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Reactive oxygen species (ROS) are derived from the metabolism of oxygen and are traditionally viewed as toxic byproducts that
cause damage to biomolecules. It is now becoming widely acknowledged that ROS are key modulators in a variety of biological
processes and pathological states. ROS mediate key signaling transduction pathways by reversible oxidation of certain signaling
components and are involved in the signaling of growth factors, G-protein-coupled receptors, Notch, andWnt and its downstream
cascades including MAPK, JAK-STAT, NF-𝜅𝜅B, and PI3K/AKT. Vascular formation and development is one of the most important
events during embryogenesis and is vital for postnasal tissue repair. In this paper, we will discuss how ROS regulate different steps
in vascular development, including smooth muscle cell differentiation, angiogenesis, endothelial progenitor cells recruitment, and
vascular cell migration.

1. Introduction

Reactive oxygen species (ROS) are a class of molecules
derived from the metabolism of oxygen (O2), and are charac-
terized by high chemical reactivity.ey include free radicals,
such as superoxide (O2

−), superoxide anion radical (O2
•−),

hydroxyl radicals (OH•), and peroxynitrate (ONOO−), and
nonradicals such as hydrogen peroxide (H2O2), ozone (O3),
and hypochlorous acid (HOCl). Traditionally viewed as
toxic byproducts of metabolism, ROS cause damage to
lipids, membranes, proteins, and DNA through free-radical-
mediated chain reaction. Over decades, numerous studies
showed that increased oxidative stress plays a central role in
the pathogenesis of vascular disease, including hypertension,
atherosclerosis, and restenosis. Recent evidence, however,
clearly demonstrated that that moderate concentration of
ROS acts as intracellular signaling molecules and thereby
mediates diverse developmental and physiological processes.

ROS are importantmediators and signalmodi�ers during
various biological processes. Signal transductionmediated by
ROS, known as “Redox signaling,” usually involves reversible
and oxidation/reduction-based modi�cation of components
in signaling pathway. ROS are produced in response to

various stimuli, including growth factors, cytokines, chemo-
tactic factors, hypoxia, and shear stress. In turn, many vital
biological pathways or cascades are tuned via ROS, such as
GPCR, Notch [1] andWnt-𝛽𝛽-catenin [2], MAPK, JAK-STAT,
NF-𝜅𝜅B, and PI3K/AKT. Transcription factors such as HIF1-
𝛼𝛼, AP-1, and NF-𝜅𝜅B can themselves be directly modi�ed in a
redox-sensitive manner, thereby leading an altered transcrip-
tional pro�le of gene products. Noteworthy, redox singling
is spatially regulated and con�ned in certain subcellular
region.e compartmentalization of redox signaling ensures
its speci�city in gene regulation and cellular functions, and
that ROS can participates inmore dynamic cell behaviors that
needs different parts of the cell to work together, just as in the
case of cell migration.

To ful�ll the organism�s metabolic demand for oxygen
and nutrients, blood vessel formation is one of the earli-
est and most vital events during embryonic development.
Vascular formation are coordinated in a number of steps,
which include differentiation and proliferation of endothelial
cells (vasculogenesis), blood vessel sprouting and branching
(angiogenesis), and differentiation and migration of vascular
smooth muscle cells (VSMCs) to cover vessel tube (arterio-
genesis) [3, 4]. During these processes, ROS can potentiate



2 Oxidative Medicine and Cellular Longevity

angiogenic response by facilitating signaling of multiple
angiogenic factors, such as vascular endothelial growth factor
(VEGF) and angiopoietin, and enhancing the activity of
hypoxia-induced factor (HIF) as well. Vascular repair and
regeneration in response to tissue injury or intravascular
manipulations also involves angiogenesis. Postnatal neovas-
cularizations are oen accompanied by neointimal forma-
tion, and these repairing processes involves highly regulated
steps, including progenitor cells mobilization and differ-
entiation, vascular cell migration, and VSMCs phenotypic
transition, with ROS as an indispensable player. In this paper,
we will discuss how ROS regulates various steps of vascu-
lar formation and development, including smooth muscle
cell differentiation, angiogenesis, endothelial progenitor cells
recruitment, and vascular cell migration.

2. ROS Source and Nox Enzyme Family

ROS is generated through a cascade of biological reactions
following the formation of superoxide, which can be dismu-
tated to hydrogen peroxide spontaneously or in a reaction
catalyzed by superoxide dismutase. Superoxide can also react
with nitric oxide to form peroxynitrate. Multiple enzyme sys-
tems including nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (Nox) family, xanthine oxidase, mito-
chondrial respiratory chain, uncoupled eNOS, myeloper-
oxidase (MPO), lipoxygenase, cyclooxygenase, cytochrome
p450, and heme oxygenase have been implicated in the
generation of ROS. Among these enzyme systems, the major
source of ROS in vascular system, however, is the Noxs.

First characterized in phagocytes like macrophage and
neutrophils, the prototypic NADPH oxidase 2 (Nox2, also
known as gp91phox) is found to be responsible for antimi-
crobial defense. With binding to other regulatory subunits,
namely, p40phox, p47phox, p67phox, and Rac, the assembled
NADPH oxidases complex is able to produce ROS in a
“respiratory burst” to kill internalized bacteria. Subsequently,
growing biochemical and functional evidence suggests the
presence of NADPH oxidase-like activities in nonphagocytic
cells, which eventually lead to the discovery of a whole
family of NADPH oxidases. e NADPH oxidase family is
composed of catalytic subunits termed Nox1-5 and Doux1
andDuox 2, two organizer subunits p47phox andNoxo1, two
activator subunits p67phox and Noxa1, and other regulatory
subunits like p22phox and p40phox and the binding partner
Rac. Different Noxs exhibit tissue-speci�c distribution and
display distinct functions. In vasculature, Nox1, Nox2, Nox4,
and Nox5 are mainly expressed. In endothelial cells, Nox2
and Nox4 are responsible for the basal ROS generation [5],
but mediate distinctive activation pattern under different
stimulation [6].

All Nox family members are transmembrane proteins
that contain conserved structures: a C-terminal NADPH
binding domain, a �avin adenine dinucleotide (FAD) bind-
ing domain, six transmembrane domains, and four highly
conserved heme-binding histines in the third and �h
transmembrane domains [7]. Based on predicted domain
structures, Nox isoforms can be classi�ed into three groups:
(1) Nox1-4 display up to 60% homology in amino acid

sequence and are predicted to contain six transmembrane
𝛼𝛼-helices and an NADPH-binding domain towards the C-
terminus; (2) Nox5 has the same basic structure as Nox1-
Nox4 but includes an additional four calcium-binding EF-
hand motifs within its N-terminus; (3) Duox1 and Duox2
are similar to Nox5 but include an additional N-terminal
peroxidase homology domain on the extracellular site of the
membrane.

Superoxide is generated by a complex reaction that takes
place once NADPH is bounded to the cytosolic COOH
terminus. Electron transfer occurs initially from NADPH to
reduce FAD to FADH2. en single electron transfer occurs
through the heme groups, which is then accepted by an
oxygen which must be bound to the outer heme group on
the opposite side of the membrane. For every one NADPH
reduced two superoxide molecules are created.

3. ROS and Stem Cell Function Involved in
Vascular Formation and Development

3.1. Embryonic Stem Cells. Stem cells possess the ability for
inde�nite self-renewal and potency of differentiation into
specialized cell type. e rapidly advancing research �eld in
stem cells, especially with the advent of induced pluripotent
stem cells (iPSCs), holds great promise for tissue engineering
and regenerative medicine. e fate of stem cells, that is,
whether to self-replicate or to differentiate, is tightly regu-
lated by various extracellular cues and intracellular signaling,
in which the role of ROS has recently been discovered.

Embryonic stem cells (ESCs), derived from the inner cell
mass of the blastocyst, are pluripotent to generate any cell
type from all three primary germ layers. A growing body
of evidence suggests that ROS generation and signaling are
involved in ESCs differentiation. A single direct current �eld
pulse applied to early embryoid bodies increased intracellular
ROS and promotes cardiomyocyte differentiation; this effect
can be hampered by free radical scavengers [8]. It was later
con�rmed NADPH oxidases are vital to drive cardiomyo-
genesis through MAPK activation and nuclear translocation
of cardiac transcription factor myocyte enhancer factor
(MEF2C) [9, 10]. Interestingly, mechanical strain-induced
cardiovascular differentiation also utilizes Nox-derived ROS
family as a signal transducer [11]. Similar evidences of ROS
in promoting stem cell differentiation are also demonstrated
in many other cell types, including smooth muscle cells [12–
14], endothelia cells [15], skeletal muscles [16], neurons [17],
adipocyte [18], and chondrocyte [19].

3.2. Stem Cell Niche and Hematopoietic Stem Cells Mainte-
nance. e stem cell niche, de�ned as local tissue microen-
vironment that includes cellular and acellular components,
integrates systemic and local cues to regulate stem cell biology
[20]. Oxygen tension as a component of metabolic milieu,
seems to play a role. Early embryogenesis takes place in
female reproductive tract with a low oxygen environment of
less than 5%, which seems to be the optimum concentration
for mammalian embryonic development [21]. In fact, human
ESCs (hESCs) are best-maintained pluripotent under 1–4%
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oxygen tension with enhanced formation of embryoid bodies
and preserved proliferation ability [22]. hESCs began to dif-
ferentiate spontaneously when culturing under 21% oxygen.

e best-characterized stem cell niche is that of
hematopoietic stem cells (HSCs). HSCs with long-term
reconstitution activity (LT-HSCs) primarily reside in
endosteal zone of bone marrow, where blood perfusion is
very limited and oxygen tension can be as low as 1% [23, 24].
Such hypoxic conditions help HSCs maintain slow-cycling
proliferation rate and enhanced engrament ability, while
protecting them from potential oxidative stress in more
well-oxygenated tissue [20]. HSCs with lower ROS residing
in a low-oxygenic osteoblastic niche have a more durable
self-renewal activity than those with high ROS [25].

Knockout studies provide more evidence of ROS in
regulating HSC fate and function. Atm−/− and FoxO1/3/4−/−
mice showed defect in HSCs quiescence maintenance and
HSCs exhaustion, due, at least partially, to increased ROS
level [26, 27]. Treatment with an antioxidant can reextend
the HSCs lifespan and restore cell cycle in these de�cient
cells. Another knockout study found that AKT1/2−/− HSCs
retains in quiescence accompanied by lower ROS content,
which can be rescued to differentiate aer pharmacologically
increasing ROS differentiation [28]. is view is also con-
�rmed inDrosophila, as ROSprimehematopoietic progenitor
for differentiation through activation of FoxO and JNK and
downregulation of polycomb [29]. In addition, in cardiac
and embryonic stem cells, physiological levels of intracellular
ROS are required for maintaining genomic stability through
activating the DNA repair pathway [30]. us, �ne tuning of
ROS levels is essential for stem cell function; with sufficient
ROS required for differentiation, and low ROS for stemness
maintenance and quiescence.

3.3. Endothelial Progenitor Cells. Postnatal neovasculariza-
tion in ischemic insults is critical for tissue repair, and
involves both angiogenesis from preexisting vessels and de
novo vasculogenesis to form new vessels. ere is �rm
evidence that various stem/progenitor cells are mobilized
from bone marrow to participate in the process, in which
endothelia progenitor cells (EPCs) received special attention.
However, the nomenclature and characterization of EPCs
are rather unambiguous, and many cell lineages claimed
to contain EPCs actually do not have direct evidence to
differentiate into vascular cells [31, 32]. Here we still use
the term EPC for convenience to refer to differently labeled
endothelial progenitors in different studies.

As discussed above, an appropriate level of ROS is impor-
tant for HSCs senescence and differentiation. What is more,
hematopoietic progenitors release from bone marrows also
depends onROS signaling, as granulocyte colony-stimulating
factor- (G-CSF-) induced mobilization of EPCs (sca-1+c-
kit+Lin−cells) and other progenitors are strongly prevented
by antioxidant N-acetyl-L-cysteine (NAC), as well as their
chemotactic migration to stromal cell-derived factor-1 (SDF-
1) [33]. In a hindlimb ischemia model, Nox2 knockout
mice display reduction of ischemia-induced �ow recovery
and impaired EPCs (c-kit+Flk1+cells) mobilization, both

of which can be rescued by transplantation of wild-type
bone marrow [34]. Mobilization of Nox2−/− EPCs (sca-
1+�k-1+lin−) is also blocked in hypoxia condition or EPO
stimulation, due to defective production of ROS to inactivate
SHP-2, which normally dephosphorylates and inactivates
STAT5 downstream EPO signaling [35]. Moreover, Nox2−/−
c-kit+Lin− bone marrow stem cells show impaired migration
and actin polarization in SDF-1-directed chemotaxis [34].

In bone marrows, matrix degrading and remodeling by
protease is important for progenitor cell egress and release
of cytokines like VEGF and soluble Kit-ligand (sKitL) [36,
37], which guides activation and chemotactic migration of
EPCs. Production of Nox2-derived ROS can be activated by
leptin binding to its receptor (ObR) in bone marrow cells
[38]. With ROS, matrix metalloproteinase-9 (MMP9) is then
upregulated, shedding and releasing sKitL to enhance EPCs
(sca-1+Flk1+ cells) mobilization. In addition, the association
of EPCs and targeted vesselmay also involve ROS, since ROS-
dependent expression of vascular cell adhesion molecule-1
(VCAM-1) expression on endothelial cells can promote effi-
cient recruitment and proliferation of LSKCD34- (Lin−Sca-
1+cKit+CD34−) hematopoietic cells [39].

4. ROS and Endothelial Cell (EC) Function
Involved in Vascular Formation

Vasculogenesis and angiogenesis are core events during
embryonic development for supply of metabolic substrate.
Postnatal form of angiogenesis, named neovascularization,
also has signi�cance implications in various pathophysio-
logical states like ischemia, wound healing and cancer pro-
gression. Angiogenesis is a �ned regulated process involving
multiple steps including EPC mobilization and differentia-
tion, EC proliferation andmigration, andmatrix remodeling,
almost all of which are found to be modulated by redox
signaling. In fact, Nox2 knockout mice display impaired
neovascularization in hind limb ischemia [40] and their
ECs have much reduced VEGF-induced proliferation and
migration [41].

4.1. EC Migration. Endothelial cells and progenitor cells
migrate following a chemotactic and mechanotactic stimuli
to a right place for covering injured portion of a blood
vessel or forming new conduits. is highly dynamic process
involves complex extracellular matrix-cell and cell-cell inter-
action and includes chemical sensing of a signal gradient,
breaking up intercellular junctions, degradation of extra-
cellular matrix, protrusion of lamellipodia, and cytoskeletal
remodeling [42]. ere is solid evidence that angiogenic
factors like VEGF or angiopoietin-1 utilities ROS for signal
transduction and directing cell migration [43–45].

At the very beginning of migration, quiescent endothelial
cells lined in parent vessels need to break up their inter-
cellular connections, of which the major adhesion com-
ponent is vascular-endothelial- (VE-) cadherin [46]. VE-
cadherin forms a dimer and bind directly to 𝛽𝛽-catenin
(alternatively to plakoglobin) and to p120, with the latter
two also binding to 𝛼𝛼-catenin to link the actin cytoskeleton.
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A scaffold protein called IQGAP1, which binds to actin,
𝛽𝛽-catenin, CLIP-170, Rac, Cdc42, Calmodulin, and many
other cytoskeleton-associated proteins [47], can associate
with VE-cadherin and VEGFR in a quiescent endothelial
cell [43, 48]. Upon VEGF stimulation, IQGAP1 binds more
avidly to activated VEGFR, at same time recruiting Rac1
and Nox subunits to initiate ROS production [43, 49].
Bridging IQGAP1 to VEGFR is further assisted with T-
cell-speci�c adaptor- (TSAd-) dependent activation of c-Src
kinase [50, 51], which in turn phosphorylates IQGAP1 [51]
and enhances ROS production probably via recruiting more
Nox subunits [52, 53] or activating aRac1-guanine nucleotide
exchange factor (GEF) Vav2 [54]. Cysteine sulfenic acid
formation in IQGAP by locally produced ROS may also
share a role [55]. ROS-dependent phosphorylation of VE-
cadherin and catenins leads to disassembly of VE-cadherin-
catenin complex and EC junctional breakdown [48, 56–
58]. Beta-catenin can be directly phosphorylated by VEGF-
induced FAK activation [59], while p120 phosphorylated
by thrombin-activated PKC-𝛼𝛼 [60], all facilitating adherent
junctions dissociation and ultimately promoting EC migra-
tion. Interestingly, phosphorylation in the cytoplasmic tail
of VE-cadherin via VEGF-VEFGR-Src-Vav2-Rac-PAK axis
promotes 𝛽𝛽-arrestin2 dependent of its internalization and
disassembly of intercellular junctions [61], which in turn
promoted EC migration (see Figure 1).

Migrating cells create focal complexes transiently in
leading edges and constantly reorganize cytoskeletons to
form �lopodia or lamellipoda. Localized production of
ROS is essential for their function at precise subcellular
compartments. A paradigm used by migrating endothelial
cells is to tether Nox subunits by different scaffolds or
adaptors to different substructures [62]: IQGAP links Nox2
to actin meshwork at the leading edge [49]; WAVE1 recruits
p47phox and binds toRac1 andRac1 effector PAK, producing
ROS and forming membrane ruffles [63]; TRAF4 associate
with focal contact scaffold Hic5 as well as p47phox, pro-
moting p47phox-TRAF-Hic complex formation and PAK1-
dependent ROS production at focal complexes [64]. A novel
protein Poldip2 in VSMC can associate with p22phox to
activate Nox4 and RhoA, thus strengthening focal adhesions
and stress �ber to promote cell migration [65]. Even cancers
take advantage of this strategy to breed podosomes during
invasion. In colon cancer cells, p47phox-related adaptor
protein tyrosine kinase substrate (Tks) 4 and Tks5 recruit
p22phox and facilitate Rac- and Nox1-dependent ROS gen-
eration at invadopodia [66, 67]. us, compartmentalization
of redox signaling is essential for the highly dynamic feature
of a moving cell.

4.2. EC Proliferation and Survival. Proliferating endothelial
cells generate higher level of superoxide and hydrogen per-
oxide than in quiescent cells [68]. ROS produced by Nox2
and Nox4 enhances EC proliferation and survival through
activation of receptor tyrosine kinases and phosphorylation
of p38, ERK, and Akt [5, 68, 69]. In endothelial cells, Nox2
silencing induces activation of apoptotic marker caspase 3/7
[5], while Nox4 overexpression inhibits their activity during

serum deprivation [69], suggesting ROS derived from both
Nox isoforms exert antiapoptotic effects.

Under stress condition such as energy deprivation,
cells initiate a prosurvival mechanism that degrades dam-
aged cytoplasmic components in lysosomes and recycles
new building blocks for renovation, a process known as
autophagy [70]. Reactive oxygen species have long been
reported to be a signaling mediator of autophagy [71] and
to increase endothelial cell survival in response to cell
stress [72]. Inhibition of mitochondrial ROS production
decreases AMP-activated protein kinase (AMPK) activation,
which is involved in chemerin- or 2-Deoxy-D-glucose- (2-
DG-) induced endothelial autophagy [72, 73]. Moreover,
ROS-mediated autophagy is critical for EC migration and
tube formation during angiogenesis [73, 74]. e molecular
mechanisms by which ROS regulates autophagy are at least
partially due to direct inactivation of a cysteine protease,
Atg4, at the site of autophagosome formation, thereby pro-
moting lipidation of Atg8 for autophagosome processing
[75]. Excessive oxidative stress, on the other hand, promotes
cell apoptosis by activating the death-related pathway, known
as type II programmed cell death (PCD). In persistent pul-
monary hypertension (PPHN), autophagy of the pulmonary
artery endothelial cells (PAECs) is proapoptotic and forms a
positive feedback loop with Nox-derived ROS [76].

5. ROS, VEGF Signaling, and HIF
Activation in Angiogenesis

5.1. VEGF Signaling. Multiple signaling pathways are acti-
vated during angiogenic process by various factors like
VEGF, PDGF, angiopoietin, Notch, Wnt, TGF-𝛽𝛽, and GPCR
agonists, with VEGF as a dominating player. VEGF exerts
its action through binding to VEGF Receptor-2 (VEGFR-
2, also known as FLK1/KDR) in ECs, causing the latter
autophosphorylated in its cytoplasmic tyrosine residues and
driving downstream pathway such as PI3K/AKT and MAPK
to promote EC proliferation and migration. VEGF stimu-
lates ROS production via Rac-1-mediated NADPH oxidase
activation [41, 43] and also increases mitochondria-derived
H2O2 [77]. ROS, in turn, potentiate VEGFR phosphorylation
[41] and is required for downstream cSrc, FAK, PI3K, and
ERK signaling [78]. ROS can also upregulate VEGF secretion
and VEGFR expression through induction of transcription
factors HIF-1 [79–81].

e role of ROS in modulating signaling attributes
largely to reversible oxidative inactivation of protein tyrosin
phosphatase (PTP), which inhibits signaling by dephospho-
rylating pathway components [82, 83], including the recep-
tor itself [33]. For VEGFR2, PTP1B and density-enhanced
phosphatase-1(DEP-1)/CD148 are the major negative phos-
phatases, and can be inactivated locally in caveolin-enriched
lipid ras by H2O2 generated by extracelluar superoxide
dismutase (ecSOD), and thus facilitating VEGFR2 signal-
ing [84]. In addition, growth factor-activated Src kinase
can not only stimulated NAPDH for ROS production, but
also phosphorylate and inactivate ROS degrading enzyme
peroxiredoxin (Prx1), building up a local H2O2 gradient
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F 1: Regulation of intercellular VE-cadherin disruption between endothelial cells by reactive oxygen species andVEGF signaling during
EC migration. In basal state, clustering of VE-cadherins between endothelial cells mediate intercellular adhesions. VE-cadherin forms a
dimer and bind directly to p120 and 𝛽𝛽-catenin, with the latter associated with 𝛼𝛼-catenin to bridge the actin cytoskeleton. Upon VEGF
stimulation, TSAd-dependent Src activation recruits IQGAP1, a multifunctional scaffold protein, to assist association of Rac1 with other
Nox subunits (a). Subsequent ROS production by NOx phosphorylate VE-cadherin and 𝛼𝛼-catenins, leading to disassembly of VE-cadherin-
catenin complex and EC junctional breakdown, which in turn results in EC migration (b). On the other hand, 𝛽𝛽-catenin phosphorylation
by VEGF-induced FAK activation and p120 phosphorylation by thrombin-activated PKC-𝛼𝛼 also promotes the breakdown of endothelial
cell tight junctions. Moreover, phosphorylation of VE-cadherin in the cytoplasmic tail via VEGF-VEFGR-Src-Vav2-Rac-PAK axis promotes
𝛽𝛽-arrestin2 dependent of its internalization and disassembly (c).

to inactivate neighboring protein tyrosine phosphatase and
sustain tyrosine receptor signaling [85]. Ultimately, such
VEGF-ROS signal pathways promote EC migration and
proliferation (Figure 2).

5.2. Hypoxia-Induced Factor. Hypoxia, a well-known non-
chemical signal for angiogenesis in vascular development
and pathological state, also harnesses redox modulating to
regulate its responder, hypoxia-induced factor (HIF). HIFs
belong to PER-ARNT-SIM (PAS) family of basic helix-loop-
helix (b-HLH) transcription factors and have threemembers:

HIF-1, -2, and -3. HIF is a heterodimer composed of an
oxygen sensitive HIF𝛼𝛼 subunits and a constitutively stable
HIF𝛽𝛽 subunit. Under normal oxygen, HIF𝛼𝛼 is hydroxylated
in its proline residues by prolyl hydroxylate proteins (PHDs),
thereby generating a binding site for the von Hippel-Lindau
(VHL) tumor suppressor protein, which initiates ubiquitin
proteasome pathway for HIF𝛼𝛼 degradation [86].

Angiogenesis induced by urotensin-II, a potent vasoac-
tive peptide, involves feed-forward enhancement between
HIF protein and Nox2 [87]. A rapid increase in nox2-derived
ROS in response to urotensin stimulation elevates HIF-1𝛼𝛼
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F 2: ROS in VEGF signaling in endothelial cell proliferation and migration. Binding of VEGF to VEGFR2 stimulates ROS
production via Rac-1 mediated NADPH oxidase activation and through increased mitochondria activity. ROS oxidize and inactivate
protein tyrosine phosphatases (PTPs), disinhibiting their negative regulation on downstream signaling pathways, such as Src/PI3K/Akt and
PLC/PKC/Raf/ERK. H2O2 are also generated extracellularly by ecSOD to locally inactivate DEP1 and PTP1B, two PTPs that dephosphorylate
VEGF receptor, thereby promoting VEGF-induced VEGFR2 autophosphorylation. rough induction of transcription factors HIF-1, ROS
can also upregulate VEGF secretion and VEGFR expression.

level, leading more binding of HIF-1𝛼𝛼 to Nox2 promoter.
Nox2 transcription is then enhanced and more ROS are
generated to activate HIF-1 further, thus maintaining a
positive feedback loop for angiogenesis. In another study,
ROS produced by Nox4 in cardiomyocyte can stabilize HIF-
1𝛼𝛼 and promote VEGF release to increase myocardial angio-
genesis in overload stress [81]. Under hypoxic condition,
Nox expression can be readily induced by HIF, participating
in cell migration and proliferation. ough this is observed
only in pulmonary artery smooth muscle cells, there’s reason
to expect a similar role in endothelial cells for angiogen-
esis. How intracellular ROS enhance or stabilize HIF has
recently been uncovered. On the one hand, ROS mediate
transcriptional activation via NF-𝜅𝜅B [88] and translational
activation via PI3K/AKt/4E-BP1 pathway [89], increasing
HIF production. On the other hand, ROS deplete cellular
ascorbate, a cofactor for PHD activity, and inhibit HIF𝛼𝛼
hydroxylation andVHLbinding [81, 90, 91], suppressingHIF
degradation (see Figure 3). Increased HIF activity promotes
angiogenesis.

6. ROS and SMC Function Involved in
Vascular Formation

Vascular smooth muscle cells, as an important component of
blood vessels, function to contract or relax vessel, to regulate
blood pressure and distribute blood �ow. Smooth muscle
cells display striking plasticity and can undergo phenotype
switch, dedifferentiating from a quiescent contractile state to

a highly migratory synthetic state, in response to vascular
injury or various disease states [92, 93]. In this section, we
discuss how reactive oxygen species regulate SMC differenti-
ation, proliferation, and migration.

6.1. SMC Differentiation. Nascent VSMCs originate from
diverge source during mammalian vascular development,
including neural crest, proepicardium, mesothelium, sec-
ondary heart �eld, smites, and mesoangioblasts [94]. In
injured vasculatures, stem/progenitor cells give rise to
smoothmuscle cells to formneointima during vascular repair
[95]. ES cells can differentiate into SMC in response to
growth factors (e.g., PDGF and TGF-𝛽𝛽), mechanical forces,
and certain extracellular matrix (i.e., collagen IV) [96, 97] by
activating various signal pathways or gene programme such
as integrins-PDGFR 𝛽𝛽 crosstalk [96], histone deacetylase 7
[98], transcription factor Sp1 [99], nuclear proteins chro-
mobox protein homolog 3 [100], and heterogeneous nuclear
ribonucleoprotein A2/B1 [101]. Importantly, during SMC
differentiation and phenotypic modulation, ROS mediated
by Nox4, Nrf3, Pla2g7, or other regulators also plays a
fundamental role [12–14, 102].

TGF-𝛽𝛽 is a prodifferentiation factor for smooth muscle
cells. It activates Nox4 during SMC differentiation from ES
cells [13]. Nox4-derived ROS upregulates the expression and
phosphorylation of serum response element (SRF) and drives
SRF to translocate into nucleus for SMC gene transcription
[13]. In addition, Nox4 expression is enhanced by nuclear
factor erythroid2-related factor3 (Nrf3) [12], amember of the
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ROS

F 3: Regulation of hypoxia-induced factor by intracellular
reactive oxygen species. Reactive oxygen species positively regulates
HIF through enhanced HIF production via activation of NF-𝜅𝜅B
and PI3K/AKt/4E-BP1 pathway. Meanwhile, ROS inhibits HIF
degradation by depleting cellular ascorbate, a cofactor for PHD
activity, thus inhibiting HIF𝛼𝛼 hydroxylation and VHL binding.

cap “N” collar family of transcription factors. Nrf3 can recruit
myocardin/SRF complex toCArGbox in the promoter region
of SMC-speci�c genes and directly bind to SM𝛼𝛼A and SM22𝛼𝛼
promoter. Our study also demonstrated for the �rst time
that the �ne-tuning of Nrf3-Pla2g7- (phospholipase A2-,
group VII) Nox4-ROS axis plays a crucial role in SMC
differentiation from ES cells in vitro and in vivo [14], �rmly
con�rming its functional importance of ROS signals in SMC
differentiation and development (see Figure 4).

As stated above, VSMCs can exhibit extensive phenotypic
diversity and plasticity and are modulated by numerous
environmental cues including growth factors and cytokine,
in�ammatory cell mediators and lipids. Maintenance of dif-
ferentiated or contractile VSMCs phenotype can be enhanced
by PDGF, TGF-𝛽𝛽, MMPs, and reactive oxygen species [92].
Nox4 is necessary for smooth muscle markers expression
and contractile type stress �bers in VSMCs, through SRF
phosphorylation and gene transactivation via p38 MAPK
pathway [103, 104]. Notably, the changing of Nox4 local-
ization from stress �bers in differentiated VSMCs to focal
adhesions in proliferate cells [103] is reminiscent of the Nox4
translocation into nucleus during SMC differentiation [13].
e subcellular shiing of Nox4 during different cellular
state underscores the importance of compartmentalized ROS
signaling for speci�c function [62].

6.2. SMC Proliferation. During normal vascular formation
and pathological conditions like hypertension and restenosis,
vascular SMCs undergo a phenotypic switch to a migratory
or proliferative phenotype in response to a variety of growth
factors and in�ammatory mediators� stimulations. ese
factors, including PDGF [105], Ang II [106], urokinase

plasminogen activator [107], heme [108], urotensin II [109],
TGF-𝛽𝛽 [110], and thyroid hormone [111], can activate Nox
and subsequent ROS production, promoting smooth muscle
cell proliferation. e growth-related downstream signaling
pathways are varied among different Noxs isoforms and
different stimuli. For example, PDGF-induced SMC prolifer-
ation mediated by Nox5 involves JAK/STAT pathway [105],
while Ang II stimulation leads to p38 and Akt activation
through Nox1 in hypertrophic response [112].

6.3. SMC Migration. Migration of smooth cells to cover
the preexisting collateral arteriolar network is an essential
step in arteriogenesis, and provides mechanical support and
contractility for a mature blood vessel. e driving forces for
the process include �uid shear stress and growth factors such
as PDGF, FGF, and TGF-𝛽𝛽. Since cell migration share many
similarities and we have already discussed the case of ECs,
here we only summarize some common feature and highlight
unique aspects in how ROS in�uence VSMC migration.

First, certain signaling components controllingmigration
are modulated by ROS, though which the speci�c pathway
can be different. For example, c-Src activation by various ago-
nists such as AngII, PDGF, and thrombin, is ROS-dependent
[113–116]. is important signal node has direct impact on
downstream cascades like c-Src-PDK1-PAK [114] or c-Src-
EGFR-PI3K/ERK [113, 116], all affecting cell motility. Basic
�broblast growth factor (bFGF), however, activates PKC and
PI3K/Akt instead of c-Src in smooth muscle cells, but the
ultimate JNK activation still requires Nox-derived ROS [117]
(see Figure 5).

Second, migration depends on degradation of extracel-
lular matrix and loss of cell-matrix and cell-cell adhesion.
is oen needs the cleavage activity of metalloproteinase
(MMP). Similar to the role of ROS in downregulating VE-
cadherin in endothelia cells, N-cadherin shedding in disrupt-
ing intercellular junction between VSMCs also involves ROS.
By Nox1-dependent transactivation of epidermal growth fac-
tor receptor, pro-MMP-9 is activated to cleave N-cadherin to
promote SMC migration [116]. Another potentially impor-
tant MMP subtype produced by SMC is MMP2, which can
be induced with transcription factor FoxO3a by urotensin-
II. Urotensin drive Nox4-dependent activation of JNK and
subsequent phosphorylative inactivation of sequestering pro-
tein 14-3-3, thereby allowing FoxO3 into the nucleus to
enhance MMP2 transcription [109]. In pathological states
like hypertension and acute coronary syndrome, increased
MMP release by VSMC may link to abnormal extracellu-
lar matrix reorganization, deranged VSMC migration and
plaque rupture. is, however, can also be mediated though
Nox-derived ROS [118, 119].

irdly, in migrating cells, constant reorganization of
cell protrusions (�lopodia, lamellipoda, stress �ber, and
focal complexes) and cytoskeletons are modulated by ROS,
indirectly through ROS-dependent activation of downstream
effector kinases, small GTPase and cytoskeleton-associated
proteins. Moreover, for contractile cells like VSMCs, contrac-
tion regime is another signi�cant target for ROS tomodulate.
Nox1y/− VSMCs present decreased expression of mDia1, a
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via p38MAPK pathway. During differentiation, Nox translocates into nucleus. Moreover, Nrf3 and Pla2g7 promote the recruitment of
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unknown Nrf3 binding element within promoter regions of SMC genes.
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increase SSH1L phosphatase activity. On the other hand, SSH1L dephosphorylates co�lin, which recycles actin monomers for cytoskeletal
remodeling during smooth muscle cell migration.

RhoA adaptor protein, and decreased phosphorylation of
co�lin, a regulator of actin depolymerization [120]. Co�lin
servers to increase the turnover of actin �laments and
is essential for maintaining and protruding lamellipodia.
Co�lin is phosphorylated and inactivated by LIM kinase
(LIMK), and p-co�ln can be dephosphorylated and acti-
vated by phosphatase Slingshots-1L (SSH-1L) [121], which is
sequestered by a regulatory protein 14-3-3. ROS produced by
Nox1 oxidize 14-3-3, thus releasing SSH-1L to activate co�lin
and subsequent cytoskeletal remodeling for migration [122,
123] (see Figure 6). Furthermore, ROS increase intracellular
Ca2+ mobilization partially through Ca2+ in�ux, thereby
enhance VSMC contraction [124].

7. Perspective

With years of efforts, ROS is becoming increasingly recog-
nized as key modulator for a variety of biological functions
and pathophysiological states. Recent evidence across species
suggests an even more general and signi�cant role of ROS,
including germ line speci�cation in maize [125], root pro-
liferation/differentiation transition in Arabidopsis [126], and
wound detection in zebra�sh [127]. We have discussed above
howROS regulates vascular development in different aspects,
including stem cells and SMC differentiation, angiogenesis,
VEGF signaling, endothelia progenitor cells recruitment,
and vascular cell migration. Nonetheless, much more details
regarding the ROS signaling and pathophysiological func-
tions remain to be learn, for example, how the levels of
ROS are balanced not to damage biomolecule but to modify
normal signal� how ROS are speci�ed and con�ned, and how
ROS in the nucleus modify epigenetic change. Importantly,
different forms of ROS like H2O2 and O2− may display
opposing effects. Further studies are needed to clarify their
respective action, and how transition between different ROS
is coordinated by cells to achieve a speci�c function. More
sensitive and speci�c tools are also needed for detection and
visualization of different ROS species.

ROS have long been deemed as noxious molecules in
cardiovascular disease, including systemic and pulmonary
hypertension, atherosclerosis, cardiac hypertrophy, and heart
failure. However, some very recent gene knockout and over-
expression studies on Nox4 suggest that Nox4-derived ROS
have vascular protective function [81]. us, the regulation
and function of ROS system seem even more complex and
intriguing than we previously thought. A better understand-
ing of how different physiological/pathophysiological state
would impact on vascular system may resolve the paradox
[128–130]. Lastly, deeper insights into themechanism of how
ROS affect normal vascular development, especially SMCand
EC differentiation from stem cells, will promise amore bright
future on regeneration medicine for cardiovascular therapy.
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