species' 
predictions indicated highly disturbed conditions throughout most 
of the open waters of the western ALU, western half of the Canadian 
nearshore zone, and sections along the PA and western NY coasts.

Agreement among species about where watershed-derived dis-
turbances were worst (−3) ranged from 0 to 23 (Figure 10b). Nearly 
all species' predictions indicated highly disturbed conditions along 
the western end of the lake from Cedar Point, OH to the mouth of 

the Detroit River and in a small area adjacent to Cleveland, OH. More 
than 17 species indicated that conditions were highly disturbed in 
large sections along the south shore of the lake, as well as in areas 
near Buffalo, NY; agreement was greatest closest to the shoreline 
and decreased rapidly moving offshore from the western end.

Maps of species agreement counts for lesser degrees of distur-
bance (classes −2 and −1) showed similar patterns, but with differ-
ent areal extents for different classes of species agreement (Figures 
S9 and S15–S16). A general reversal of patterns was observed for 
agreement among species about where habitat was hyperoptimal 
(+1, +2, and +3). As many as 19 species' models agreed that con-
ditions offshore in the western ALU were much less disturbed than 

F I G U R E  11 Maps of the distribution 
of agreement among species that 
disturbance conditions are perceived 
as optimal (0) in each 30-m spatial cell 
of the Lake Erie nearshore zone due to 
(a) in-lake dominated disturbance or (b) 
watershed dominated disturbance. Ranges 
of the number of species in agreement 
compose each color-coded class, with the 
greatest agreement shown in red and no 
agreement shown in gray.
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preferred. Some species' model results identified present conditions 
in parts of the lake to be appropriate (Figures S5 and S11), but there 
was less agreement among model results where disturbance levels 
were optimal (Figure  11). Agreement about optimal in-lake distur-
bances ranged from 0 to 13, with >10 species' models agreeing on 
areas within bands somewhat offshore in the western ALU, along the 
eastern half of the north shore, and in small areas scattered along 
the south shore (Figure 11a). There was even less agreement among 
species' models about where watershed-derived disturbances were 
optimal (0), ranging from 0 to 9, with >6 species agreeing on only 
relatively few, small areas scattered throughout the nearshore zone 
of the lake (Figure 11b).

4  |  DISCUSSION

That fish populations respond to both natural conditions and anthro-
pogenic disturbance factors is well known. An extensive body of re-
search shows that fish have organs to sense their environments and 
use that ability to select preferred conditions. Therefore, fish are ex-
pected to occur more frequently and in greater relative abundances 
in environments they perceive as desirable, among those that are 
available and accessible (Magnuson et al., 1980). The preferred con-
ditions will be in habitat to which they are best adapted, for a given 
life cycle stage, with possible restrictions due to competition or pre-
dation risk, and those best conditions vary by species (Magnuson 
et al.,  1979, 1980; Sharp,  1995; Werner & Hall,  1976). Magnuson 
et al. (1980) highlight the importance of fishes' perceptions of their 
environment to their distributions, emphasizing each species' differ-
ent perception of their world and the human biases that hinder our 
understanding of those perceptions. They also suggest the use of 
ordination to standardize the effects of multiple variables on fish 
habitat selection, as we have done here with CCA. Anthropogenic 
disturbances are the primary focus of fishery managers, because 
they are typically both the causes of ecological problems that affect 
fish populations and the controllable aspects of the environment. 
To best identify the disturbances that significantly affect fish popu-
lations, one must first separate out natural effects. Examination of 
extensive databases of fish abundances, habitat, and anthropogenic 
disturbance conditions revealed differences in Great Lakes fish 
sensitivities and preferences for various levels of human-perceived 
disturbances, allowing us to develop predictive models of fish abun-
dances as functions of in-lake-  or watershed-derived disturbance. 
As a result of differential responses to disturbance and prevalence 
of multispecies fish assemblages that share habitat, a spatial mosaic 
of agreement on species-specific responses to the degree of distur-
bance existed within the nearshore zones of the Great Lakes.

4.1  |  Regionwide fish communities

The regionwide ordination (full CCA) of nearshore Great Lakes fish 
assemblages, constrained by natural environmental conditions, 

confirms that there are relatively distinct fish assemblages in each 
of the Great Lakes (Riseng et al., 2010). That is not to say that there 
is not overlap of ranges and wide distributions of many species, but 
that conditions within each lake are optimal for identifiable subsets 
of the Great Lakes fish fauna. The five most influential environmen-
tal variables (cumulative degree-days, distance to nearest tributary 
mouth, mean summer wave height, ice duration, and water depth) 
were sufficient to explain this general gradient, although more than 
20 additional variables contributed to fish distributions. Conditions 
optimal for Lake Superior (the largest, most northern lake) fishes 
were associated with the lowest annual heating, and the greatest 
distance to rivers, wave heights, ice cover, and depth, while the 
southern and smallest (by area) Lake Ontario, was warm and at the 
opposite end of the ice and river distance gradients. Lake Erie was 
moderate for many environmental factors, but is shallowest and 
smallest in volume, and was set apart along the depth, wave height, 
and river distance gradients (among others). While White Sucker and 
Trout-perch are found throughout the region (their optima were near 
the ordination origin, indicating preference for average conditions), 
most other species were more clearly associated with conditions in 
a particular lake. Fish optima associated with Lake Superior were 
dominated by cold-loving species, including the native Coregonine 
species. Non-native and stocked species (e.g., Alewife, Chinook 
Salmon (Oncorhynchus tshawytscha), and Brown Trout (Salmo trutta)) 
were prominent in the Lake Ontario assemblage, which also included 
American Eel (Anguilla rostrata), a native species unique within the 
Great Lakes to Lake Ontario. Conditions in Lake Erie were associated 
with the most diverse assemblage of species optima (29).

In the Great Lakes, the many different types of disturbances 
largely come from two sources, within the Great Lakes proper (in-
lake) and adjacent watersheds. Partial CCA filtered out the effects of 
“natural” habitat conditions and revealed the influences of anthropo-
genic disturbances derived from integrated variables of in-lake, wa-
tershed, and shoreline perturbations on fish abundances. While the 
composite variables (CCA constructed) each combine all three orig-
inal disturbance indices, the dominance of in-lake (GLEAM) factors 
explaining most variation (Axis 1) and the greatest influence (longest 
environmental vector) by watershed (Wehrly index) factors, with a 
lesser universal influence by shoreline alterations, was clear. The 
overlap of sample points and species optima, regardless of the lake 
from which they were collected, suggests that disturbance effects 
on fish abundances were similar in all lakes (Figure 4). Species optima 
in the ordination space indicate conditions associated with maximum 
abundance and peak of a unimodal response to disturbance. Optima 
were widely scattered along the two primary disturbance gradients, 
with a dense cluster near the center of the hyperspace, where dis-
turbance conditions are essentially average.

Unimodal responses to environmental conditions are common 
in nature (Gause, 1930; ter Braak, 1995; Whittaker, 1956) and qua-
dratic models represented the responses of fish abundances to dis-
turbance variables well for the vast majority of species modeled. 
Because this is an empirical study, based on direct observations, the 
response models are statistical representations of the correlation 
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between sampled abundance and disturbance gradients, a surrogate 
for fish perception of conditions. The four different forms of qua-
dratic responses (and the linear responses) highlight differences in 
perception of disturbance by each species, with some species hav-
ing optimal conditions within a disturbance gradient (unimodal) and 
others having optima at (or beyond) one disturbance extreme or the 
other. The studies producing the original disturbance indices, and 
others examining effects of stressors, typically take the human per-
spective of more disturbance is more detrimental to fish. However, 
our results clearly show that not all fishes are adversely affected 
by increases in anthropogenic disturbances and other disturbance 
studies note this in one form or another, e.g., reports of high abun-
dances or species richness in areas of relatively high disturbance 
(Danz et al., 2007; Kovalenko et al., 2018). Monotonically decreas-
ing fish abundance with increasing disturbance matches the general 
human perception of the effects of anthropogenic degradation on 
fish populations. However, both linear and monotonically increas-
ing patterns and the increasing component of unimodal responses 
clearly indicate preference for more, rather than less, disturbed con-
ditions by some species. Unimodal responses indicate a perception 
of optimal conditions within a disturbance gradient, with “poorer” 
conditions at both lower and higher disturbance values. Thus, our 
results suggest that the human assumption of universal decline of 
fish abundance with increasing anthropogenic disturbance is too 
simplistic. Numerous aspects of each species' adaptations could 
explain these differences and our analysis revealed a weak prefer-
ence by pelagic species for less disturbed conditions. As Magnuson 
et al.  (1980) recommend, laboratory experimentation could clarify 
species' responses to these and other disturbance factors (or at least 
some of them).

Clearly, each species has a different perception of ideal habi-
tat conditions and what constitutes disturbance, and because fish 
populations occur in multispecies assemblages sharing habitat at 
particular times, the fish community perception of disturbance will 
vary from place to place. There were different patchy mosaics of dis-
turbance conditions throughout the nearshore zone of Lake Erie for 
each species. However, some broad trends occurred. Disturbance 
was generally greater in shallow waters near the shorelines and was 
less offshore, which has been previously noted in the Great Lakes 
(Beeton & Edmondson, 1972). The distribution of highly disturbed 
conditions in the western ALU and along parts of the southern shore 
and generally least disturbed conditions along the northern shore 
(Figures S7, S8, and S3–S14) was reflected in the perceptions of 
many of the common species modeled here. A minority of species 
perceived nearly opposite conditions. However, there was wide vari-
ability in those perceived distributions and the extent of patches of 
various quality habitat. Some species were clearly more sensitive to 
high levels of disturbance and perceived much of the lake to be un-
suitable (e.g., Lake Whitefish and Nine-spine Stickleback (Pungitius 
pungitius)), while others perceived large areas of the lake to be far 
too pristine to be suitable (e.g., Channel Catfish and Smallmouth 
Bass). The distributions of those perceived conditions were also 
different between in-lake- and watershed-derived disturbances for 

most species. More species appear to be sensitive to elevated lev-
els of watershed disturbance than those sensitive to in-lake distur-
bance. A few species (e.g., Alewife [in-lake response] and Channel 
Catfish [watershed response], Figures S7 and S13) preferred high 
anthropogenic disturbance conditions and their spatial distribution 
of perceived disturbance was generally opposite to that displayed 
by most other species. However, even these species showed differ-
ent perceptions of the effects of disturbance from the two different 
sources. Yellow Perch and Smallmouth Bass provide illustrations of 
contrasting responses to disturbances with Yellow Perch being sen-
sitive to both types of disturbance and Smallmouth Bass preferring 
disturbed conditions.

Combining these species-specific estimates of perceived distur-
bance, produced indications of agreement among species about the 
degree of disturbance at any nearshore location and the extent of 
those areas. Maps of that agreement provide visual estimates of how 
many species may benefit (or suffer) from conservation of present 
conditions or rehabilitation of “degraded” conditions in specific loca-
tions or regions. For example, more than a dozen species indicated 
that conditions were highly degraded along the western and south-
ern coasts of Lake Erie, again generally reflective of the distribution 
of known anthropogenic disturbance conditions. Concomitantly, 
few species perceived highly degraded conditions along the north-
ern shore or open water areas of the western ALU. However, fine-
scale details of these distributions show differences between human 
and fish perceptions of disturbance.

4.2  |  Environmental drivers and land-lake 
connections

Anthropogenic changes to the landscape affect physical structure, 
water quality, hydrology, thermal conditions, and sediment load of re-
ceiving waters (Paul & Meyer, 2001; Stanfield & Kilgour, 2006; Wang 
& Lyons, 2003). These changes have been shown to alter the struc-
ture and function of aquatic communities (e.g., Karr & Chu, 1999; 
Stanfield & Kilgour,  2006; Wang et al.,  2003; Wang et al.,  2006). 
The increasing development of the landscape highlights the need to 
better understand how landscape change influences the ecology of 
the Great Lakes and the implications for effective conservation and 
management of fish and fisheries (Wehrly et al., 2013). Approaches 
to landscape assessment and influences of landscape change on 
large water bodies like the Great Lakes, assume that the intensity of 
anthropogenic activities in watersheds and open waters will relate in 
a definable way to local habitat degradation levels and the biological 
communities dependent upon those habitats (Allan, 2004; Esselman 
et al., 2011). Our results support this supposition, but also show that 
it is not a simple one-to-one relationship.

There is extensive research into natural environmental influences 
and anthropogenic stressors on fish and fish assemblages of the 
Great Lakes (e.g. Fetzer et al., 2017; Johnson et al., 2016; Kovalenko 
et al.,  2018; McKenna & Castiglione,  2010; Uzarski et al.,  2017; 
Wehrly et al., 2012; Wehrly et al., 2013). Those studies highlight the 



    |  23 of 32MCKENNA et al.

adverse effects of anthropogenic disturbance on fish, but also the 
dominant effects of differences in natural conditions. For example, 
Riseng et al. (2010) conducted ecological assessment of aquatic sys-
tems of the Great Lakes within Michigan identifying conditions and 
sources of ecological impairment that cut across taxonomic groups. 
Danz et al.  (2007) showed that increasing amounts of anthropo-
genic stress were strongly related to increasing concentrations of 
water pollutants, and associated with shifts in lentic fish community 
composition towards non-native, turbidity-tolerant species, and to 
increasing proportions of urban landuse. Wehrly et al. (2012) found 
that fish species patterns and landscape-scale environmental data in 
Michigan lakes were related, and distinct assemblage types associ-
ated with climatic conditions. Recently, Kovalenko et al. (2018) used 
GLAHF, GLEI, and GLCWM data (and programs upon which they are 
built) to identify key habitat factors in the Great Lakes associated 
with several coastal fish species, and community metrics. The diver-
sity of responses is notable.

A practical definition of disturbance is change to any aspect of 
habitat that results in a state that is less suitable for the persistence 
of a healthy native species community or population of particular 
management interest (Esselman et al.,  2011). While change to a 
single aspect of habitat may render it unsuitable, multiple inter-
acting environmental stresses are common in aquatic and marine 
systems, and in combination with effects of natural conditions, com-
plicate management (e.g. Allan et al., 2013; Magnuson et al., 1980; 
Sherman, 2017; Smith et al., 2015). A landscape (or lakescape) per-
spective provides an understanding of the effects of broad-scale 
and local disturbances on Great Lakes habitat and biotic commu-
nities (Wehrly et al.,  2013). Previous studies detecting changes in 
Great Lakes fish assemblages associated with natural and/or dis-
turbed conditions have produced numerous indices of disturbance 
variables that affect fish. The multiple stressors of the GLEAM and 
Wehrly indices capture overall disturbance from open lake and wa-
tershed sources, respectively (Allan et al., 2013; Wehrly et al., 2013). 
Disentangling the effects of natural or anthropogenic influences is 
challenging and ordination has been widely used for that purpose 
in studies of aquatic habitat stressors (e.g. Brazner et al.,  2007; 
Croft & Chow-Fraser,  2007; Kovalenko et al.,  2018; Seilheimer & 
Chow-Fraser,  2007). Partial CCA has been used to separate local 
vs. watershed influences (Esselman et al., 2011) and anthropogenic 
stressors from general habitat type and ecoprovence by lake (Danz 
et al., 2007). In this study, we explicitly accounted for effects of nat-
ural influences and were able to focus on the specific effects of an-
thropogenic disturbances (as represented by the composite index of 
the GLEAM, Wehrly, and coastal modification indices) on fish abun-
dances, revealing the diversity of species-specific responses to the 
same disturbance gradients.

Quantitative expression of anthropogenic disturbance over 
large geographic areas provides important tools for both research 
and management (Danz et al., 2007). Among previous Great Lakes 
studies, the focus has typically been lakewide or regional through-
out all the lakes. Several studies have focused on fish assemblages 
of the coastal zone, which is at the interface between upland and 

lake processes (Johnson et al., 2016; Kovalenko et al., 2018; Uzarski 
et al., 2017). However, the nearshore zone is used by 80% of Great 
Lakes fishes for some or all of their life cycles and anthropogenic 
disturbance can have major impacts on these nearshore fishes (Lane 
et al., 1996; Wehrly et al., 2013); cumulative stress can be greatest 
in nearshore habitats and may threaten ecosystem services (Allan 
et al., 2013). Our findings show the sensitivity of nearshore zone fishes 
to anthropogenic disturbances from both watershed and within the 
Great Lakes proper. While applicable throughout the Great Lakes, 
we focused on Lake Erie, with its wealth of data, and because several 
studies have shown it suffers from the greatest disturbance (Allan 
et al., 2013; Hartman, 1972; Wehrly et al., 2013); changes in Yellow 
Perch populations in Lake Erie have been attributed to alterations of 
the prey base associated tributary loadings of nutrients (Hayward & 
Margraf, 1987; Tyson & Knight, 2001). Our species-specific response 
models provide the capability to predict habitat conditions that are 
most likely to support common species within Lake Erie's nearshore 
zone and allows modeling of changes in abundances as a function of 
disturbance remediation. Also, our multiscale representation (30-m 
cell to region) of fish responses to disturbance improves on previous 
broad-scale tools and provides managers with location specific indi-
cations of protection and restoration needs.

4.3  |  Statistical fish perception and data limitations

We speak figuratively here about the “perception” of disturbance by 
fish. Our observations of apparent perception are based on statis-
tical responses of fish abundances to different levels of anthropo-
genic disturbance, and the assumption that fish can perceive their 
environment and select the best available habitats (e.g., Magnuson 
et al., 1980). Fish are mobile creatures and have multiple sense organ. 
Numerous experiments have shown that fish can select (or avoid) 
certain conditions (e.g. Atchison et al., 1987; Magnuson et al., 1979; 
McKim,  1977; Werner & Hall,  1976). Fish distributions have been 
linked to temperature and oxygen conditions and these have been 
used to describe niche dimensions (e.g. Magnuson et al.,  1979). 
Salmon are famous for homing based on olfaction (and other cues) 
(Bett & Hinch, 2016; Stabell, 1984). Thus, we assume that preferred 
environments will be the highest quality habitat (perceived by a 
given species), and that fish will be more abundant in locations with 
those conditions than in locations with other conditions. We are 
confident that these statistical representations reflect differential 
ecological relationships of fish abundances to anthropogenic distur-
bance, given limitations of sampling gear. The fish were collected 
with trawls, which may not accurately represent the relative abun-
dances of the various species in Great Lakes nearshore habitats. For 
example, those species preferring the shallowest waters or areas of 
rugged bottom may not be as effectively collected as those from 
smoother bottom areas.

Sampling in many aquatic habitats is difficult and many previous 
studies of fish community responses to anthropogenic stresses rely 
upon fish presence and absence data, especially when focused on 
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changes in community metrics, like diversity (i.e., species richness). 
That approach detects effects of disturbance on assemblage rich-
ness and is particularly good for examining losses or persistence of 
rare species (e.g. Danz et al.,  2007; Esselman et al.,  2011; Infante 
& Allan,  2010; Kovalenko et al.,  2018). However, where available, 
fish abundance data have the great advantage of being able to de-
tect optimal and marginal habitats, as well as unsuitable habitats, 
and can be associated with continuous trends in habitat conditions 
(McKenna et al., 2013; McKenna & Castiglione, 2014; McKenna & 
Kocovsky, 2020). The use of standardized abundance data extends 
that capability to detecting changes in species-specific popula-
tions in response to both natural and anthropogenic disturbances. 
Studies such as McKenna and Castiglione  (2010) used abundance 
data to identify environmental conditions associated with vari-
ous fish assemblages in the Western Lake Erie ALU. McKenna and 
Kocovsky (2020) showed the association of Silver Chub abundance 
with natural environmental conditions and the effects of selected 
disturbance factors in Western Lake Erie. We extend previous work 
by examining the associations of high and low abundances of fishes 
within Great Lakes assemblages with both “natural” (anthropogenic 
resistant) conditions and anthropogenic disturbances, and determin-
ing species-specific responses of abundance to disturbances.

The full ordination used data for all species from all of the Great 
Lakes, but limitations of the disturbance dataset and computational 
capabilities dictated the present focus on Lake Erie. However, our 
methods may be applied to all of the Great Lakes and other habitat 
zones. Using only species with at least 100 occurrences in the data 
set ensured that statistical responses would be detectable and in-
cluded the species responsible for most of the biomass and mass 
and energy flows within the Great Lakes community. However, rare 
species often constitute a substantial portion of species diversity. 
Our approach can be expanded to include less common species, 
but model responses will become weaker as species occurrences 
decrease. Thus, the present analysis has limited application to bio-
diversity questions about the relatively common species of Great 
Lakes fish communities. Also, life stages were lumped together in 
this analysis and results may differ greatly by life stage. Addressing 
questions about specific life stages would require more fish data by 
both location and stage and disturbance data on a seasonal basis.

The fish species examined clearly responded to changes in the 
multimetric disturbance index values. Most, but not all quadratic mod-
els were unimodal, identifying optimal conditions at specific points 
along the multimetric disturbance gradients; monotonic models iden-
tified here might have optima beyond the extent of the observed dis-
turbance gradients or may be monotonic throughout. However, we 
believe that the disturbance gradients used here represent the range 
of anthropogenic disturbance conditions in the Great Lakes well 
(Allan et al., 2013; Hillyer, 1996; Wehrly et al., 2013). Association of 
specific disturbance factors with each species' response was beyond 
the scope of this research and dissection of the indices may not be 
very helpful. Managers are likely to have the best understanding of 
the important anthropogenic disturbances in their districts and which 
may feasibly be manipulated to improve conditions.

4.4  |  Potential applications

Recognizing the species-specific differences in responses to an-
thropogenic disturbances is critical to effective management of fish 
habitat. Clearly, while some species are sensitive to different types 
of anthropogenic disturbances, not all species are adversely affected 
by those disturbances and a few appear to require (or prefer) dis-
turbed conditions (at least within the range of disturbance condi-
tions observed for this study). This species-specific response has far 
reaching implications for managers attempting to “improve” habitat 
conditions for enhancement or recovery of selected species. Not all 
species will respond positively to reduced disturbance.

The species-specific aspects of this research also provide manag-
ers with information relevant to species-specific management plans 
for fisheries and/or species of concern. Notable among the partic-
ularly sensitive species are the native Coregonine species (Loftus 
& Regier, 1972). Only Lake Whitefish exists in Lake Erie, but Cisco 
once supported an enormous commercial fishery (Hartman, 1972; 
Oldenburg et al., 2007). Our results indicate that optimal watershed-
derived disturbance conditions perceived by Cisco existed in narrow 
bands and patches throughout the nearshore zone. However, Cisco 
perception of in-lake disturbance indicated that the entire nearshore 
zone was degraded.

Estimating the number of species likely to benefit or suffer from 
changes to habitat conditions can help managers evaluate the costs 
and benefits of changing habitat conditions in particular areas and 
to what degree changes must be made (Regier & Loftus, 1972). The 
perceived degree of disturbance and agreement among species 
about the degree of disturbance clearly varies within the nearshore 
zone of Lake Erie and the spatial distribution of that agreement gives 
an indication of where conditions are best, worst, or moderate and 
their spatial extents. Areas with the worst conditions might seem 
to be the best targets for rehabilitation and they are frequently the 
focus of current restoration efforts (Allan et al.,  2013). However, 
focus on those worst areas might require unreasonable invest-
ment of restoration resources and might not benefit many species, 
or the most desirable fisheries species. In some cases, moderately 
degraded areas might be better restoration options and indicators 
of marginal disturbance (in addition to greatly and weakly disturbed 
conditions) to multiple species may be valuable decision-support to 
mangers (Figures S14–S17). Optimal targeting of restoration efforts 
involves consideration of the range of stressors and their differen-
tial effects, the species intended to benefit from a given action and 
their perception of disturbed conditions, and the number of species 
that may benefit (or suffer) from the action(s). Fine scale predictions 
and complete spatial distributions of both in-lake and watershed an-
thropogenic disturbance levels perceived by each species provides a 
powerful tool to managers.

The extent of “natural” conditions suitable for each species 
may also be limited. The full CCA showed the great difference in 
optimal conditions for many species and the best combination of 
those natural factors may not exist in all parts of nearshore zones. 
Thus, even areas indicated as having optimal disturbance conditions 



    |  25 of 32MCKENNA et al.

might not have ideal (or even suitable) natural conditions for a given 
species. Thus, comparisons between the distributions of naturally 
suitable habitat conditions and perceived disturbance conditions 
identify overlap between optimal natural and disturbance conditions 
(McKenna, 2022. in press).

4.4.1  |  Conclusions

By examining the response of each species' relative abundance to 
increasing values of composite disturbance indices, we extend the 
work of previous researchers and provide an improved understand-
ing of the perception of anthropogenic disturbances by fish and 
the diversity of their responses to such disturbances (e.g., Loftus & 
Regier, 1972). Managers are faced with allocating limited resources 
(which vary among political districts) to protection or restoration of 
habitats supporting critical life stages of fishery species, forage spe-
cies, or other species of concern, as well as ecological issues con-
cerning ecosystem services (Allan et al., 2017). They may ask, how 
many species will benefit from applying those resources in a particu-
lar area or region? Our quadratic models, particularly those with a 
unimodal response, reveal two important pieces of information, (1) 
the fact that human understanding of disturbance is at times differ-
ent from fish population response (Magnuson et al., 1980), and (2) 
species-specific information about “ideal” (or best available) versus 
both degraded and hyperoptimal habitat conditions can be useful for 
managers to identify the best locations for protection or restoration 
activities. Overlay of species-specific maps of fish perceptions of 
disturbance in any particular location indicates where habitat resto-
ration or protection may benefit the most species, and which species 
are most strongly affected by multiple disturbances in those areas. 
The species agreement measures can help provide answers to the 
above management question at multiple spatial scales. For exam-
ple, counts within the most degraded disturbance class (−3) showed 
where numerous species agreed that disturbance conditions were 
their worst. However, as mentioned above, that estimate may in-
clude habitats that are beyond the ability of available resources to 
rehabilitate and the distribution of slightly or moderately disturbed 
conditions for many species may provide more practical guidance. 
Also, the agreement maps provide an indication of how many spe-
cies may be adversely affected by habitat changes intended to im-
prove conditions for other species in restoration areas, this includes 
decisions to increase “disturbance” in an area to enhance conditions 
for some species. The species adversely affected were revealed by 
the maps, as are nuisance or invasive species that may benefit from 
the changes.

Our approach may be expanded to other aquatic and marine sys-
tems, with appropriate data. More investigation at particular loca-
tions and comparison with our results would test model prediction 
reliability and the broader applicability of this method to natural 
conditions. Application of our findings will work best in comparison 
with predictions of the distributions of natural conditions likely to 
support each species or assemblage (McKenna, 2022 in press).
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APPENDIX 1

Fish species code names, common names, scientific names, and frequencies of occurrence in the Great Lakes nearshore fish dataset

Species code Common name Scientific name Frequency of occurrence

SMLT Rainbow Smelt Osmerus mordax 2672

TRPR Trout-Perch Percopsis omiscomaycus 1836

PRCH Yellow Perch Perca flavescens 1765

ALEW Alewife Alosa pseudoharengus 1507

WHPR White Perch Morone americana 1477

GOBY Round Goby Neogobius melanostomus 1308

SPOT Spottail Shiner Notropis hudsonius 1110

EMRL Emerald Shiner Notropis atherinoides 1026

SLIM Slimy Sculpin Cottus cognatus 913

WBAS White Bass Morone chrysops 909

WALL Walleye Sander vitreus 901

DRUM Freshwater Drum Aplodinotus grunniens 880

STK9 Nine-spine Stickleback Pungitius 733

GIZZ Gizzard Shad Dorosoma cepedianum 719

LTRT Lake Trout Salvelinus namaycush 665

WFSH Lake Whitefish Coregonus clupeaformis 455

JOHN Johnny Darter Etheostoma nigrum 379

WSUK White Sucker Catostomus commersonii 375

CCAT Channel Catfish Ictalurus punctatus 361

LKHR Lake Herring Coregonus artedi 361

STK3 Threespine stickleback Gasterosteus aculeatus 308

BLOT Bloater Coregonus hoyi 283

SCHB Silver Chub Macrhybopsis storeriana 258

SPON Spoonhead Sculpin Cottus ricei 256

DSCL Deepwater Sculpin Myoxocephalus thompsonii 253

PUNK Pumpkinseed Lepomis gibbosus 182

QUIL Quillback Carpiodes cyprinus 177

LSUK Longnose Sucker Catostomus 173

BURB Burbot Lota 168

PWHF Pygmy Whitefish Prosopium coulterii 150

CARP Common Carp Cyprinus carpio 133

BLUE Bluegill Lepomis macrochirus 126

SBAS Smallmouth Bass Micropterus dolomieu 108

RWHF Round Whitefish Prosopium cylindraceum 105

MIMC Mimic shiner Notropis volucellus 100

LOGP Logperch Percina caprodes 99

ROCK Rock Bass Ambloplites rupestris 96

BBUL Brown Bullhead Ameiurus nebulosus 83

KING Chinook Salmon Oncorhynchus tshawytscha 71

MINI Minnow spp. Cyprinidae spp. 69

AEEL American Eel Anguilla rostrata 56

SIST Siscowet (fat lake trout) Salvelinus namaycush 40

BTRT Brown Trout Salmo trutta 39

SHRH Shorthead Redhorse Moxostoma macrolepidotum 37
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Species code Common name Scientific name Frequency of occurrence

KIYI Kiyi Coregonus kiyi 35

RUFF Ruffe Gymnocephalus cernua 18

SJCS Shortjaw Cisco Coregonus zenithicus 15

LAMP Sea Lamprey Petromyzon marinus 14

YBUL Yellow Bullhead Ameiurus natalis 14

CRAP Black Crappie Pomoxis nigromaculatus 9

GLDF Goldfish Carassius auratus 7

LBAS Largemouth Bass Micropterus salmoides 7

STRG Lake Sturgeon Acipenser fulvescens 7

WCRP White Crappie Pomoxis annularis 6

LCHB Lake Chub Couesius plumbeus 5

BROK Brook Trout Salvelinus fontinalis 4

GRED Golden Redhorse Moxostoma erythrurum 4

SBUF Smallmouth Buffalo Ictiobus bubalus 4

COHO Coho Salmon Oncorhynchus kisutch 3

SPLK Splake BrookTrout x Lake Trout 3

TGOB Tubenose Goby Proterorhinus marmoratus 3

CCGF Common Carp x Goldfish hybrid Cyprinus carpio x Carassius auratus 2

SLMP Silver Lamprey Ichthyomyzon unicuspis 2

SRDH Silver Redhorse Moxostoma anisurum 2

STON Stonecat Noturus flavus 2

ATLS Atlantic Salmon Salmo salar 1

BUFF Bigmouth Buffalo Ictiobus cyprinellus 1

BULL Black Bullhead Ameiurus melas 1

COMM Common Shiner Luxilus cornutus 1

LDRT Least Darter Etheostoma microperca 1

MOTT Mottled Sculpin Cottus bairdii 1

MUSK Muskellunge Esox masquinongy 1

OSUN Orangespotted Sunfish Lepomis humilis 1

PIKE Northern Pike Esox lucius 1

RAIN Rainbow Trout Oncorhynchus mykiss 1

SAND Sand Shiner Notropis stramineus 1

SAUG Sauger Sander canadensis 1

SDRT Eastern Sand Darter Ammocrypta pellucida 1

SFSH Spotfin Shiner Cyprinella spiloptera 1

STIK Brook Stickleback Culaea inconstans 1
Note: Boldface species occurred at least 100 times and were used in the evaluation of disturbance effects on Great Lakes nearshore zone fishes.

APPENDIX 2

Habitat and disturbance variable code names used in ordination figures

Code Definition

CDDSST Cumulative degree-days from mean daily surface water temperature, base 0C.

Depth bathymetry depth (m) standardized to 30 m grid in meters.

DIRWETDELTA Direction to delta wetland

DIRWETOPEN Direction to open wetland

DIRWETPROTECT Direction to protected wetland
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Code Definition

DISTRVRMTH Distance to nearest GLHD pour point, in meters

DISTRVRMTH5 Distance to nearest river mouth with a Strahler order > = 5, in meters.

DISTWETDELTA Distance to delta wetland (m)

DISTWETOPEN Distance to open wetland (m)

DISTWETPROTECT distance to protected wetland (m)

Fetch_ GLAHF calculated fetch in meters weighted by direction of wind frequency. Coastal Margin (CM) and 
Nearshore (NS) zones only.

GAP_Depth GLGAP depth (m)

GAP_Fetch GLGAP fetch distance (m)

GAP_gl_sst_jun GLGAP mean surface water temperature for June

GAP_RivDens GLGAP river density

GAP_RIVDIR GLGAP direction to rivermouth

GAP_RIVDIST GLGAP distance to rivermouth

GAP_SINUOSITY GLGAP sinuosity

GAP_SUBST GLGAP substrate

GAP_WETDELDIR GLGAP direction to delta wetland

GAP_WetDeltaDist GLGAP distance to delta wetland

GAP_WETOPDIR GLGAP direction to open wetland

GAP_WetOpenDist GLGAP distance to open wetland

GAP_WETPRODIR GLGAP direction to protected wetland

GAP_WetProtDist GLGAP distance to protected wetland

ICEDUR Ice duration in days, where the ice concentration > = 10%.

KM9NEAR03 % of shoreline nearshore type “03 (sand/gravel lag over clay) in the KM9 the point falls inside. Shoreline 
geomorphology layer from the EC/ACOE ~ 1990s dataset.

KM9NEAR05 % of shoreline nearshore type “05” (bedrock [non-resistant]) in the KM9 the point falls inside. Shoreline 
geomorphology layer from the EC/ACOE ~ 1990s dataset.

KM9NEAR06 % of shoreline nearshore type “06” (unclassified) in the KM9 the point falls inside. Shoreline geomorphology 
layer from the EC/ACOE ~1990s dataset.

KM9PROTECT04 % of shoreline protected type “4” (no protection: <15% of reach/segment is protected) in the KM9 the point 
falls inside. Shoreline geomorphology layer from the EC/ACOE ~ 1990s dataset.

KM9SHOREGEOMORPH02 % of shoreline geomorph type “2” (high [>15 m] bluff with beach) in the KM9 the point falls inside. Shoreline 
geomorphology layer from the EC/ACOE ~ 1990s dataset.

KM9SHOREGEOMORPH13 % of shoreline geomorph type “13” (open shoreline wetlands) in the KM9 the point falls inside. Shoreline 
geomorphology layer from the EC/ACOE ~ 1990s dataset.

KM9SHOREGEOMORPH14 % of shoreline geomorph type “14” (semi-protected-wetlands) in the KM9 the point falls inside. Shoreline 
geomorphology layer from the EC/ACOE ~ 1990s dataset.

KM9SHOREGEOMORPH16 % of shoreline geomorph type “16” (unclassified) in the KM9 the point falls inside. Shoreline geomorphology 
layer from the EC/ACOE ~1990s dataset. Canada shoreline was recoded.

KM9SHOREGEOMORPH99 % of shoreline geomorph type “99” (Unclassified [coded by compiler]) in the KM9 the point falls inside. 
Shoreline geomorphology layer from the EC/ACOE ~1990s dataset.

MECHENG GLAHF classification mechanical energy variable (1 = low REI, 2 = moderate REI, 3 = high REI, 4 =)

REI Lake bottom relief for a 3 cell by 3 cell area, in meters, derived from bathymetry.

RELIEF Relief calculated from bathymetry

RVRDENS River density for # of closest river mouths from the GLHD.

RVRDENS5 River density for # of closest river mouths with a Strahler order > =5. Units are “# of points per sq. 
kilometer”.

SINUOSITY GLAHF shoreline sinuosity in values scaled from 1 (straight) to 0 (extremely sinuous). Shoreline used was 
the GLAHF compiled high resolution shoreline and divided into 1 km segments and then calculated for 
each line segment.

SSTSPRCV Spring surface water temperature CV (between years 1995–2008).

SSTSPRMN Mean spring vertical water temperature for the 0–20 m water column, in degrees Celsius.
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Code Definition

SUBSTRATE GLAHF compiled substrate from multiple data sources and USACEs 2012 and EC 1990s shoreline material 
classifications extended to the nearshore zone line. Substrate types are 1 = clay; 2 = mud; 3 = sand; 
4 = hard.

TRIBINFL3 GLAHF classification tributary influence variable, classes are 1 = minimal influence; 2 = moderate influence; 
and 3 = high influence. Coastal Margin (CM) and Nearshore (NS) zones only.

UPWELL Upwelling from surface temperature, an annual index, units are in days.

VWT20MSPRCV Spring vertical water temperature CV for the 0–20 m water column.

VWT20MSPRMN Mean spring vertical water temperature for the 0–20 m water column, in degrees Celsius.

VWT20MSUMMN Mean summer vertical water temperature for the 0–20 m water column, in degrees Celsius.

WVHGHTMNSUM Mean summer wave height in meters.
Note: Boldfaced variables were identified by forward Selection as having significant influence of fish abundances in the nearshore zone of the Great 
Lakes and were used as co-variables in the partial CCA of disturbance effects on Great Lakes nearshore fishes.

APPENDIX 3

Disturbance variables composing the GLEAM, Wehrly, and Coastal Protection indices. See Allan et al. (2013) for complete descriptions of 
each GLEAM variable, Wehrly et al. (2013) for each Wehrly Index variable, and Hillyer (1996) for Coastal Protection Index variables

Source Disturbance variable

GLEAM Index Hypoxia

Industrial ports and harbors

Light pollution

Marinas/boating

Shipping lanes

Shoreline extensions

Shoreline hardening

Dams (altered flow, nutrient, and sediment regimes)

Changing water level

Decreasing ice cover

Warming water temperature

Coastal development

Coastal mines

Coastal power plants

Coastal recreational use

Coastal road density

Aquaculture

Commercial fishing

Native fish stocking

Non-native fish stocking

Recreational fishing – charter

Ballast risk

Invasive fish

Invasive mussels

Invasive wetland plants

Sea lampreys

CSOs

N loading

P loading

Sediment loading
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Source Disturbance variable

AOCs

Metals – biomagnifying

Metals – non-biomagnifying

Organics – biomagnifying

Wehrly Index Amount of land in agricultural land uses

Amount of land in urban land uses

Human population numbers

Length of roads

Number of dams

Coastal Protection Index % of shoreline highly protected type “1” (highly protected: 70%–100% of reach/segment 
protected)
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