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Abstract: Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunc-
tion. In recent years, many cell and exosome implantation techniques have been developed in an
attempt to restore function after nerve injury with promising but generally unsatisfactory clinical
results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the
appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support
required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote
axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve
injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair
and regeneration with safety and efficacy sufficient for routine clinical application. In this review,
we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate,
chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and
keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities
of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and
differentiation as well as the in vivo properties critical for a successful clinical outcome, including
controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for
nerve regeneration.

Keywords: bio-scaffold; biomaterial; exosome; motor function; natural polymer; nerve injury;
nerve regeneration

1. Introduction

Tissue engineering combines findings from cell biology and material science to mimic
the physical and chemical conditions of native tissue with the aim of functional restora-
tion following injury [1]. The major focus of modern tissue engineering is repair and
regeneration of the central nervous system (CNS) and peripheral nervous system (PNS) as
these tissues have limited inherent regenerative potential in mammals [2], but numerous
challenges remain before routine clinical application. Among the most pressing of these
challenges is the fabrication of three-dimensional (3D) scaffolds able to sustain the sur-
vival and guide the proliferation, functional differentiation, and targeting of transplanted
replacement or supporting cells.

Int. J. Mol. Sci. 2021, 22, 13347. https://doi.org/10.3390/ijms222413347 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6050-2091
https://orcid.org/0000-0003-2384-7856
https://doi.org/10.3390/ijms222413347
https://doi.org/10.3390/ijms222413347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222413347
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222413347?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 13347 2 of 19

Scaffolds are well-known 3D porous functional biomaterials possessing constructive
characteristics such as offering the proper position of cell location, cell adhesion, and
deposition of the extracellular matrix (ECM) [3]. Moreover, scaffolds allow adequate gas
transport, essential nutrients, and controlling factors to promote cell proliferation, survival,
and differentiation. Based on their origin, scaffolds can be broadly classified/differentiated
into natural/biological (such as collagen, chitosan, glycosaminoglycans, hyaluronic acid,
demineralized, or native dentin matrix, etc.) and synthetic (such as bio-ceramics, calcium
phosphate, and bioactive glasses, etc.) [3]. Biopolymer-based scaffolds are useful materials
for 2D and 3D cell culture [4] and drug loading [5], and have demonstrated some value
for tissue regeneration in various preclinical models [6,7]. Ideal scaffolds must possess the
ability to replace damaged tissues with exogenous (transplanted) or endogenous cells of
the correct tissue architecture for functional restoration [8]. For example, nerve damage
is common following limb or head trauma and is frequently irreversible or difficult to
treat [9]. One major reason for this irreversibility is the absence of a growth-permissive
environment following injury, so biocompatible scaffold materials are needed to enhance
repair [10,11]. In addition to high biocompatibility [12], scaffold materials should also have
tunable mechanical strength [13], a large surface area, high porosity [14], and surface prop-
erties that mimic the physical and chemical properties of the ECM [15] and lack potential
biotoxicity [16] in order to promote cell-adhesion, proliferation, and differentiation [17].
The appropriate chemical environment may be provided by biomaterials that can be loaded
with cells or exosomes supplying nutritive and trophic factors to the injury site (illustrated
in Figure 1). Herein, we describe the use of various bio-scaffolds for treating nerve injury.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 19 
 

 

the survival and guide the proliferation, functional differentiation, and targeting of trans-
planted replacement or supporting cells. 

Scaffolds are well-known 3D porous functional biomaterials possessing constructive 
characteristics such as offering the proper position of cell location, cell adhesion, and dep-
osition of the extracellular matrix (ECM) [3]. Moreover, scaffolds allow adequate gas 
transport, essential nutrients, and controlling factors to promote cell proliferation, sur-
vival, and differentiation. Based on their origin, scaffolds can be broadly classified/differ-
entiated into natural/biological (such as collagen, chitosan, glycosaminoglycans, hyalu-
ronic acid, demineralized, or native dentin matrix, etc.) and synthetic (such as bio-ceram-
ics, calcium phosphate, and bioactive glasses, etc.) [3]. Biopolymer-based scaffolds are 
useful materials for 2D and 3D cell culture [4] and drug loading [5], and have demon-
strated some value for tissue regeneration in various preclinical models [6,7]. Ideal scaf-
folds must possess the ability to replace damaged tissues with exogenous (transplanted) 
or endogenous cells of the correct tissue architecture for functional restoration [8]. For 
example, nerve damage is common following limb or head trauma and is frequently irre-
versible or difficult to treat [9]. One major reason for this irreversibility is the absence of a 
growth-permissive environment following injury, so biocompatible scaffold materials are 
needed to enhance repair [10,11]. In addition to high biocompatibility [12], scaffold mate-
rials should also have tunable mechanical strength [13], a large surface area, high porosity 
[14], and surface properties that mimic the physical and chemical properties of the ECM 
[15] and lack potential biotoxicity [16] in order to promote cell-adhesion, proliferation, 
and differentiation [17]. The appropriate chemical environment may be provided by bio-
materials that can be loaded with cells or exosomes supplying nutritive and trophic factors 
to the injury site (illustrated in Figure 1). Herein, we describe the use of various bio-scaf-
folds for treating nerve injury. 

 
Figure 1. Schematic illustration of cell/exosome and bio-scaffold combinations for the treatment of central and peripheral 
nerve injury. 

2. Mesenchymal Stem Cells for Tissue Replacement 
Mesenchymal stem cells (MSCs) are multipotent progenitors present in the skin, den-

tal pulp, adipose tissue, bone marrow, and umbilical cord with the capacity to differenti-
ate into hepatocytes, chondrocytes, osteoblasts, adipocytes, cardiomyocytes, neurons, and 
glial cells among other cell types under specific conditions [18]. For instance, MSCs are 

Figure 1. Schematic illustration of cell/exosome and bio-scaffold combinations for the treatment of central and peripheral
nerve injury.

2. Mesenchymal Stem Cells for Tissue Replacement

Mesenchymal stem cells (MSCs) are multipotent progenitors present in the skin, dental
pulp, adipose tissue, bone marrow, and umbilical cord with the capacity to differentiate
into hepatocytes, chondrocytes, osteoblasts, adipocytes, cardiomyocytes, neurons, and
glial cells among other cell types under specific conditions [18]. For instance, MSCs are
readily differentiated into neurons by culturing in media or CSF previously incubated with
fetal or neonatal brain tissue (conditioned media) to supply the appropriate neurotropic
factors [19]. Further, MSCs can also be successfully differentiated into glial cells in situ [20].



Int. J. Mol. Sci. 2021, 22, 13347 3 of 19

In addition to chemical properties, the mechanical properties of the microenvironment
(scaffold) also influence the differentiation pathway of MSCs [21].

3. Exosomes

A major challenge for regeneration and functional restoration is to supply the var-
ious nutritive and growth factors required for cell survival, growth, and differentiation.
Exosomes are biological nanoscale (30–120 nm in diameter) lipid bilayer vesicles secreted
by cells. According to the 2021 ExoCarta database, around 4946 RNAs, 41,860 proteins,
and 1116 lipids as well as various DNA sequences, mRNAs, and non-coding RNAs have
been detected in various exosomes [22]. MicroRNAs are among the most enriched of the
microsomal non-coding RNA species and have been implicated in the local angiogenesis,
exocytosis, hematopoiesis, and cell–cell communication mediated by these vesicles [23].
Other exosomal RNA species include transfer RNAs, long non-coding RNAs, ribosomal
RNAs, and both small nuclear and nucleolar RNAs [24]. Exosomes also express surface
proteins such as CD81, CD9, CD63, and TSG101 that allow these structures to bind and
transport contents into target cells and thus regulate specific biological functions such as
neurotransmission, intercellular signaling, angiogenesis, tumor cell proliferation, metas-
tasis, and immune responses [25,26]. Compared to MSCs for scaffold loading, exosomes
are easier to store, less tumorigenic, and less likely to be reprogrammed by environmental
factors [27]. For regenerative medicine, Codispoti et al. have proposed the development
of the NANOmetric BIO-banked MSC-derived Exosome (NANOBIOME) to be used in
different timepoints and disease models [28].

4. Natural Polymeric Scaffolds

Natural polymeric bio-scaffolds are fabricated with structural components and chem-
ical signaling molecules that stimulate cell survival, proliferation, differentiation, and
tissue reconstruction, such as neurotrophic factors and vascular endothelial growth factor
(VEGF). The correct combination of factors and appropriate bioavailability is required for
nerve regeneration after injury. Natural polymers used as structural components include
various polysaccharides such as alginate, hyaluronic acid, chitin, and chitosan, and poly-
meric proteins such as gelatin, collagen, silk fibroin, fibrin, and keratin [29,30]. All of the
polymers have excellent biocompatibility and bioactive properties and so may allow for
better scaffold–tissue interactions as well as cell adhesion, proliferation, and eventual tissue
restoration [31]. However, some lack the biophysical characteristics for functional recovery.
The basic properties and various advantages and disadvantages of these compounds for
bio-scaffolds are described below.

4.1. Polysaccharide-Based Biomaterials
4.1.1. Hyaluronic Acid

Hyaluronic acid (HA) is a glycosaminoglycan component of ECM that facilitates the
interactions of cells with other extracellular molecules to promote various physiological
processes [32]. Further, HA in the ECM has been implicated in angiogenesis, tumorigenesis,
inflammatory processes, drug resistance, water homeostasis, and regulation of viscoelas-
ticity [33]. Using microbial technology, HA can be obtained in large amounts without the
risk of contamination by animal pathogens. In addition, the extent of HA degradation can
be modified by crosslinking with divinyl sulfone. This crosslinking also creates a porous
structure after freezing and lyophilization that provides additional surface area for cell
proliferation [33,34]. Alternatively, HA can be resolved with sodium chloride and directly
poured into a porous sponge [35,36]. Non-adhesive and biocompatible HA can support
axonal regeneration, but is structurally too weak for most human regenerative applications
unless combined with other natural materials such as chitosan [35].

HA has been used successfully with different substrates to support neurite out-growth,
differentiation, and proliferation. Further, HA hydrogel has been used to promote the
survival and proliferation of neural precursors for PNS repair [37] and has shown promise
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for CNS repair. It has mechanical properties suitable for supporting neural progenitor cell
differentiation as potential neurodegenerative disease treatments [38]. Long-chain HA is
essential for supporting ECM components of different molecular weights in vivo [39]. An
HA scaffold containing ciliary neurotrophic factor stimulated endogenous neurogenesis
and facilitated neural-network formation, synaptogenesis, and motor recovery following
T8 spinal cord transection in rodents [40].

4.1.2. Alginate

Alginate, an extract of brown seaweed, is used for a variety of biomedical applications.
Its chemical composition of guluronic and mannuronic acid confers greater chemical flexi-
bility compared to other biocompatible degradable materials and may more closely mimic
the physical properties of mammalian ECM [41]. Physical and mechanical properties are
also easily adjustable using various chemical reactions [42] and physical crosslinking using
Ca2+ with negligible immunogenicity [43]. While alginate can promote nerve regeneration
under certain conditions, mechanical strength is insufficient to allow physical loading, and
degradation is relatively rapid, necessitating the addition of other polymers [44–46]. For
example, alginate hydrogel covalently cross-linked with N,N′-disuccinimidyl carbonate
has been combined with electrospun polycaprolactone nanofibers to produce a bilayer
cylindrical conduit for sciatic nerve repair [47]. In our previous study, we also used an
alginate scaffold as a stem cell exosome carrier for the treatment of nerve injury-induced
pain [48].

4.1.3. Chitosan and Chitin

Chitin is the most abundant linear polysaccharide homo-polymer of the glycosamino-
glycan N-acetyl-D-glucosamine in crustacean shells. In fact, half of shellfish waste consists
of chitin derivatives, and these can be extracted by microbiological or chemical meth-
ods [49]. Chitosan-silk hydrogel as a carrier for gingival MSC-derived exosomes was
reported to accelerate neurogenesis, angiogenesis, re-epithelization, and collagen forma-
tion [50]. In a mouse hind-limb repair model as well, animals receiving MSC exosomes
encapsulated with chitosan exhibited better angiogenesis and tissue regeneration than
controls [51].

Chitosan is also commonly used to support axon regrowth [52] and reduce scar tissue
formation [53] for peripheral nerve regeneration. Further, both reabsorbing chitosan and its
degradation products (chito-oligosaccharides) have been shown to promote nerve regen-
eration [54]. Using appropriate fabrication techniques, chitosan nerve guidance conduits
can be produced for cell-based therapies [55,56]. In many studies of rat transection models,
chitosan tubes have improved nerve regeneration by linking the defective peripheral nerve
ends [57–60]. After sciatic nerve injury, chitosan nanoparticles with encapsulated neural
growth factor also promoted Schwann cell proliferation and nerve regeneration [61], while
another study found the animals receiving chitosan embedded nerve implants showed
more numerous axons than control [62]. Chitosan can provide a permissive surface for
nerve regeneration, and then degrade without inducing inflammation. For instance, a chi-
tosan catheter induced significant sensory and motor axon regeneration after long distance
transection [62]. In another nerve defect model, animals receiving stem cells embedded in a
chitosan scaffold showed target muscle re-innervation [63]. Recently, Bo et al. reported that
chitin scaffolds with autologous nerve tissue promoted sciatic nerve regeneration, myelin
sheath formation, and neurological recovery [64].

5. Protein-Based Biomaterials for Nerve Injuries
5.1. Collagen

Collagen is a highly flexible natural polymeric protein and the major protein compo-
nent of the ECM. Endogenous collagen contributes to the maintenance of ECM structural
integrity and spatial organization and thus is essential for ECM deposition as well as
natural tissue morphogenesis, repair, and re-modeling. Further, de-cellularized collagen
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matrices can be separated and treated with immunogenic antigens while retaining the
original ECM organization of functional proteins.

Collagen scaffolds have numerous advantages for tissue engineering [65]. Collagen
is a good medium for cell and drug delivery [66] and is sufficiently flexible for nerve
conduits with physical features tailored for different sections of the nerve pathway [67]. In
addition, it can support topographical cues that allow axonal regrowth and facilitate cell-
adhesion, survival, and migration along different nerve tract domains [68]. Such collagen
nerve conduits have been demonstrated to support nerve regeneration and re-innervation
of muscle [69]. In a clinical study, a conduit made by mixing type I and III collagen
filled with collagen filaments was effective as an autologous implant for treating nerve
injury, with 75% of patients reporting sensory recovery after 12 months [70]. A collagen
scaffold embedded with neural stem cells was also reported to promote nerve regeneration
and motor function in a T8 SCI rat model [71]. Further, the scaffold was completely
gone at 5 weeks after implantation, indicating good biodegradability. In a traumatic
brain injury model, a collagen–heparin scaffold with VEGF stimulated angiogenesis and
promoted nerve regeneration, likely due to its excellent mechanical properties, good
porosity, and control of VEGF release [72]. Even though there is always a concern for
the immunogenicity of collagen, most of the literature dealing with immunochemistry
of collagen-based materials indicate that a proper research investigation is necessary to
ensure the outcomes derived from a specific donor or recipient should not be applied to
make extensive generalizations with respect to the immunological compatibility of various
collagen types [73].

5.2. Laminin

Laminins are high molecular weight proteins that constitute the major component
of the ECM basal lamina layer, a protein network that acts as a structural foundation for
most organs and cells. Laminin proteins are also a major component of the brain ECM
and function as cell adhesion molecules influencing cell survival, differentiation, and
plasticity. For instance, laminins were shown to promote the survival and differentiation
of transplanted dopaminergic neuron precursors by suppressing cell death-associated
protein [74]. Additionally, laminin present in the vascular basal lamina can act as a conduit
for the growth of axons [75] as it is expressed endogenously in the basal membrane
surrounding peripheral nerves, capillaries, and skeletal muscle. Further, it can regulate
the proliferation, differentiation, and myelin production of Schwann cells. Laminins are
also secreted by Schwann cells at lesion sites [76], strongly suggesting functions in nerve
repair. For these reasons, laminins are considered promising scaffold components for
nerve repair [77,78]. Indeed, nerve guides filled with laminin yielded enhanced axonal
regeneration [79], likely by increasing the interactions with integrin receptors.

5.3. Gelatin

Denatured collagen can be converted to gelatin by high temperature or treatment
with strong acid, base or enzyme [80]. Dissolved in water, gelatin is a biocompatible and
biodegradable polymer that forms a hydrogel with thermo-sensitive holding properties.
Further, the occurrence of an arginyl-glycyl-aspartic acid (RGD) sequence and integrin-
binding molecules in gelatin material has promoted cell attachment and multiplying [81].
On the other hand, gelatin-based hydrogels may have low viscosity at physiological tem-
perature, limiting the maintenance of the 3D structure. To increase its strength, gelatin is
combined with other polymers, such as collagen, fibrin, or various synthetic and photo-
crosslinkable polymers [82,83]. Though different kinds of gelatin-based hydrogels such
as micro- and nano-sized particles, nanofibrous scaffolds, enzyme-mediated, and in situ-
generated gelatin hydrogels were reported [84]; the enzymatically prepared gelatin hydro-
gels have been widely used in nerve regeneration. For instance, the enzymatically prepared
gelatin hydrogels combined with human umbilical cord MSCs have been effectively applied
for nerve injury treatment [85,86].
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5.4. Silk Fibroin

Silk fibroin (SF) is a natural biopolymer with high biocompatibility [87] and low
immunogenicity [88] as well as sufficient biodegradability [89], physical strength, and
flexibility for in vivo applications [90]. SF has been shown to promote cell attachment and
survival for tissue repair and restoration [91]. Further, SF can promote proliferation of
Schwann cells [92] and so may be especially effective for peripheral nerve regeneration.
In addition, an SF-based hydrogel was also demonstrated to support neuronal growth for
central nerve tissue repair [93]. Critically, the orientation of SF fibers can guide the direction
of neuronal growth [94]. These unique properties may explain the efficacy of SF fibers for
promoting neural cell proliferation following auto- or allo-grafting [95]. In addition, SF can
deliver bioactive compounds to the injury site and reduce both tissue inflammation and
oxidative stress. Moreover, SF fibers show slow biodegradation [96]. In a traumatic brain
injury model, SF reduced brain damage and promoted neurological function [97].

SF scaffolds can be synthesized in various conformations such as fibers, mats, films,
and hydrogels. This adaptability may permit its application for the treatment of several
neurogenerative diseases in addition to traumatic nerve injury. Due to its unique physico-
chemical and biological properties, SF is a promising material for tissue engineering.
Recently, SF 3D-scaffolds enriched in MSC-derived exosomes were also reported to enhance
bone regeneration in rats [98] (Figure 2).
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Figure 2. In vitro studies of silk fibroin (SF) and stem cell exosome (Exo)-embedded scaffolds. (A) Scanning electron
microscope images of bare SF and Exo-SF scaffold surfaces. (B) Morphology of human bone marrow-derived mesenchymal
stem cells cultured on SF and Exo-SF scaffolds for 2 weeks. Reprinted with permission from Kyung Kim, D.; Lee, S.; Kim,
M.; Jeong, Y.; Lee, S. (2021). Copyright 2021 Chemical Engineering Journal, Elsevier [98].

5.5. Fibrin

Fibrin is a fibrillary protein formed during blood clotting. It is mainly involved
in hemostasis, but also contributes to wound healing by forming a temporary matrix
surrounding the lesion [99]. Changes in the fibrinogen-to-thrombin ratio can modulate
the mechanical properties of fibrin hydrogels for effective treatment of human spinal
cord injury [100]. Due to its high biocompatibility, fibrin has been used as a vehicle and
injectable biomaterial for transplantation of cells to facilitate neural regeneration [101]. The
mechanical properties of fibrin hydrogels are also highly tunable by altering the fibrin
concentration and preparation temperature [102]. Unfortunately, fibrin conduits cannot
be sutured due to low mechanical elasticity, and a suture-less conduit may be unable
to maintain a cohesive nerve structure [103]. Nevertheless, fibrin conduits with fibrin
matrix or human MSCs can be used to promote axonal regeneration and reduce muscle
atrophy after sciatic nerve injury [104]. In an SCI model, a 3D fibrin scaffold provided
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an effective matrix for host cell invasion and vascular reconstruction, thereby promoting
axonal regrowth and recovery of locomotor function [105]. Following sciatic nerve injury,
a Wnt5a-loaded fibrin conduit was also reported to promote neurotrophin secretion and
nerve regeneration [106].

5.6. Keratin

Keratin can be extracted from human hair and further processed to obtain a keratin
sponge structure. Compared to many synthetic polymers, keratin appears to possess the
surface hydrophilicity, biodegradability, biocompatibility, and bioactivity of an effective
scaffold material. However, keratin-based biomaterials have low mechanical strength and
degrade rapidly, and so are usually modified using various crosslinking agents for scaffold
construction [107], while keratin alone is used primarily as a conduit filler. Keratin/alginate
scaffolds have been applied successfully for tissue regeneration in vitro [108]. Furthermore,
keratin has been shown to promote Schwann cell proliferation in vitro and improve nerve
regeneration in vivo [109,110] (Figures 3 and 4).
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Figure 3. Schematic illustration of keratin sponge application for nerve regeneration following sciatic nerve crush injury.
Keratin biomaterial promoted Schwann cell proliferation and regulated macrophage inflammatory cytokines and elongation
of the axon in dorsal root ganglion neurons in vitro. Likewise, in vivo studies demonstrated that keratin sponge restored
motor function after sciatic nerve crush injury. Reprinted with permission from Gao, J.; Zhang, L.; Wei, Y.; Chen, T.; Ji, X.;
Ye, K.; Yu, J.; Tang, B.; Sun, X.; Hu, J. (2019). Copyright 2019 Journal of Materials Science: Materials in Medicine, Springer
Nature [109].
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Figure 4. Sciatic nerve injury repair using keratin sponge. (a) Scanning electron microscope showing the micro-porous
structure of keratin sponge. (b) Schematic illustration of the sciatic nerve crush injury model. (c) Keratin sponge degradation.
Reprinted with permission from Gao, J.; Zhang, L.; Wei, Y.; Chen, T.; Ji, X.; Ye, K.; Yu, J.; Tang, B.; Sun, X.; Hu, J. (2019).
Copyright 2019 Journal of Materials Science: Materials in Medicine, Springer Nature [109].

6. Self-Assembling Peptides

Self-assembling peptides (SAPs) can spontaneously form well-organized nanostruc-
tures, a property highly advantageous for a wide range of biomedical applications. For
nerve injuries, SAPs have been used as biocompatible carriers to provide the appropriate 3D
structure for embedded nerve cells and the release of growth factors and drugs [111]. More-
over, SAPs have been shown to provide a microenvironment conducive to cell proliferation
and differentiation as well as neural-network reconstruction and functional restoration of
injured nerves [112–114].

SAPs may be ideal building blocks for scaffolds and can also be used as soft fillers
to surround harder synthetic biocompatible biopolymers. In general, the scaffold must
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imitate the natural biomechanical properties of the regenerating tissue and permit the cell–
substrate and cell–cell interactions necessary for regrowth. Further, bio-absorption must be
appropriately matched to tissue regeneration kinetics and result in little inflammation [115].
Many clinical studies have attempted to produce SAP-based scaffolds with these properties
and examined the efficacy for regeneration.

The most common peptide sequences used for self-assembly are RGD, IKVAV (isoleucine-
lysine-valine-alanine-valine), YIGSR (tyrosine-isoleucine-glycine-serine-arginine), and
RADA16 (4 arginine-alanine-aspartate-alanine repeats or RADARADARADARADA).
RADA16 balances lipophilic and hydrophilic peptide interactions [116], while IKVAV
can promote cell differentiation, adhesion, and axon growth in injured nerves [117]. Fur-
ther, Zhang et al. have introduced these two efficient SAP sequences, IKVAV and RADA16-I,
into self-assembled nanofiber hydrogels to enhance the axon extension, cell attachment,
and neuroregeneration [46,118–120]. Similarly, Talloj et al. synthesized a series of amino
acid derivatives by capping D-glucosamine at the C-terminus and fluorinated benzyl group
at the N-terminus. They found the glucosamine-based supramolecular hydrogel (pentaflu-
orobenzyl (PFB)-F-Glu) could self-assemble into nanotubules, which can increase human
MSC proliferation and the secretion of paracrine factors that downregulate pro-fibrotic
gene expression of human skin fibroblasts [121] (Figure 5).
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Figure 5. Glucosamine-based supramolecular nanotube formation and research strategy for stem cell therapy. PFB-F-Glu
(pentafluorobenzyl-phenylalanine-glucosamine) nanotubes are shown to enhance hMSC (human mesenchymal stem cells)
proliferation while maintaining their pluripotency. The hMSCs cultured on PFB-F-Glu nanotubes could secrete paracrine
factors to suppress pro-fibrotic gene expression in lipopolysaccharide (LPS)-treated human skin fibroblasts (WS1), indicating
the nanotubes have the potential for wound healing treatment. OCT4: octamer-binding transcription factor 4; SOX2: SRY
(sex determining region Y)-box 2; COLA1: collagen α1 chain; CTGF: connective tissue growth factor; TGFβ3: transforming
growth factor β3; COX2: cyclooxygenase 2; PGE2: prostaglandin E2. Reprinted with permission from Talloj, S.K.; Cheng, B.;
Weng, J.-P.; Lin, H.-C. (2018). Copyright 2018 ACS Applied Materials & Interfaces, American Chemical Society [121].

7. Three-Dimensional Printed Scaffolds

Three-dimensional (3D) bio-printing is used extensively in regenerative medicine,
cancer research, and the pharmaceutical industry to fabricate structures combining cells,
growth factors, and cell substrates. Three-dimensional printed scaffolds have been demon-
strated to stimulate cell attachment, growth, and organization resembling nervous tissue.
In addition, 3D bio-printing has been used to create scaffolds with defined porosity and
inter-pore channel structure. Currently, two modes of 3D printing are used to create 3D
cell-embedded scaffolds and scaffolds with supportive bio-ink. Both types can help to
reconstruct the cellular structure of the original tissue. Bio-ink printing can quickly form
porous 3D scaffolds encapsulating human neural stem cells able to differentiate and replace
lost function and/or support the growth of other neurons and glia [122]. For example,
Bociaga et al. demonstrated that bio-printing can produce scaffolds with excellent mi-
crostructural features for cell growth [123]. Moreover, these fabrication techniques have
shown promise for printing tissue components such as grafts and organs. One recent study
reported the development of a microsphere-loaded bio-ink to print scaffolds with neural
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progenitor cells (NPCs) for neural tissue repair [124], and another reported promising
results using printed scaffolds for regeneration following sciatic nerve injury [125]. Some of
these 3D bio-printed biomaterials are illustrated in Figure 6. In addition, recent examples
of bio-scaffold applications for in vitro and in vivo nerve injury repair are summarized in
Tables 1 and 2.
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Figure 6. Images of various 3D bio-printed scaffolds. (A) Human neural stem cells (hNSCs) embedded in an alginate
(Al)/agarose (Ag)/carboxymethyl-chitosan (CMC)-based hydrogel. Reprinted with permission from Gu, Q.; Tomaskovic-
Crook, E.; Lozano, R.; Chen, Y.; Kapsa, R.M.; Zhou, Q.; Wallace, G.G.; Crook, J.M. (2016). Copyright 2016 Advanced
Healthcare Materials, John Wiley and Sons [122]. (B) Neuroblastoma cells embedded in Al/gelatin hydrogel. Reprinted
with permission from Fantini, V.; Bordoni, M.; Scocozza, F.; Conti, M.; Scarian, E.; Carelli, S.; Di Giulio, A.M.; Marconi, S.;
Pansarasa, O.; Auricchio, F.; et al. (2019). Copyright 2019 Cells, MDPI [126]. (C) Live–dead (green/red) cell staining of an
Al/Ag/CMC-based hydrogel containing induced pluripotent stem cells (iPSCs). Reprinted with permission from Gu, Q.;
Tomaskovic-Crook, E.; Wallace, G.G.; Crook, J.M. (2017). Copyright 2017 Advanced Healthcare Materials, John Wiley and
Sons [127]. (D) Neuronal alignment within a Matrigel/Al hydrogel. MAP2: microtubule-associated protein 2. Reprinted
with permission from Salaris, F.; Colosi, C.; Brighi, C.; Soloperto, A.; de Turris, V.; Benedetti, M.C.; Ghirga, S.; Rosito, M.; Di
Angelantonio, S.; Rosa, A. (2019). Copyright 2019 Journal of Clinical Medicine, MDPI [128].

Table 1. Recent in vitro studies using bio-scaffolds for nerve injury repair.

Bio-Scaffold Cell Type Disease Results Reference

PDGF-MS-containing
tubular scaffold Neural progenitor Spinal cord injury Promoted both growth and

migration of MUSE-NPCs [129]

3D collagen scaffold Glioma Glioma

Good biocompatibility with
glioma cells and able to

influence gene expression
and biological functions

[130]

Scaffold incorporating
salmon fibrin, HA, and

laminin

Human neural stem
cells Neurovascular niche

Enhanced vasculogenesis
from human endothelial

colony-forming cell-derived
endothelial cells for cellular

therapeutics

[131]

Chitosan-based
scaffold Radial glia Traumatic brain injury

Effective cellular and growth
factor delivery vehicle for

cell transplantation
[132]

Collagen scaffold Neural stem cells Spinal cord injury Promoted nerve regeneration
and locomotor function [71]

Abbreviations: PDGF-MS: platelet-derived growth factor-microsphere; MUSE-NPCs: neural progenitor cells differentiated in vitro from
multilineage-differentiating stress-enduring cells.
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Table 2. Recent studies using bio-scaffolds for nerve injury repair in animal models.

Bio-Scaffold Species Disease Results Reference

Poly (propylene fumarate)
polymer with collagen

biomaterial
Rat Spinal cord injury

Promoted neurotrophy,
neuroprotection, myelination, and
synapse formation, and reduced

CSPG deposits and fibrotic scarring

[133]

3D collagen-based scaffold Mouse Neuroblastoma
Promoted microenvironment within

scaffold and helps in cell
transplantation and drug delivery

[134]

Collagen nerve conduit Rat Sciatic defect Promoted motor nerve regeneration [69]

Chitosan hydrogel scaffold Mouse Ischemic brain injury Improved tissue regeneration
following hind-limb ischemia [51]

3D fibrin hydrogel scaffold Rat Spinal cord injury Promoted aligned axonal regrowth
and locomotor function [105]

Collagen/heparin/VEGF
scaffold Rat Traumatic brain injury

Provided an excellent
microenvironment for nerve

regeneration
[72]

Collagen scaffold Rat Spinal cord injury Improved locomotor function and
nerve regeneration [71]

Silk fibroin scaffold Rat Traumatic brain injury Neuroprotection [97]

RADA16-BDNF
self-assembling peptide

hydrogel scaffold
Rat Traumatic brain injury

Enhanced the growth, survival, and
differentiation of MSCs by providing

a favorable microenvironment
[135]

Chitin scaffold Rat Sciatic nerve injury
Improved sciatic nerve regeneration,

myelin sheath formation, and
functional recovery

[64]

Keratin sponge Rat Sciatic nerve injury
Regulated inflammatory cytokine
release from macrophages, axon

extension, and nerve regeneration
[109]

Fibrin hydrogel Rat Sciatic nerve defect
Promoted regeneration as well as

the secretion and signaling of
multiple neurotrophic factors

[106]

Keratin sponge Rat Spinal cord injury
Improved functional recovery and

inhibition of inflammatory response
through macrophage polarization

[110]

Abbreviations: CSPG: chondroitin sulfate proteoglycans; VEGF: vascular endothelial growth factor; BDNF: brain-derived neurotrophic
factor; MSCs: mesenchymal stem cells.

8. Bio-Scaffolds for Exosomes

Several recent studies have also described the fabrication and utility of bio-scaffolds
for exosomes. These bio-scaffold should have following advantages: (1) they can efficiently
maintain the exosomes at the injury site and retain their performance and structural
characteristics; (2) they release exosomes into the ECM for a sufficient period to adjust
the phenotype of neighboring cells; (3) they can integrate with injured tissue to support
neighboring cell migration into the scaffold. Once the neighboring cells migrate into the
bio-scaffold, the exosomes can be absorbed and enhance tissue regeneration. For exosome
loading, physical implanting and diffusion are the two widely reported methods. The
dispersion of exosomes mainly depends on the porosity and cross-linking density of the
bio-scaffold.

Many studies were performed to assemble ionic cross-linking bio-scaffolds for exo-
some maintenance and release. In this regard, alginate hydrogel is considered one of the
best bio-scaffold for encapsulating exosomes. For instance, an exosome-loaded alginate
scaffold has been reported to improve collagen production, skin regeneration, and angio-
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genesis in the wound area [136]. In our previous study, an alginate scaffold loaded with
MSC exosomes was also developed to treat nerve injury-induced pain [48].

In a sciatic nerve defect model, a chitin conduit embedded with human gingiva MSC-
derived exosomes were found to promote Schwann cell proliferation and axon growth
from the dorsal root ganglion [137]. In addition, this scaffold increased the number and
diameter of nerve fibers and enhanced myelin formation, nerve transmission, and motor
function. In another SCI model, exosomes embedded within peptide-modified hydrogel
stimulated nerve regeneration and preserved urinary function [138] (Figure 7). Recent
studies on exosome scaffolds for nerve injury repair are summarized in Table 3.
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Figure 7. Effects of human mesenchymal stem cell exosomes loaded in peptide-modified adhesive hydrogel (Exo-pGel)
on long-span spinal cord transection model. (a) Graphical representation of spinal cord injury (SCI) model with Exo-pGel
treatment. (b) Surgical procedure for spinal cord transection and implantation. (c) Hind-limb ladder walking tests on Day
28. # p < 0.05 by Mann-Whitney U test. (d) Basso, Beattie, and Bresnahan (BBB) locomotor score. # p < 0.05 by Mann-Whitney
U test. (e) Typical records of walking gaits on Day 28. (f) Weights of bladder on Day 28. ## p < 0.01 by two-tailed unpaired
t-test. (g) Morphological changes of bladders on Day 28. (h) Hematoxylin and eosin staining images of bladder tissue. The
boxed images show the magnified views of the fields marked by the asterisks. Reprinted with permission from Li, L.; Zhang,
Y.; Mu, J.; Chen, J.; Zhang, C.; Cao, H.; Gao, J. (2020). Copyright 2020 Nano Letters, American Chemical Society [138].

Table 3. Recent examples of exosome scaffold use in nerve injury models.

Bio-Scaffold Exosome Source Disease Results Reference

Peptide-modified
adhesive hydrogel Human MSC-derived Spinal cord injury

Promoted nerve regeneration
and protected urinary tissue by

easing oxidative stress and
inflammation

[138]

Alginate scaffold Human umbilical cord
MSC-derived

Nerve injury-induced
pain

Anti-nociceptive,
anti-inflammatory, and

neurotrophic effects
[48]
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Table 3. Cont.

Bio-Scaffold Exosome Source Disease Results Reference

Chitin conduit Human gingiva
MSC-derived Rat sciatic nerve defect

Increased the number and
diameter of nerve fibers and
promoted myelin formation

[137]

Chitosan hydrogel Human placental
MSC-derived Hind-limb ischemia Enhanced angiogenesis and

tissue regeneration [51]

Pituitary adenylate
cyclase-activating

polypeptide 38

Retinal ganglion cell
(RGC)-derived

Traumatic optic
neuropathy

Promoted retinal ganglion cell
survival and axon regeneration [139]

9. Conclusions

Various biomaterials and fabrication techniques have been developed to construct 3D
scaffolds suitable for the promotion of nerve injury repair. Natural polymeric materials are
advantageous due to their inherent biocompatibility and biodegradability. However, rapid
biodegradability can limit their applications. Many bio-scaffolds have been investigated
for therapeutic efficacy using a wide array of nerve injury models. In general, the results
show that these bio-scaffolds can provide neuroprotection, promote repair, decrease lesion
volume, and improve functional recovery in animal models. In particular, bio-scaffolds
with embedded multipotent MSCs have proven to be safe and effective in various CNS and
PNS disease models. The microenvironment provided by these bio-scaffolds plays a major
role in determining the stem cell lineage and ultimate regeneration success, so much effort
has gone into the design and fabrication of ideal 3D biomaterials. Recently, bio-scaffolds
have been developed that continuously release exosomes containing factors promoting
regeneration, including neurotrophins, mRNAs, and miRNAs.

Though bio-scaffolds have many advantages such as high biocompatibility, cell ad-
hesion/differentiation, and biodegradation ability, they have their own limitations, such
as low mechanical stability, thermal sensitivity, rapid degradation, contamination risks,
expensive cost of production, and complicated processing methodologies. In addition
to the bio-scaffolds mentioned in this review, recently there are other novel inorganic
nanomaterials such as phosphorene and borophene that are promising for nerve regen-
eration [140–142]. In summary, scaffolds with bioactive cells or an exosome hold greater
promise for nerve injury treatment.
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