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ABSTRACT
Osteoarthritis (OA) is a degenerative joint disease in the 
elderly. Although OA has been considered as primarily 
a disease of the articular cartilage, the participation 
of subchondral bone in the pathogenesis of OA has 
attracted increasing attention. This review summarises 
the microstructural and histopathological changes in 
subchondral bone during OA progression that are due, at 
the cellular level, to changes in the interactions among 
osteocytes, osteoblasts, osteoclasts (OCs), endothelial 
cells and sensory neurons. Therefore, we focus on how 
pathological cellular interactions in the subchondral 
bone microenvironment promote subchondral bone 
destruction at different stages of OA progression. 
In addition, the limited amount of research on the 
communication between OCs in subchondral bone and 
chondrocytes (CCs) in articular cartilage during OA 
progression is reviewed. We propose the concept of 
’OC–CC crosstalk’ and describe the various pathways 
by which the two cell types might interact. Based on the 
’OC–CC crosstalk’, we elaborate potential therapeutic 
strategies for the treatment of OA, including restoring 
abnormal subchondral bone remodelling and blocking 
the bridge—subchondral type H vessels. Finally, the 
review summarises the current understanding of how 
the subchondral bone microenvironment is related 
to OA pain and describes potential interventions to 
reduce OA pain by targeting the subchondral bone 
microenvironment.

INTRODUCTION
Osteoarthritis (OA) is the most frequent form of 
arthritis with a high incidence and a prolonged 
course.1 OA affects articular and periarticular 
tissues, such as articular cartilage, subchondral 
bone and synovium.2 Over recent years, the role 
of subchondral bone during OA progression 
has gradually attracted researchers’ attention.3 4 
Imaging techniques have revealed microstructural 
alterations in subchondral bone in OA joints, 
including early- stage bone loss, late- stage bone 
sclerosis and histopathological alterations, caused 
by subchondral bone cysts, bone marrow oedema- 
like lesions (BMOLs) and osteophyte formation.5 
These alterations are caused by biological processes 
involving uncoupling and coupling interactions 
among osteocytes, osteoblasts (OBs), osteoclasts 
(OCs), endothelial cells (ECs) and sensory neurons 
in the subchondral bone microenvironment,6 and 
therefore they will help in understanding OA 
pathogenesis from the perspective of subchondral 
bone. Notably, bone remodelling rates are altered 
during the development of OA due to the spon-
taneous activation or inactivation of osteoclastic 
bone resorption activity. As a result, activation of 
bone resorption may be evident in the subchondral 

bone microenvironment in early- stage OA, while 
late- stage OA is characterised by inactivation of 
bone resorption activity and a bias towards acti-
vation of bone formation activity.7 Subchondral 
bone and cartilage form a functional complex 
called the bone–cartilage unit, which is involved in 
the pathophysiology of OA at the biochemical and 
mechanical levels.8 9 In this review, we summarise 
the various pathways by which OCs interact with 
CCs, thus providing a novel research direction for 
the investigation of the crosstalk between these 
two types of cells in OA. Furthermore, we have 
noted the reported and potential communication 
pathways between OCs and CCs, and we propose 
promising therapeutic strategies to restrain the 
progression of OA by targeting the subchondral 
bone microenvironment. Moreover, arthritic pain 
is a major complaint of patients with OA during 
the progression of the disease. Recent studies indi-
cate that neuronal factors may contribute to the 
innervation of pain- related sensory nerves in OA 
subchondral bone.10 11 Intriguingly, the evidence 
suggests a close relationship between OCs/OBs 
and sensory nerves in the microenvironment of 
subchondral bone.10 11 Based on this, it may be 
useful to develop specific drugs for the treatment 
of OA- related pain by targeting the subchondral 
bone microenvironment.

OSTEOARTHRITIC SUBCHONDRAL BONE 
MICROENVIRONMENT
Normal subchondral bone architecture
Subchondral bone is divided into two anatomical 
entities: the subchondral bone plate and subchon-
dral trabeculae. Subchondral bone plate is a thin 
cortical plate subjacent to calcified cartilage. It is a 
penetrable structure with interconnected porosity. 
Numerous vessels and nerves pass through the 
porosity, sending branches into calcified cartilage.12 
The subchondral trabeculae, which are subjacent 
to the subchondral bone plate, are porous struc-
tures with abundant vessels and nerves that play 
an important role in load absorption and structural 
support as well as nutritional supply to cartilage.13 
Subchondral bone adapts to mechanical forces 
exerted on the joint dynamically via coordinated 
bone remodelling.14 Bone remodelling involves 
the coupling of osteoclastic bone resorption and 
osteoblastic bone formation to replace damaged 
bone with new bone.15 However, subchondral bone 
and cartilage exhibit distinct capacities of mechan-
ical adaptation. Although cartilage modulates the 
functional state in response to mechanical damage, 
its capacity to repair and modify the surrounding 
extracellular matrix is more limited than that of 
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subchondral bone.16 Subchondral bone responds rapidly to 
mechanical loading by bone remodelling and then re- establishes 
normal physiological conditions.17

Microstructural and histopathological alterations in OA 
subchondral bone
The occurrence of cartilage degeneration and subchondral bone 
destruction has always been a controversial issue.18 Not all 
patients with OA exhibit the progression from abnormal bone 
formation in subchondral bone. Moreover, a fraction of patients 
with OA exhibit the earliest changes at the sites of subchondral 
bone. OA is commonly thought to be a degenerative disease 
related to ageing and trauma. In ageing- induced OA, it could be 
confirmed that aberrant chondrocyte metabolism plays a crucial 
role in the occurrence of cartilage damage prior to abnormal 
subchondral bone formation.19 Conversely, early microdamage 
at the sites of subchondral bone is detected in trauma- induced 
OA.20 Notably, the alterations of subchondral bone are not 
exactly the same in different articulating joints in OA. There is 
good evidence that pathological alterations in different joints 
(such as the knee, spine and temporomandibular joint) exhibit 
several kinds of features.21–25

At different stages of OA, there are distinct microstructural 
alterations in subchondral bone. In early OA, enhanced subchon-
dral bone turnover is observed. In addition, the subchondral bone 
sclerosis is observed during the advanced and late stages.26–28 In 
early OA, subchondral bone plate becomes thinner and more 
porous during the initial cartilage degeneration. Subchondral 
trabeculae deteriorate, with increased trabecular separation and 
decreased trabecular thickness.29 Conversely, the subchondral 
bone plate and trabeculae become thicker, which is accompa-
nied by subchondral bone sclerosis and decreased bone marrow 
spacing in late OA. At the same time, non- calcified cartilage 
shows progressive damage, and becomes thicker with tidemark 
replication.29 Despite the increased bone volume, high local bone 
turnover and a decreased calcium:collagen ratio lead to insuf-
ficient bone mineralisation and a decreased bone tissue elastic 
modulus. Consequently, the mechanical property is compro-
mised, and it becomes easier to deform bone under mechanical 
loads (figure 1).30 31

Abnormal cellular interactions in the OA subchondral bone 
microenvironment
Subchondral bone in OA undergoes an uncoupling of remodel-
ling process, in which enhanced osteoclast- mediated bone resorp-
tion and osteoblast- mediated bone formation could be displayed 
at different stages during OA progression.32 Normally, biome-
chanical coupling of articular cartilage and subchondral bone has 
been well established. In early- stage OA, the self- repair of artic-
ular cartilage reduces excessive mechanical loads on subjacent 
subchondral bone. As a result, loading of subchondral bone falls 
below a predetermined level. In turn, this underloading increases 
the ratio of the expression of receptor activator of nuclear factor 
κB ligand (RANKL)/osteoprotegerin (OPG) in osteocytes, which 
leads to excessive osteoclastogenesis and enhanced bone resorp-
tion activity.33 34 Overactivated bone remodelling is commonly 
found at microdamage sites in subchondral bone in patients with 
OA and OA animal models.35 36 Osteocytes directly adjacent to 
microdamage sites undergo apoptosis, whereas osteocytes adja-
cent to apoptotic populations upregulate the expression of pro- 
osteoclastic molecules at the early stage of OA.37 38 Conversely, 
osteocytes also regulate osteoblast mineralisation by activating 
the Wnt signalling pathway via increased production of Wnt 
proteins and decreased secretion of sclerostin (SOST) in response 
to increased mechanical loading, which is caused by progressive 
cartilage destruction in OA during progression to the advanced 
and late stages.39 40 In addition, it was confirmed in vitro that 
transforming growth factor-β1 (TGF-β1) from osteocytes could 
enhance osteoblast- mediated bone anabolic metabolism by 
activating Smad2/3 in the subchondral bone in advanced- stage 
OA.41 As a result, the concomitant increase in osteoblast activity 
leads to spatial remineralisation and osteosclerosis in the end 
stage of OA.

In parallel, osteoclastic bone resorption leads to a sharp 
increase in active TGF-β1 in OA subchondral bone, recruiting 
osteoprogenitors to bone remodelling sites via activation of the 
Smad2/3 pathway to promote the formation of osteoid islets.42 
Abnormal mechanical strain triggers dysregulated metabolism 
in osteoblasts, which is characterised by increased expression 
of interleukin (IL)−6, prostaglandin E2 (PGE2), the degrada-
tive metalloproteinases matrix metalloproteinase (MMP)–3, 

Figure 1 Microstructural and histopathological alterations in osteoarthritis (OA) subchondral bone. In early- stage OA, subchondral bone plate 
becomes thinner and more porous, together with deteriorated subchondral trabeculae and initial cartilage degradation. In late- stage OA, calcified 
cartilage and subchondral bone plate become thicker, along with sclerotic subchondral trabeculae and progressive cartilage destruction. During OA 
progression, growing vessels and nerves send branches from subchondral bone into cartilage. OA subchondral bone exhibits subchondral bone cysts, 
bone marrow oedema- like lesions and osteophyte formation.
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–9, −13 and RANKL and decreased production of OPG.43 
IL-6 and PGE2 stimulate osteoclast formation by inhibiting the 
secretion of OPG and stimulating the production of RANKL in 
osteoblasts or by upregulating the expression of RANK in osteo-
clasts.44 Moreover, PGE2 promotes the secretion of IL-6, and 
in turn, IL-6 promotes the secretion of PGE2 by osteoblasts.45 
Hence, the positive feedback loop between PGE2 and IL-6 
signalling promotes osteoclast differentiation via affecting the 
OPG/RANKL/RANK system. In addition, RANKL and vascular 
endothelial growth factor (VEGF) secreted by osteoblasts in 
subchondral bone in OA could trigger osteoclast chemotaxis 
by inducing extracellular signal- regulated kinase 1/2 (ERK1/2) 
phosphorylation.46–48

Evidence has shown that the crosstalk between osteoblast or 
osteoclast lineage cells and type H ECs promotes subchondral 
angiogenesis and aggravates subchondral bone remodelling.49–51 
Type H ECs surrounded by osterix- expressing osteoprogeni-
tors produce high levels of angiocrine factors (such as platelet- 
derived growth factor (PDGF)–A, TGF-β1 and fibroblast 
growth factor (FGF)−1), stimulating survival, proliferation and 
differentiation of these osteoprogenitors to promote local bone 
formation.52 53 Type H ECs intercommunicate via the intercel-
lular Notch/delta- like protein 4 (DLL4) signalling pathway to 
induce the production of Noggin,54 which stimulates the differ-
entiation of osteoprogenitors surrounding vessels.55 Type H 
vessels also stimulate osteoclast migration and differentiation 

Figure 2 Pathological cellular interactions in the osteoarthritis (OA) subchondral microenvironment. (A) In early- stage OA, osteocytes upregulate 
the expression of RANKL:OPG ratio to enhance osteoclast differentiation. According to relative production of PGE2, IL-6 and OPG to RANKL, 
osteoblasts are separated into two subgroups: ‘low- synthesiser cells’ and ‘high- synthesisers’. PGE2, IL-6, MMP-9 and VEGF from the two subgroups 
mediate the pro- osteoclastic effect, while the former acts as primary effectors of subchondral bone loss by high levels of RANKL. In parallel, 
osteoclastic bone resorption is primarily responsible for angiogenesis and osteogenesis by released TGF-β1. Moreover, sensory innervation is induced 
by H+ and Netrin-1 secreted from mature osteoclasts. RANKL and MMP-9 produced by type H ECs may facilitate osteoclast chemotaxis and formation. 
(B) In late- stage OA, osteocytes regulate osteoblast mineralisation by increased Wnt proteins and TGF-β1 in response to increased mechanical 
loading. Multiple cells produce factors to support type H vessel formation, including VEGF and TGF-β1 from osteocyte, PDGF- BB from pre- osteoclasts, 
and VEGF, TGF-β1 and SLIT3 from osteoblasts. Sustained nerve sprouting is supported by NGF from preosteoclasts and PGE2 from osteoblasts. The 
latter subgroup promotes subchondral bone sclerosis, primarily regulated by angiocrine factors (PDGF- A, TGF-β1 and FGF-1). ASIC, acid- sensing ion 
channel; DCC, deleted in colon cancer; DLL4, delta- like protein 4; DP1R, DP1 receptor; IL-6, interleukin-6; MMP-9, matrix metalloproteinase-9; PDGF, 
platelet- derived growth factor; PG, prostaglandin; RANKL, receptor activator of NF-κB ligand; SLIT3, slit guidance ligand 3; SOST, sclerostin; TGF-β1, 
transforming growth factor-β1; TRPV1, transient receptor potential vanilloid 1; VEGF, vascular endothelial growth factor.
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by producing RANKL and MMP-9, which regulate bone remod-
elling to promote longitudinal bone growth.56 In addition, slit 
guidance ligand 3 (SLIT3) and TGF-β1 derived from osteoblasts 
acts as pro- angiogenic factors to increase the number of type H 
ECs.57–59 Notably, TGF-β1 derived from osteoclastic resorption 
is primarily responsible for subchondral angiogenesis in early- 
stage OA,60 while the increase in preosteoclast- derived PDGF- BB 
plays a relatively predominant role in angiogenic and osteogenic 
differentiation in late- stage OA (figure 2).61

REGULATION FEEDBACK LOOP OF ‘OSTEOCLAST–
CHONDROCYTE CROSSTALK’
Various pathways for the ‘osteoclast–chondrocyte crosstalk’
A large number of vessels from subchondral bone penetrate calci-
fied cartilage and invade non- calcified cartilage through vertical 
microcracks observed in OA joints.62 Consequently, mediators 
originating from osteoclasts and chondrocytes may diffuse and 
transport across microcracks or via invasive vessels. Intriguingly, 
osteoclast precursors invade the hypertrophic area of carti-
lage during the growth of periosteal vessels and then function 
together with hypertrophic chondrocytes to remodel cartilage 
matrix and form a primary ossification centre.63 64 Similarly, an in 
vivo cell tracking technique revealed that bone marrow–derived 
CX3CR1- positive osteoclast precursors enter the inflammatory 
cartilage layer via the blood circulation and differentiate into 
mature osteoclasts, promoting cartilage destruction in rheuma-
toid arthritis.65 Collectively, these data suggest that osteoclast 
precursors migrate into the cartilage layer and then make direct 
contact with hypertrophic chondrocytes and even interact with 
chondrocytes with normal phenotype. In addition, recent data 
have identified the capability of osteoclasts to degrade the osteo-
chondral junction and articular cartilage in an MMP- dependent 
and cysteine protease–dependent manner,66 indicating the 
potential of mature osteoclasts to function as direct regulators of 
neighbour chondrocytes. During ‘mechanical OC- CC crosstalk’, 
on the one hand, the cartilage layer exhibits abnormal alterations 
in OA progression, which reduce its ability to absorb mechanical 
pressure and result in excessive loads on subchondral bone.67 
On the other hand, high turnover of subchondral bone leads 

to alterations in the biomechanical properties of bone tissue in 
early OA, transferring shear forces to the cartilage layer and 
causing continued cartilage damage (figure 3).68

Regulation of chondrocytes by osteoclasts promotes cartilage 
deterioration
Growth factors released from the bone matrix through osteo-
clastic bone resorption regulate chondrocyte metabolism and 
participate in cartilage deterioration. Mature osteoclasts attach 
to the bone surface through sealing zones and dissolve bone 
during bone remodelling. Consequently, various factors are 
released from the bone matrix, including TGF-β1, insulin- like 
growth factor (IGF)−1 and calcium- phosphate complexes.69 
Zhang et al70 found that the expression of TGF-β1 in osteoclasts 
was significantly upregulated in a time- dependent and dose- 
dependent manner under mechanical stimulation. Meanwhile, 
chondrocytes showed increased apoptosis when cultured with 
osteoclasts. Furthermore, intraperitoneal injection of TGF-β1R 
inhibitors reversed chondrocyte apoptosis and reduced carti-
lage degradation in a rat OA model.70 TGF-β1 is not derived 
from osteoclastic bone resorption in the study, no matter what, 
it implied that TGF-β1 in subchondral bone could be transferred 
to the cartilage layer by diffusion or blood transport to adversely 
affect chondrocytes. Intriguingly, IGF-1, another bone- released 
growth factor, was shown to play a protective role in chondro-
cyte anabolism. IGF-1 promotes the expression of Col2a1 and 
inhibits the expression and enzyme activity of MMP-13 by acti-
vating the phosphatidylinositol 3 kinase (PI3K)/Akt and ERK1/2 
pathways in rat endplate chondrocytes.71 In addition, IGF-1 
signalling protects chondrocytes from apoptosis by reducing 
caspase-3 activity and DNA fragmentation.72 73 Cartilage also 
obtains calcium–phosphate complexes from subchondral bone, 
which increases the production of MMP-13 in chondrocytes via 
activation of nuclear factor- kappa B (NF-κB), p38 and ERK1/2, 
and signal transducer and activator of transcription 3 (STAT3) 
signalling.74 Lu et al50 reported a nutrient- sensing mechanism in 
which vascular- derived nutrients (such as amino acids) induced 
hypertrophic differentiation by activating mechanistic target of 
rapamycin complex 1 (mTORC1). Osteoclasts at distinct stages 

Figure 3 Various pathways for the ‘osteoclast–chondrocyte crosstalk’. (A) Osteoclasts (OC) and chondrocytes (CC) interplay through secreted 
mediators crossing microcracks and vessels. (B) Bone marrow mononuclear cells are brought to the cartilage layer through invasive vessels. Osteoclast 
lineage cells directly contact with chondrocytes at different stages of differentiation. (C) Mature osteoclasts tunnel their way into subchondral bone 
and overlying cartilage and interact with chondrocytes in the cartilage layer. (D) Subchondral bone destruction mediated by osteoclasts transfers shear 
forces to the cartilage layer and consequently leads to abnormal chondrocyte metabolism. In turn, osteocytes and osteoblasts sense overloads from 
the damaged cartilage layer and send pro- osteoclastic signals, resulting in accelerated subchondral bone remodelling.
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of differentiation derived from bone marrow mononuclear cells 
(BMMCs) may affect the normal phenotype of chondrocytes. 
Our group reported that exosomal let- 7a- 5p from preosteoclasts 
and mature osteoclasts targets Smad2 to promote the hypertro-
phic differentiation of chondrocytes,75 providing insights into 
‘OC–CC coupling’ during OA progression.

Regulation of osteoclasts by chondrocytes promotes 
subchondral bone loss
Subchondral bone cells may be exposed to various pro- 
inflammatory cytokines produced by OA chondrocytes. 
Changes in joint biomechanical properties induce the upregu-
lation of IL-1β in primary chondrocytes.76 IL-1β upregulates 
the expression of RANKL by osteoblasts to indirectly induce 
osteoclast formation and directly induces osteoclast precursors 
to form multinucleated osteoclasts.77 The excessive production 
of tumour necrosis factor (TNF)-α and IL-6 in chondrocytes in 
OA was detected in a surgical OA model of destabilisation of 
the medial meniscus.78 TNF-α directly induces osteoclast differ-
entiation by activating NF-κB and c- Jun NH2- terminal protein 
kinase (JNK) in a RANKL- independent manner79 and indirectly 
induces osteoclastogenesis by stimulating osteoblasts to express 
RANKL.80 IL-6 induces CD14- positive peripheral blood mono-
nuclear cells to form tartrate- resistant acid phosphatase (TRAP) 

and calcitonin receptor–positive osteoclasts in a RANKL- 
independent manner by activating the signal transduction factor 
gp130.81 In addition, VEGF- positive and RANKL- positive chon-
drocytes are increased in the hypertrophic layer by applying 
mechanical stress to the temporomandibular joint. In parallel, 
TRAP- positive osteoclasts increase in the mineralised layer 
subjacent to the hypertrophic layer.82 Furthermore, RANKL and 
VEGF induced osteoclast chemotaxis through the phosphoryla-
tion of ERK1/2 in a modified model of osteoclasts cultured in 
a Boyden chamber.83 High- mobility group box 1 (HMGB1) is 
expressed in and around OA chondrocytes in vivo.84 Taniguchi 
et al85 analysed the bone development of Hmgb1−/− in hyper-
trophic chondrocytes in the growth plate of mice and found 
that the endochondral bone formation was disrupted due to 
the delayed invasion of osteoclast precursors into the primary 
ossification centre. In addition, senescent chondrocytes occur 
alongside hypertrophic chondrocytes, which produce catabolic 
enzymes, pro- inflammatory mediators and chemokines (collec-
tively known as the senescence- associated secretory phenotype 
(SASP)),86 87 potentially modulating the behaviours of subchon-
dral osteoclast lineage cells.

The presence of chondrocytes with morphological features 
consistent with apoptosis in OA cartilage is positively correlated 
with OA severity.88–90 Tang et al91 found that the conditioned 

Figure 4 Role of the ‘osteoclast–chondrocyte crosstalk’ in the pathogenesis of OA. Multiple subchondral factors arrive at the cartilage layer through 
blood transport to regulate chondrocyte metabolism. For example, various factors are released from bone matrix, including TGF-β1, IGF-1 and Ca–Pi 
complexes. Moreover, BMMCs migrate into the cartilage layer. Mediators produced by chondrocytes are transported to the subchondral bone layer 
through blood transport. Hypertrophic, senescent and necrotic chondrocytes produce high levels of pro- osteoclastic molecules, which act on BMMCs 
in the subchondral bone or cartilage layer to promote osteoclast recruitment and formation. Preosteoclasts and mature osteoclasts in the cartilage 
layer induce chondrocyte hypertrophy through exosomal let- 7a- 5p. In addition, osteoclasts and chondrocytes influence each other by ‘OC–CC coupling 
via channels’ or ‘mechanical OC–CC crosstalk’. BMMC, bone marrow mononuclear cell; CXCL12, CXC motif chemokine 12; DAMP, damage- associated 
molecular pattern; FGF, fibroblast growth factor; HMGB1, high mobility group box 1; IGF, insulin- like growth factor; IL, interleukin; MMP-9, matrix 
metalloproteinase-9; PDGF, platelet- derived growth factor; PG, prostaglandin; RANKL, receptor activator of NF-κB ligand; SASP, senescence- associated 
secretory phenotype; SLIT3, slit guidance ligand 3; TGF-β1, transforming growth factor-β1; TNF-α, tumour necrosis factor-α; VEGF, vascular endothelial 
growth factor.
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medium of apoptotic chondrocytes following dexamethasone 
treatment enhanced the recruitment of RAW264.7 osteoclast 
precursor cells and increased their differentiation potential. 
Further explorations confirmed that CXC motif chemokine 12 
(CXCL12) released from apoptotic chondrocytes had the stron-
gest pro- osteoclastic effect by activating the ERK1/2 and p38 
pathways in BMMCs.91 AMD3100 (an inhibitor of CXCR4) 
effectively prevented subchondral trabecular destruction and 
cartilage loss in the tibia of mice after anterior cruciate ligament 
transection (ACLT).92 93 The cartilage matrix is the main obstacle 
for phagocytic cells, resulting in late apoptotic chondrocytes 
undergoing the transition to necrosis, which is called secondary 
necrosis.94 Necrosis causes plasma membrane rupture and the 
release of damage- associated molecular patterns (DAMPs), such 
as nucleotides, HMGB1 and pro- inflammatory cytokines.95 
DAMPs act on nearby cartilage and synovium to trigger inflam-
mation, and may regulate the behaviours of subchondral osteo-
clast lineage cells (figure 4, table 1).

TARGETING THE SUBCHONDROL BONE 
MICROENVIRONMENT FOR THE TREATMENT OF OA
Restoring abnormal subchondral bone remodelling
In fact, the efficacy of antiresorptive agents in OA treatment has 
been evaluated in clinical trials by restoring abnormal subchon-
dral bone remodelling. Regrettably, there are currently few or no 
data on the beneficial effect of strategies targeting abnormal bone 
remodelling in patients with OA. Bisphosphonates approved 
for osteoporosis management belong to classical antiresorptive 
agents. Risedronate reduced biochemical markers of cartilage 
degradation but did not improve signs or symptoms or slow 
radiographic progression in a prospective 2- year trial involving 
2483 patients with medial compartment knee OA at dosages 
of 5 mg/day, 15 mg/day, 35 mg/week or 50 mg/week.96Alendro-
nate treatment improved the Western Ontario and McMaster 
University Osteoarthritis Index pain score, decreased biochem-
ical markers and increased the BMD in a prospective 2- year trial 

Table 2 Targeting the subchondral bone microenvironment for the treatment of osteoarthritis (OA)

Therapeutic strategy Agents Effects References

Restoring abnormal subchondral bone 
remodelling

Bisphosphonate, 
osteoprotegerin, cathepsin K 
inhibitor, strontium ranelate

Relieve pain, improve joint structure, and reduce bone and cartilage degradation markers 96–101

Calcitonin Prevent bone pathology development and promote chondrocyte anabolism 102 103

TGF-β1 inhibitor Reform subchondral bone remodelling and inhibit subchondral angiogenesis 60

Blocking the bridge—subchondral type 
H vessels

Bevacizumab Attenuate subchondral angiogenesis 50

Halofuginone Restore coupled bone remodelling and alleviate type H vessel formation by inhibiting 
TGF-β1 signalling

105

Ameliorating
OA- related pain by modulating the 
subchondral bone microenvironment

Tanezumab Reduce pain and improve joint function by binding NGF specifically 111 112

SB366791, APETx2 Improve acidic subchondral bone microenvironment and acid- induced pain by inhibiting 
TRPV1 and ASIC3, respectively

110 115

COX2 inhibitor,
Nav1.8 inhibitor,
EP4 receptor inhibitor

Blunt nociceptive signals in subchondral sensory neurons 11 113 114

Table 1 Role of the ‘osteoclast–chondrocyte crosstalk’ in the pathogenesis of OA

Origins Factors Effects References

Bone resorption TGF-β1 Induce endothelial progenitor cell and osteoprogenitor migration and chondrocyte hypertrophy and apoptosis 42 60 70

IGF-1 Induce chondrocyte anabolism and prevent chondrocyte maturation and apoptosis 71–73

Ca- Pi Induce chondrocyte catabolism 74

Preosteoclast PDGF- BB Modulate chondrocytes through abnormal angiogenesis 61

Exosomal let- 7a- 5p Promote the hypertrophic differentiation of chondrocytes by targeting Smad2 75

Mature osteoclast Exosomal let- 7a- 5p Promote the hypertrophic differentiation of chondrocytes by targeting Smad2 75

Type H endothelial cell MMP-9,
RANKL

Stimulate osteoclast migration to indirectly affect chondrocytes 56

Mature osteoblast IL-6, PGE2 Enhance osteoclast formation to indirectly regulate chondrocytes 43–45

VEGF Stimulate angiogenesis and osteoclast recruitment to indirectly affect chondrocytes 46 47

RANKL Stimulate osteoclast recruitment and differentiation to indirectly regulate chondrocytes 46 47

MMP-9 Promote osteoclast recruitment to indirectly affect chondrocytes 43

SLIT3,
TGF-β1

Induce subchondral angiogenesis to indirectly affect chondrocytes 57–59

Osteocyte VEGF,
TGF-β1

Stimulate angiogenesis to indirectly regulate chondrocytes 33 34 41

RANKL Induce osteoclast recruitment and differentiation to indirectly modulate chondrocytes 33 34

Hypertrophic chondrocyte IL-1β,
IL-6,
TNF-α

Induce osteoclast differentiation directly or indirectly 76–81

RANKL, VEGF Induce osteoclast chemotaxis and differentiation 82 83

HMGB1 Promote osteoclast recruitment to indirectly affect chondrocytes 84 85

Senescent chondrocyte SASP Promote osteoclast chemotaxis and differentiation 86 87

Apoptotic chondrocyte CXCL12 Enhance osteoclast recruitment and differentiation 91–93

Necrotic chondrocyte DAMPs Promote osteoclast formation 94 95
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involving 50 patients with symptomatic hip OA.97 Moreover, 
compared with those receiving placebo, patients with symptom-
atic knee OA who received intravenous zoledronic acid yearly did 
not show a significant reduction in cartilage volume loss, the size 
of BMOLs or the pain score over 24 months.98 There are other 
antiresorptive agents (such as OPG, cathepsin K (CTSK) inhibi-
tors and strontium ranelate) that may exert protective effects on 
subchondral bone and cartilage in animal models and serve as 
disease- modifying OA drugs for clinical treatment of OA.99–101 
Intriguingly, calcitonin, which is known for targeting subchon-
dral bone remodelling, also leads to intracellular cAMP accumu-
lation and then promotes chondrocyte anabolism by binding to 
its receptors on human OA chondrocytes.102 Two phase III trials 
have reported a beneficial effect of bioactive oral calcitonin on 
joint pain and biochemical indicators of bone and cartilage degra-
dation in patients with OA.103 Enhanced osteoclast activity leads 
to the overactivation of TGF-β1 signalling in subchondral bone, 
and therefore subchondral TGF-β1 is a pharmacological target 
for OA. Implantation of alginic acid microbeads with TGF-β1 
antibody into subchondral bone or deletion of Tgfbr2 prevented 
the phosphorylation of Smad2/3 in osteoblastic precursor cells, 
thus reducing their subchondral localisation and improving bone 
parameters and cartilage structure in a mouse ACLT model.60 
Accumulating evidence suggests that restoring subchondral bone 
remodelling could improve OA symptoms and the structure of 
bone and cartilage, but these agents require large clinical trials 
with plenty of subjects to verify their effects.

Blocking the bridge—subchondral type H vessels
Invasive subchondral type H vessels serve as a bridge between 
subchondral bone and articular cartilage. Current treatments 
for OA focus on the inhibition of inflammation and subchon-
dral bone remodelling, while therapeutic strategies targeting 
subchondral angiogenesis are limited. In fact, blocking type H 
vessel formation in animal models of OA has been shown to 
reduce cartilage destruction and subchondral bone loss.104 For 
example, bevacizumab (a VEGF blocking antibody) attenuated 
the formation of subchondral type H vessels in an OA model, 
thereby inhibiting chondrocyte hypertrophy and delaying OA 
progression.50 In addition to pharmacological VEGF inhibition, 
secretory factors derived from osteoclast or osteoblast lineage 
cells in the OA subchondral bone microenvironment, such as 
TGF-β1, PDGF- BB and SLIT3, promote subchondral angio-
genesis. Therefore, antagonists of those molecules might be 
developed as potential agents for OA. For example, the small 
molecule compound halofuginone inhibits Smad2/3- dependent 
TGF-β1 signalling to restore the coupling of subchondral bone 
remodelling, alleviate type H vessel formation and attenuate 
cartilage degradation in the rodent ACLT joint.105

Ameliorating OA-related pain by modulating subchondral 
bone microenvironment
The detailed mechanisms of OA contributing to pain remained 
unclear for decades until recent studies found that particular 
neuronal factors related to aberrant bone remodelling cause 
the innervation of sensory nerves in the subchondral bone of 
patients with OA.106 107 Bone- resorbing osteoclasts create an 
acidic microenvironment by secreting H+ to cause bone pain 
in animal models of bone metastasis. Mechanistically, acidosis 
induces the expression and activation of acid- sensing receptor 
transient receptor potential vanilloid 1 (TRPV1) in dorsal root 
ganglions (DRGs). TRPV1 activation promotes extracellular 
Ca2+ influx and then activates calmodulin- dependent protein 

kinase II (CaMKII) and transcription factor cAMP- responsive 
element- binding protein (CREB), leading to the transcriptional 
activation of the pain- related molecule calcitonin gene- related 
peptide (CGRP).108 109 Similarly, acid- sensing ion channel 3 
(ASIC3) is upregulated in mono- iodoacetate- induced OA model 
and is associated with hyperalgesia caused by increased Ca2+ 
influx.110 Netrin-1 secreted by osteoclasts induces sensory inner-
vation and pain in OA through its receptor deleted in colon 
cancer (DCC).10 Preosteoclasts produce nerve growth factor 
(NGF), serving as key drivers of subchondral nerve innervation 
during OA development.61 In addition, PGE2 is synthesised by 
osteoblasts in response to low bone density and contributes to 
skeletal allodynia in OA mice by upregulating the voltage- gated 
sodium channel Nav1.8 and increasing Na+ influx in subchon-
dral nociceptive neurons.11

Pain medications recommended in the current guidelines 
for OA include non- steroidal anti- inflammatory drugs, parac-
etamol, opioids and corticosteroids administered via the oral, 
topical or intra articular route. Several new pain treatments are 
currently moving forward in preclinical and clinical evaluation 
processes, potentially marking the beginning of a new era in the 
management of OA- related pain. Tanezumab (a human mono-
clonal antibody against NGF) is significantly superior to placebo 
in reducing pain and improving joint function with fewer 
adverse events based on a meta- analysis of 10 studies.111 112 
Evidence suggests that a small molecule conjugate linking the 
TGF-βR inhibitor TLY-2109761 and alendronate substantially 
reduces excessive PGE2 production by osteoblasts and allevi-
ates OA- induced pain in OA mice by restoring aberrant bone 
remodelling.11 In addition, nociceptive signals were blunted in 
subchondral sensory neurons in OA mice by the administration 
of a cyclooxygenase 2 (COX2) inhibitor, the Nav1.8 inhibitor 
A-803467 and an EP4 receptor antagonist.11 113 114 Furthermore, 
Ca2+ influx into the cytoplasm in sensory neuron was inhibited 
by the TRPV1 antagonist SB366791 and the ASIC3 antago-
nist APETx2 to reduce acid- induced pain in a murine model 
of bone cancer pain and a rat model of OA, respectively.110 115 
Collectively, further exploration of how the subchondral bone 
microenvironment is related to OA pain may be an excellent 
approach to develop specific drugs useful for the treatment of 
OA (table 2).

CONCLUSION AND PERSPECTIVE
The bone–cartilage unit composed of subchondral bone and 
cartilage plays a significant role in joint homeostasis and OA 
development. During OA progression, the two joint compart-
ments of the functional unit experience abnormal alterations in 
tissue structure and cellular activity. Therefore, therapeutic strat-
egies targeting one of the abnormal joint compartments could 
restrain the progression of the pathology of the whole joint. 
Furthermore, this strategy may be an effective disease- modifying 
method to block pathological interactions between the two 
joint compartments through pharmacological interventions. 
More extensive cellular and molecular studies of bone–cartilage 
interface crosstalk will help us to better understand the patho-
physiology of OA and modify existing OA therapies. In partic-
ular, the microenvironment in subchondral bone serves as the 
predominant regulator of the development of OA. Therefore, 
future studies should focus on how pathological cellular inter-
actions in the subchondral bone microenvironment promote 
subchondral bone destruction and OA pain and the development 
of novel drugs to treat OA by targeting the subchondral bone 
microenvironment.
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