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Community structure, including relationships between and within
groups, is foundational to our understanding of the world around
us. For dissimilarity-based data, leveraging social concepts of con-
flict and alignment, we provide an approach for capturing meaning-
ful structural information resulting from induced local comparisons.
In particular, a measure of local (community) depth is introduced
that leads directly to a probabilistic partitioning conveying locally
interpreted closeness (or cohesion). A universal choice of threshold
for distinguishing strongly and weakly cohesive pairs permits con-
sideration of both local and global structure. Cases in which one
might benefit from use of the approach include data with varying
density such as that arising as snapshots of complex processes in
which differing mechanisms drive evolution locally. The inherent
recalibrating in response to density allows one to sidestep the need
for localizing parameters, common to many existing methods.
Mathematical results together with applications in linguistics, cul-
tural psychology, and genetics, as well as to benchmark clustering
data have been included. Together, these demonstrate how mean-
ingful community structure can be identified without additional
inputs (e.g., number of clusters or neighborhood size), optimization
criteria, iterative procedures, or distributional assumptions.

community structure j networks j social perspective j local depth j
cohesion

Deriving structure from data is fundamental to our under-
standing of the world around us. Although clustering into

groups (with implied relationships between and within groups)
is a crucial component of human perception, there are rela-
tively few methods of proximity-based data analysis that harness
the richness of a social perspective. Here, a nature-inspired
concept of conflict provides a foundation from which to con-
sider mathematical construction of local (conflict) foci and
resulting measures of local depth, cohesion, and (particularly)
strong ties. As in other socially and biologically inspired work
(1–3), insights are derived through a representation of the data
within a latent space with rich internal structure. Formalized
social concepts anchor the approach and facilitate the interpre-
tation and communication of results.

The method, referred to here as partitioned local depth
(PaLD), provides a framework for a holistic consideration of
the structure of data. In particular, we begin by introducing
local (community) depth, a concept which builds on existing
approaches to (global) depth in which geometric constructions
allow one to express features of centrality as interpretable prob-
abilities which are free of parameters and robust to outliers
(see, for instance, refs. 4 and 5). Here, a direct approach to
localization which arises from a concept of opposition (i.e.,
“conflict”) provides for local interpretation of depth.

Partitioning probabilities defining local depth, we obtain a
quantity referred to as cohesion, which can be understood as a
measure of locally perceived closeness that captures features of
relative positioning and, as a result, accounts for density varia-
tion. The motivating social framework gives rise to a natural
threshold for distinguishing strongly and weakly cohesive pairs
and provides an alternative perspective for the concept of near

neighbors. Topological features of the data can be considered
via the resulting networks; we refer to the connected compo-
nents of the graph of strong ties as community clusters. Mathe-
matical results together with applications to real-world and
benchmark clustering data have been included. Together, these
demonstrate how meaningful community structure can be iden-
tified without additional inputs (e.g., number of clusters or
neighborhood size), optimization criteria, iterative procedures,
or distributional assumptions, in the presence of varying
density.

It is crucial to note the importance of accounting for varying
local density, particularly in applications involving complex evolu-
tionary processes (see, for instance, refs. 6–9). In this context,
here, relative positioning is observed entirely through distance
comparisons within triples of points, and thus, the methods intro-
duced may also be valuable in nonmetric and high-dimensional
settings. The inherent recalibrating in response to density allows
one to sidestep the need for localizing parameters (such as neigh-
borhood size) common to many existing methods. The overarch-
ing perspective provides a framework for a holistic consideration
of the structure of data, which integrates concepts of local depth,
cohesion, strong ties, and network structure.
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The paper proceeds as follows. We first discuss the social
framework from which the perspective of PaLD arises and then
move on to the mathematical constructions of (community) local
depth and the resulting concept of cohesion (partitioned depth).
Next, we consider a theoretical threshold for distinguishing strong
and weak relationships and the resulting networks. Some theoreti-
cal results regarding cohesion are also provided. We then turn
toward applications to benchmark, linguistic, genetic, and cultural
values data. We conclude with a consideration of cohesion in
high-dimensional settings and a discussion of performance, bene-
fits, and implementation.

Social Framework
In this section, we provide a brief discussion of the important
underlying social framework and the associated social latent
space. While this provides important context for the concepts
that follow, the reader may choose to move directly to the mathe-
matical development in Local Community Depth, Cohesion, and
Particularly Strong Cohesion.

The PaLD perspective arises from social concepts of opposi-
tion, support, and strength of alignment. In particular, repre-
senting data points within a latent social space and considering
the relative positioning of individuals, we can obtain a measure
of local prominence (or power) of an individual via the support
received when in direct opposition with others. Specifically,
suppose (social) individuals x and y are in conflict. The set of
individuals, z, with particular impetus for involvement in the
dispute could, in some sense, be viewed to be those with more
knowledge of either x or y than x and y have of one another. In
this social context, we refer to such sets as (local) conflict foci,
expressed formally in Eq. 1 and denoted by Ux, y.

The local prominence of an individual may be reflected by
considering the level of “support” that the subject has in the
foci they induce. Specifically, for a fixed x, the local depth can
be formulated as the proportion of members in randomly
selected (induced) foci which are closer to x than to the
respective opposing individual. This is expressed formally in
Eq. 2.

As an individual becomes locally prominent due to the sup-
port from those around them, the contribution to local depth
from others can be seen as expressing strength of alignment,
here referred to as cohesion. Note that the chance of selection
of a particular individual in a conflict focus is inversely related
to the size of that focus, which aligns with the concept that indi-
viduals have more significant social presence within smaller
groups (10). Cohesion is defined formally in Eq. 3.

The concepts of strong and weak ties have been studied
extensively in the sociological literature (11–13). We consider
the cohesion between two points to be “particularly strong”
when mutual cohesion is greater than that expected of a ran-
dom point involved in conflict (Eq. 4). The network structure
provided by the distinction between (particularly) strong and
weak ties can provide insight into varying roles of relationships
in overall structural organization.

Here, we take the perspective that strong ties are the founda-
tions of communities, and thus, a (community) cluster is a con-
nected group with no strong ties to individuals outside the group.
The network of (community) clusters does not sever strong ties
and can provide both evidence for spectrums and contiguity of a
population in addition to clear evidence for the existence of dis-
tinct groups. Discussion of group formation in the sociological lit-
erature can be found in refs. 14–16. For discussion of how the
study of clustering algorithms can provide insights into the
agglomeration and division of social groups, see refs. 17 and 18.

The presence of varying local density is common in social set-
tings (e.g., urban versus rural), influences the (physical) distances
at which interactions between individuals occur, and plays an

important role in group structure and formation. Accounting for
density variation is an important feature in what follows.

We now turn to a mathematical treatment of local depth,
cohesion, and related concepts.

Local Community Depth
We begin by introducing the concept of local (community)
depth, which results from an approach to localization that
incorporates interactions occurring at varying scales.

Suppose S¼ fs1, s2,…, sng is a finite set of data points, and
write x ∈ S to indicate membership in S. For any points x, y ∈ S,
let dðx, yÞ denote the dissimilarity of y from x. For the general
theoretical framework, the dissimilarity does not need to satisfy
(metric) properties such as symmetry or the triangle inequality
(see Properties of Cohesion).

For any pair of points ðx, yÞ, define the local focus induced
by x and y, Ux, y, to be the set of points which are as close to
either x or y as x and y are to one another. That is,

Ux, y ¼ f z ∈ S j d z, xð Þ ≤ d y, xð Þ or d z, yð Þ ≤ dðx, yÞ g: [1]

The local (community) depth of a point x is then the probabil-
ity that, when an opposing point, y, is selected (uniformly) at
random, a second randomly selected point within the resulting
induced focus is closer to x than to y (with ties broken by a
coin flip). Formally, for a fixed x ∈ S, select Y uniformly at ran-
dom from Snfxg (i.e., satisfying Y ≠ x) and then select Z¼
Zx, Y uniformly at random from the focus Ux, Y . The local depth
of the point x, denoted ℓSðxÞ, is then defined via

ℓS xð Þ ¼ P d Z, xð Þ < d Z, Yð Þð Þ þ 1

2
P d Z, xð Þ ¼ d Z, Yð Þð Þ: [2]

For clarity of exposition, in what remains, the term resolving
ties will be suppressed. In all cases, the average local depth
over the set S is equal to 1=2.

The resulting measure of relative support is local (community)
depth; the term “depth” is used here since, as with common
employment of the term, we seek to capture geometric features of
centrality. Several existing measures of depth are given as inter-
pretable probabilities which are based on geometric constructions
including half-spaces, simplices, and lenses (see, for instance, refs.
4 and 5). Two recent approaches to depth in which varying
degrees of localization may be considered are introduced in
refs. 19 and 20. Note that in the definition of local depth, rela-
tive positioning is observed entirely from the perspective of dis-
tance comparisons (within triples of points); this provides a
desired sense of robustness and permits consideration of depth
in high-dimensional settings (see Applications and Performance
Considerations). In Theorem 2: Limiting Irrelevance of Density,
we show that local depth accounts for varying density in the
sense that, provided subsets are sufficiently separated, the local
depth of a point is maintained as within-subset distances are
contracted or dilated (see Properties of Cohesion).

For instructive purposes, in Fig. 1, we consider a small two-
dimensional Euclidean dataset. In Fig. 1A, a single local focus
is indicated, and the computation of local depth for a selected
point is displayed. In Fig. 1B, as a prelude to what follows, we
give the community structure revealed by partitioning local
depth, with corresponding depth values indicated adjacent to
the respective nodes. Edges colored are those for which the
contribution to local depth (i.e., mutual cohesion) is greater
than the interpretable threshold given in Eq. 4 (see Cohesion
and SI Appendix, Table S1).

When the input distances correspond to between-node separa-
tion in a given network, local depth can be viewed as a new mea-
sure of network centrality; for a discussion of extant measures of
network centrality, see, for instance, refs. 21 and 22 and the refer-
ences therein. To provide a simple yet instructive example of an
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application of local depth for non-Euclidean dissimilarities, in SI
Appendix, Fig. S2, we provide local depths associated with cholera
fatalities in London in 1854 (23) using walking distance.
Throughout, since distances are only considered indirectly, the
concept of local (community) depth may be valuable for detect-
ing hotspots (24) in the presence of varying density. To provide
insight into varying degrees of localization, one could choose to
alter the manner in which Y is selected (via some kernel), say.

In the next section, we introduce the concept of cohesion,
which results from consideration of contributions to local depth.

Cohesion
A point becomes locally deep because of those around it, and
thus, a measure of pairwise cohesion can be given in terms of
the contribution of a point to the local depth of another. In par-
ticular, the concept of cohesion considered here is partitioned
local depth. For a discussion of social motivation, see Social
Framework.

Formally, for two points x and w in S, select Y ∈ Sn xf g uni-
formly at random and Z¼ Zx, Y uniformly at random from
Ux, Y . The cohesion (or contribution to local depth) of w to x,
denoted Cx, w, is then defined via

Cx,w ¼ P Z¼ w and d Z, xð Þ < d Z, Yð Þð Þ: [3]

Since, from Eq. 3, cohesion is simply partitioned local depth,
the sum of the cohesion of all points to x is equal to the local
depth of x. Cohesion is not a uniform rescaling (or transforma-
tion) of distance but rather a transformation that captures fea-
tures of relative positioning via the geometric construction of
the induced local foci fUx, yg. Note again that, in a particular
focus, the influence of a given point is inversely related to the
cardinality of the respective focus (see Social Framework). The
manner in which cohesion responds to varying local density is
considered further in Properties of Cohesion as well as Perfor-
mance Considerations.

Particularly Strong Cohesion
We now present a theoretical criterion for a pairwise relation-
ship to be considered strong; this will be integral to the deter-
mination of community structure. The criterion is a global
threshold, provided as an interpretable probability, that incor-
porates information regarding relationship strength across the
space. The resulting definition of particularly strong ties can
provide an alternative perspective to that of near neighbors,
which reflects aspects of relative position.

Specifically, for fixed x and w, viewing the associated cohe-
sion value as the probability of support for x from w, we con-
sider Cx, w to be “particularly strong” if the impact of w for x is

greater than that expected of a random focus point W for a ran-
dom point X . More formally, select X , Y in S (with Y ≠ X)
uniformly at random and Z¼ ZX , Y as before from UX , Y .
Finally, select W ¼WX , Y uniformly from UX , Y to represent a
typical focus point. Then, the relationship between x and w is
said to be “particularly strong” whenever

minf Cx,w, Cw,x g ≥ P Z¼W and d Z,Xð Þ < d Z,Yð Þð Þ; [4]

compare Eq. 4 to Eq. 3. The concept of a relationship implicitly
suggests mutual cohesion, which is the essential motivation for
the use of the minimum function. In every example in this
paper, the threshold distinguishing “particularly strong” rela-
tionships is precisely that given in Eq. 4 (see Figs. 1, 2, and
4–8).

We remark that with the reasonable added assumption that x
is closer to itself than it is to any other point (i.e., d x, xð Þ <
d x, yð Þ for all y ≠ x), we have that

P Z¼Wð Þ ¼ P Z¼ Xð Þ ¼ 1

n
∑
x
P Z¼ xð Þ

¼ 1

n
∑
x
P Z¼ x,d Z, xð Þ < d Z,Yð Þð Þ: [5]

Leveraging symmetry in the selection of X and Y (and referring
to the definition of Cx,x via Eq. 3), the threshold in Eq. 4, which
distinguishes particularly strong relationships, can be computed
simply as half the average of the diagonal of the matrix of cohe-
sion values. Evidence in support of the value of the given
threshold can also be found in applications beyond community
structure (see Local and Global Considerations).

For a simple example, we consider the two-dimensional data
set in Fig. 2A. Here, we have a tightly knit group of five points
at the lower left and a collection of seven points at much larger
distances at the upper right. Particularly strong relationships
are colored according to connected component of the implied
graph of strong ties (see Community Structure). Fig. 2B pro-
vides the corresponding plot of cohesion against distance; for
further discussion of the information conveyed by consideration
of distance–cohesion pairs, see Performance Considerations.
Identified groups may be held together by ties at distances that
are many times larger than those separating them. Intracluster
distances are as small as 87.8, while the distance from the point
at the top right to its closest fellow cluster member is 238.5.
The two weakly connected points on the far right of Fig. 2A
exhibit the asymmetry of pairwise cohesion (0.061 and 0.065, at
distance ∼250; only one is greater than the threshold). Note in
Fig. 2B that the two main communities (at the lower left and
upper right) with differing densities have comparable cohesion
values. This will be a common feature exhibited in Applications
and discussed further in Properties of Cohesion and Performance
Considerations.

Extensive applications of cohesion are considered in Applica-
tions and Performance Considerations. We now provide some
theoretical properties of cohesion and a discussion of the
resulting networks.

Properties of Cohesion
In this section, we provide some fundamental properties of
cohesion which are reasonable for approaches which convey
the strength of community connections. These properties high-
light the value of considering distance comparisons (rather
than absolute distance values) and of incorporating interactions
occurring across a variety of scales.

As we have seen throughout, cohesion and local depth values
only depend on within-triplet dissimilarity comparisons. This
can be particularly valuable when one wishes, for instance, to
incorporate dissimilarity information provided by humans (e.g.,

−2 −1 0 1 2

−
1

0
1

2
3

−2 −1 0 1 2

−
1

0
1

3

0.44

0.54

0.47

0.62

0.50

0.64

0.50

0.28

1

2

3

4

8

7

6

5A B

Fig. 1. We consider a small two-dimensional Euclidean data set. In A, we
depict a conflict focus, Us7 ,s4 , and the calculation of local depth for a
selected point, s7 (here labeled 7); see also SI Appendix, Table S1. In B,
local depth values are provided and illustrated by vertex size. Contribution
to local depth (see Cohesion) from the surrounding points are depicted via
edges in the overlayed graph; mutual contributions greater than the
threshold are colored.

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

Berenhaut et al.
A social perspective on perceived distances reveals deep community structure

PNAS j 3 of 10
https://doi.org/10.1073/pnas.2003634119

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003634119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003634119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003634119/-/DCSupplemental


via crowdsourcing). Studies have suggested that one can often
more reliably provide distance comparisons than exact numeri-
cal evaluations (5, 25). One example of a query regarding
within-triplet distances could be of the form “Is z more similar
to x than it is to y?” (Fig. 3A); this highlights the potential value
in leveraging information of this form when there is uncertainty
in a measure of dissimilarity. Fig. 3A provides an illustration of
a triple for which an exact numeric evaluation of distance may
be challenging.

In the following theorems, we provide formalizations of key
properties of local depth and cohesion (see the illustrations in
Fig. 3 B–D). Provided that sets are sufficiently separated, cohe-
sion values are invariant under contraction and dilation of
within-set distances (see Theorem 2: Limiting Irrelevance of Den-
sity). We also show how between-group ties weaken when the
number of points in a concentrated region increases (see Theo-
rem 3: Separation under Increasing Concentration). All proper-
ties are phrased asymptotically; the explicit distances at which
these results hold is provided in each statement. The effect of

such properties can be seen in the data considered throughout
the paper and in Applications and Performance Considerations.

Theorem 1: Separation under Increasing Distance. Suppose S¼ A ∪ B
and A and B are mutually separated in the sense that
max dða, a0� Þja, a0 ∈ Ag < minfd a, bð Þ, a ∈ A, B ∈ Bg (respec-
tively for B). Then, the between-set cohesion values are zero (i.e.,
Ca, b ¼ Cb, a ¼ 0 for any a ∈ A and b ∈ B).

For proof, see SI Appendix.

Theorem 2: Limiting Irrelevance of Density. Suppose that A and A0
have the same ordinal structure in the sense that, for ai, aj, ak ∈
A and a0i, a

0
j, a

0
k ∈ A0, d ak, aið Þ < dðak, ajÞ if and only if

dða0k, a0jÞ< dða0k, a0jÞ. Suppose additionally that S¼ A∪B (respec-
tively S0 ¼ A0∪BÞ for some set B with the property that A and B
(resp. A0 and B) are mutually separated. Then, ℓS aið Þ ¼ ℓS0 ða0iÞ
and Cai , aj ¼ Ca0

i
, a0

j
for any i, j.

For proof, see SI Appendix.

Theorem 3: Separation under Increasing Concentration. Suppose that
S¼ A∪B, and B is concentrated with respect to A in the sense
that max dðb, b0� Þjb, b0 ∈ Bg <minfd b, að Þj a ∈ A, b ∈ Bg, and
for any a, a0 ∈ A, either 1) d b, að Þ < dða0, aÞ for all b ∈ B, or 2)
d b, að Þ > dða0, aÞ for all b ∈ B. If jBj is sufficiently large relative
to jSj, then for any a ∈ A and b ∈ B, the relationship between a
and b is not particularly strong.

For proof, see SI Appendix.
Note: One may observe that the probabilities defining cohe-

sion (see Eq. 3) can be computed directly according to the
finite sum

Cx, w ¼ 1

n� 1
∑
y ∈ S
y ≠ x

1ðd w, xð Þ < d w, yð Þ, w ∈ Ux, yÞ
jUx, yj :

Furthermore, since cohesion is partitioned local depth, local
depth can be expressed as ℓ xð Þ ¼∑w∈SCx, w, (see Eq. 2). A
summary of properties and pseudocode for computing cohesion
are included in SI Appendix.

Graphical Community Structure
Valuable information about the structure of data can be commu-
nicated via the weighted network whose edge weights express
mutual cohesion. The subgraph consisting of particularly strong
ties may reveal distinct features of group separation and can
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Fig. 2. We consider a small two-dimensional Euclidean dataset with varying local density. In A, edges between pairs whose mutual cohesion is greater
than the threshold distinguishing strong relationships are bolded and indicated by colors. The perspective reveals three distinct (community) clusters and
two isolated points. (Inset) The highly connected nature of the cluster in Bottom Left is displayed. In B, note that cohesion is more than a simple direct
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Fig. 3. An illustration for the setting of distance comparisons as well as
three properties reasonable for approaches which convey the strength of
community connections. In A, within-triple distance comparisons are deter-
mined by asking for instance: “Is z more similar to x or to y?” In B, separa-
tion under increasing distance; in C, limiting irrelevance of density; and in
D, separation under increasing concentration.
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provide a perspective on the inherent shapes of communities,
which may be valuable in applications.

Specifically, the community structure of S can be analyzed via
the associated (undirected) cohesion network GS, whose vertex set
is S and whose edges x, wð Þ are weighted by minfCx, w, Cw, xg
(Figs. 1B and 2A). As in the discussion following Eq. 4, the mini-
mum function is employed to express mutual cohesiveness [see
also mutual k-nearest neighbor graphs (26)]. The (community)
cluster network, denoted G�

S, is a subnetwork of GS consisting of
the edges x, wð Þ for which the relationship between x and w is
particularly strong. We refer to the connected components of G�

S,
including inherent internal network structure, as the (community)
clusters in this setting (see Figs. 1, 2, and 4–8).

The weak ties in GS can provide information about the rela-
tive positioning of individuals within communities (see Applica-
tions, and, in particular, see Figs. 5–7). Specifically, positions of
points in low-dimensional embeddings of the cohesion network,
GS, can give insight into contextual similarity, complementing
the perspective of other embedding techniques (see, for
instance, refs. 27 to 29 and the references therein). The full
cohesion matrix and the associated directed network may
convey additional structural information (including potential
relational asymmetries).

The (community) cluster network maintains all particularly
strong relationships. Nevertheless, as seen in Applications, the
connected components of the cluster network do align with
commonly accepted partitions of benchmark clustering data
(Fig. 4). Cohesion and the resulting networks give an approach
for analyzing structure, which can provide evidence for both
spectrums and the existence of distinct groups. Since PaLD is
defined without the use of optimization criteria or extraneous
inputs, the results obtained from this perspective can comple-
ment that provided by other methods.

PaLD and Existing Methods
We now discuss PaLD and its place alongside other methods
and approaches, in particular, the potential value provided by
recalibrating in response to density variation (see Theorem 2:
Limiting Irrelevance of Density and Performance Considerations),
which removes the need for localizing parameters.

Particularly strong ties can be viewed as providing a comple-
mentary perspective on the concept of near neighbors that cap-
tures features of relative positioning beyond those provided by
the distance to or ranking of one’s neighbors. The number of
neighbors varies across the graph, as points with larger local
depth will typically have more strong ties in G�

S than those with
smaller local depth (see Eqs. 3 and 4).

Related work in topological data analysis seeks to address
aspects of shape, connectivity, and structure in data via con-
structed graphs (see, for instance, ref. 30 and the references
therein). Though here we will only focus on connected compo-
nents, methods such as (persistent) homology may be valuable
in a further analysis of structural information provided by com-
munity networks. Here, the community and cluster networks
GS and G�

S capture aspects of relative positioning and do not
require additional parameters. As such, a structural analysis of
community graphs (which reflect cohesion rather than distance)
can complement that obtained from graphs created using
neighborhood radii and k-nearest neighbors.

Density-based algorithms, including density-based spatial clus-
tering of applications with noise (DBSCAN) (and related techni-
ques, including hierarchical density-based spatial clustering of
applications with noise [HDBSCAN]; see, for instance, refs. 7 and
8), can give insight into varying density throughout the underlying
space (via tuning parameters), often with the intention to remove
“noise” or identify high-density regions separated by lower-density
regions. The manner in which PaLD accounts for density variation
(see Properties of Cohesion) could potentially be valuable in initial
computations associated with current algorithms.

PaLD may reveal individuals between groups, and their role as
bridges between select individuals in distinct communities. When
there is a strict desire to partition into groups, one may wish to
use another method in conjunction with PaLD to carefully
remove points which are considered to potentially be noise. Since
community clusters require a complete absence of strong relation-
ships with points outside, the existence of disjoint groups is a
strong signal for separation (see also Applications and SI
Appendix, Fig. S3). Although not pursued here, when additional
partitioning of the community graph is desired, community detec-
tion methods for networks, such as spectral clustering or the Lou-
vain algorithm (31–33), could be applied directly to G�

S (or GS).

Applications
In this section, we consider applications of the method to
uncover community structure in benchmark examples as well as
high-dimensional data arising in the study of linguistics, genet-
ics, and cultural psychology. In each example in what follows,
cohesion values are computed to determine edge weights, and
the resulting weighted network is provided (edges which corre-
spond to particularly strong ties are colored in the

D

E F

A B

C

Fig. 4. Examples of two-dimensional benchmark Euclidean datasets with
overlayed cluster networks are provided in A–F. In D, the two closest
points to any on the outer ring are located within the inner ring. In E and
F, note the detection of clusters in the absence of constant within-cluster
density. Recall that no parametric assumptions or optimization criteria are
employed. Points are plotted at proportionally accurate distances.
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accompanying plot). Throughout, PaLD does not require user
inputs beyond a collection of pairwise distances, is not iterative,
and is defined independently of any external optimization crite-
ria or loss function specifying a priori necessitated properties of
clusters. The results obtained in the presence of the simplicity
and transparency of the approach suggest that cohesion is
potentially valuable in overall considerations of data structure.

To highlight the relationship between community structure and
existing methods, we include results from clustering methods
(such as hierarchical, k-means, DBSCAN, and HDBSCAN) and
low-dimensional embeddings [such as principal component analy-
sis and multidimensional scaling (34, 35)]. For further compari-
sons, see SI Appendix, Figs. S3–S6 and S10–S12 and Tables S2–S6.

We now consider PaLD applied to some benchmark data as
well as high-dimensional examples in linguistics, genetics, and
cultural psychology.

Benchmark Data. In Fig. 4, we display the community cluster net-
works for six structured two-dimensional Euclidean datasets
along with overlayed community graphs; for the generation of
the data employed in Fig. 4 A–C, see refs. 36 and 37. In Fig. 4
A–C, note that the connected components of the (thresholded)
cluster graphs coincide with commonly accepted clustering of
such sets without leveraging external cost functions or requiring
further inputs (such as the number of clusters or neighborhood
size). In Fig. 4D, the nested ring structure of the set is identified
despite the fact that the two closest points to any point within
the outer ring are located in the inner ring. In Fig. 4 E and F,
within-cluster density varies; in both examples (as in Fig. 2),
there are within-cluster ties which span larger distances than the
minimum distance between clusters. In each example, the graph-
ical community structure conveys valuable additional informa-
tion that is not obtained from methods whose focus is on the
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Fig. 5. We consider community structure for 87 Indo-European languages employing cognate information coded via 2,665-dimensional binary vectors. In
A, note commonly identifiable language clusters and corresponding inter- and intracluster structure. Several ancient languages are centrally located. In B,
we display cohesion against distance; the threshold delineating particularly strong relationships is indicated by a horizontal line. In C, a two-dimensional
embedding provided by multidimensional scaling is given (35). In D, hierarchical clustering of the distance data is displayed, with dashed vertical lines
indicating cuts given by maximizing the Calinski–Harabasz index (53) (k = 8) and average silhouette width (54) (k = 14), respectively. In B–D, the coloring
is according to that given by PaLD.
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assignment of class labels. In all examples in this paper, the
threshold employed is that provided in Eq. 4.

We now consider applications to high-dimensional data in
linguistics, genetics, and cultural psychology.

Languages. In Fig. 5, we display the community cluster network
for 87 Indo-European languages arising from cognate informa-
tion, coded using 2,665-dimensional binary vectors (38, 39). In
Fig. 5A and in the remainder of the paper, we use the
Fruchterman–Reingold (FR) force-directed graph drawing
algorithm (40) to display the weighted network GS, and indi-
cate the edges of G�

S using colors which highlight the inherent
community structure. The only input required to obtain the
corresponding matrix of cohesion values was simply a collection
of distances; Euclidean distance was employed here.

One may note the commonly identifiable language clusters
and that, under a slight rotation, some of the underlying geog-
raphy is mirrored in the plot. Fig. 5B provides a plot of cohe-
sion versus distance with the threshold from Eq. 4 indicated by
a horizontal line. A discussion of the information available
through consideration of distance–cohesion pairs can be found
in Performance Considerations. Observe that large values of
cohesion can appear over a wide range of distances. For
instance, the community of ancient and central languages
(including Tocharian, Hittite, and Armenian) exhibits some of
the largest pairwise cohesion values despite being at relatively
high pairwise distances (above half the maximum distance); see
SI Appendix, Fig. S7 for a histogram of cohesion values. Sub-
communities can be revealed via internal structure in G�

S (see,
for instance, the cluster of Romance languages in the lower left
and Slavic languages toward the upper right in Fig. 5A) as in
the case of hierarchical approaches. Note that the community

graph provides rich structural information beyond that given by
low-dimensional embeddings or conveyed by trees and cluster
labels (see Fig. 5A in contrast to Fig. 5 C and D). Additional
results from PaLD and a variety of complementary perspec-
tives, including further low-dimensional visualizations and near
neighbor networks, are included in SI Appendix (SI Appendix,
Figs. S6–S10 and Tables S2–S6).

Gene Expression Data. In Fig. 6, we display the community clus-
ter network for a collection of 22,215-dimensional gene expres-
sion data from 189 tissue samples obtained from a variety of
individuals (41). In Fig. 6A, the analysis reveals community
structure among tissue types. Coloring in the plot is according
to tissue type for vertices and connected components for edges.
As in Fig. 5, we use Euclidean distance here.

Note in particular the graphical positioning of brain and
lower abdominal tissues. The vertical bands of color in Fig. 6C
illustrate how varying densities among groups are brought to
comparable levels of cohesion (see also Performance Considera-
tions). The community graph provides rich local and global
information beyond that given by class labels and low-
dimensional embeddings (see Fig. 6A in contrast to Fig. 6 B
and D). For further results using standard partitioning meth-
ods, see SI Appendix, Table S4.

Cultural Psychology. In Fig. 7, we consider cultural distance infor-
mation obtained in ref. 42 from two recent waves of the World Val-
ues Survey (2005 to 2009 and 2010 to 2014) (43). Distances are
computed using the cultural fixation index (CFST), which is a mea-
sure built on the framework of fixation indices from population
biology (44, 45). Recall that the foundation of PaLD in within-
triplet comparisons allows for the employment of application-
dependent and non-Euclidean measures of dissimilarity.

In Fig. 7A, we display community structure for regions within
the United States, China, India, and the European Union. As
highlighted in ref. 42, the United States is relatively homogeneous
compared to Europe and India. Again, community clusters of
varying density are brought to comparable levels of cohesion (Fig.
7 B and C). Specifically, note that the regions at the largest
cultural distance in the United States (East South Central and
California, at a distance of 0.027, with no particularly strong con-
nection) is less than that between all strongly connected pairs
within India (having minimum distance 0.043) (SI Appendix, Table
S7). This mirrors common local cultural perspectives. In Fig. 7D,
we provide a two-dimensional nonmetric multidimensional scaling
plot (35) based on the pairwise cultural fixation index values.
Results of k-medoids (k = 4) (46) and HDBSCAN applied to the
distance data are provided in Fig. 7E and SI Appendix, Tables S5
and S6. Numerical comparisons of partitions obtained from clus-
tering methods (via normalized mutual information) are provided
in SI Appendix, Tables S3 and S6.

The complexity of the datasets in this section can be seen
through the consideration of results obtained via existing
clustering methods (SI Appendix, Figs. S4–S6 and S10 and
Tables S2–S6). It may be noted that methods such as k-nearest
neighbor and hierarchical approaches can provide challenges
in parameter, cutoff, and optimization criteria selection (SI
Appendix, Figs. S4–S6 and S10 and Tables S2–S6). Even quite
complex and novel density-based methods such as HDBSCAN
may identify locally central points as noise in applications. In
particular, languages, including variants of the ancient Tocharian
and Armenian languages (as well as English for minPts = 4), are
classified by HDBSCAN as noise, despite standing as central
(Fig. 5; the associated local depth values are 0.65, 0.68, and
0.66, respectively). In addition, for the cultural data in
Fig. 7, the widely spread Indian regions are broken apart by
HDBSCAN with six classified as noise, and the European and
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US regions are agglomerated into one single cluster (aside
from Romania [noise], SI Appendix, Table S5).

Performance Considerations
In this section, we discuss the performance of partitioned local
depth in accounting for groups with varying local density. In
particular, we consider increasing dimensions as a setting con-
ducive to complex structure wherein the within-group variance
of distances is diminishing, whereas the variance of cohesion is
maintained. We will discuss how, in line with the theoretical
results, the performance of partitioned local depth can be
observed via consideration of cohesion in relation to distance
(Figs. 2B, 5B, 6B, 7C, and 8).

In Fig. 8, we consider randomly generated data with inherent
group structure and varying density over increasing dimensions. In
particular, 100 points were selected uniformly at random from each
of three balls of radii 0.5, 1, and 2.5; the corresponding distribution
centroids are at constant distances 3, 4, and 5 (Fig. 8A). In Fig. 8B,
we present the associated plots of cohesion versus distance together
with small representations of the associated cluster graphs (employ-
ing the FR graph-drawing algorithm). Observe that as dimensional-
ity increases, the variability of within-cluster distances decreases
dramatically. On the other hand, the variability of cohesion values is
maintained, with comparable ranges across clusters regardless of
distance and density. In the 10,000-dimensional example in Fig. 8 B
and C, the distances between points in Groups 1 and 2 (∼3.2) is
less than the within-cluster distances in Group 3 (of ∼3.5). For a
general discussion of dimensionality in data, see, for instance, refs.
47 and 48. In the histograms in Fig. 8C, it can be seen quite dramat-
ically that within-group cohesion distributions (particularly for
strong ties) equate well across groups despite vast differences in
within-group distance distributions. In fact, the average total varia-
tion distance (TVD; see, for instance, ref. 49) between the (binned)

distributions of within-group distances is 1, whereas that of within-
group cohesions is 0.27. In the case of the cultural distance data in
Fig. 7B, the corresponding averages for TVD are 0.78 (for distance)
and 0.42 (for cohesion). A similar analysis for tissue types is pro-
vided in SI Appendix, Fig. S11. Recall that, as discussed in Applica-
tions, the recalibrating of distance via cohesion provides adaptation
to local perspectives. Note that similar behavior can be observed in
the distance–cohesion pairs displayed in Figs. 2B, 5B, 6B, and 7C.

As with all methods, care must be taken that input distances
reflect the sense of inherent proximity for a given application; the
lack of requisite (metric) properties of symmetry or the triangle
inequality does provide greater flexibility/freedom in this selection.
Additionally, the foundation in distance comparisons means that
any monotone transformation of the dissimilarity function (e.g.,
log) will provide the same results. This feature may be particularly
valuable for applications involving non-Euclidean dissimilarities
(see, for instance, the applications to cultural distance in Applica-
tions and walking distance in SI Appendix, Fig. S2).

Local and Global Considerations
Particularly cohesive relationships give meaning to the concept
of “local” within a given domain, an idea which underlies
locality-based approaches to data analysis. Cohesiveness can be
employed in place of variants of local kernel approaches (see,
for instance, chapter 6 in ref. 50) in classification, imputation,
anomaly detection, regression, smoothing, and elsewhere. Spe-
cifically, we can obtain meaningful global (or local) weightings
by normalizing across all contributions (or only those which are
particularly strong). Note that the kernels that result from
PaLD vary according to relative positioning and density across
the underlying space. Examples of applications to the smooth-
ing of time series and classification are given in SI Appendix,
Figs. S12 and S13. Additionally, the threshold in Eq. 4, when
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applied to the cultural distance data in Fig. 7, results in particu-
larly strong connections appearing only at distances below 0.15,
a quantity suggested by Wright as a heuristic cutoff above which
there is great differentiation (see ref. 51). For further examples
of connections between existing local–global heuristics and the
given threshold, see SI Appendix, Figs. S12 and S13.

Discussion and Conclusions
The partitioning of local depths provides an integrated and
holistic approach to depth, embedding, clustering, and local
methods for general data that reflects relative positioning. In
particular, cohesion provides a means to account for varying
local density within data (see Theorems 1 to 3) which may be
valuable in a variety of settings and applications. Notably, the
resulting algorithm requires no extraneous inputs (beyond a
collection of interpoint distance comparisons), optimization cri-
teria, or distributional assumptions; this may be valuable for
clarity, transparency, interpretability, and communication.

As mentioned earlier, we only leverage distance comparisons
among triples of points, which can enable implementation
when one has more confidence in relative comparisons as
opposed to exact (numeric) dissimilarities. Since the magnitude
of distances is indirectly employed, this permits the consider-
ation of position in relatively high-dimensional data and that
which is not inherently Euclidean.

With PaLD, each point is treated equally from a computa-
tional standpoint. Thus, in cases in which one can confidently
identify extensive noise, some pre- or postprocessing may be
warranted. In such instances, one may also choose to alter the
manner in which the opposing point is selected to emphasize
certain local interactions over others.

When a partitioning of the data into clusters is desired, the
results obtained from PaLD can complement those provided by
other perspectives. Recall, when further partitioning of the graph
is of interest, community detection methods for networks could
be applied directly to G�

S (or GSÞ; see PaLD and Existing Methods.
The manner in which cohesion accounts for varying local density
might be useful in applications beyond those considered here
(e.g., hotspot detection, classification, and smoothing). Since no
additional parameters, distributional assumptions, or cost functions

are employed, the approach can provide additional context for the
results obtained from other methods.

Contribution to local depth only uses a collection of within-
triplet distance comparisons, and hence, the inherent computa-
tional complexity is not influenced by any underlying Euclidean
dimension or lack thereof. Note that for the cognate data set
considered in Fig. 5, computation of the distances, local depths,
and cohesion matrix along with the displaying of the commu-
nity network required ∼0.80 s. A naive implementation of the
algorithm to exactly compute the cohesion matrix is O n3

� �
; see

SI Appendix, Fig. S14 for pseudocode. PaLD in its entirety is
presently applicable for datasets of size n¼ 20,000 (i.e., when
calculation and ready storage of a Euclidean distance matrix is
typically feasible). Note that the method is entirely determinis-
tic, and one does not need to search a parameter space nor
select initial values. In addition, the threshold in Eq. 4 provides
for sparsification (in the form of the graph G�

S, SI Appendix,
Table S7); this may be valuable for memory considerations.
Methods which exploit parallelizability, the redundancy of the
collection of ordinal dissimilarity relationships, or the probabil-
istic nature of local depths may in the future be able to improve
algorithmic complexity. Implementation of ideas related to
nearest neighbor descent (52) may also be of value when con-
sidering particularly large datasets.

In closing, it is crucial to note that there is value in
approaches which allow scientists from varying backgrounds to
obtain informative, concrete, and interpretable results that are
well suited for communication to the general public in a
straightforward and actionable manner. The concept of data
communities proposed here is derived from, and aligns with, a
shared human social perspective.

Data Availability. All data are provided in GitHub at https://github.com/
moorekatherine/pald-communities.

ACKNOWLEDGMENTS. We acknowledge the research assistance of G. Bal-
lard, J. Guo, Y. Huang, R. Langefeld, and L. D’Agostino McGowan. We also
thank R.W. R. Darling for valuable discussions, J. Healy for suggestions regard-
ing integrating the PaLD approach into density-based algorithms, and M.
Muthukrishna for providing the cultural distance data for Fig. 7. K.S.B.
acknowledges financial support from a Baker Family Faculty Fellowship. K.S.B.
and K.E.M. would like to personally thank students in a variety of recent clas-
ses within which PaLD has been covered.

1. R. Chiong,Nature-Inspired Algorithms for Optimisation (Springer, 2008), vol. 193.
2. A. Neme, S. Hern�andez, “Algorithms inspired in social phenomena” in Nature-

Inspired Algorithms for Optimization, R. Chiong, Ed. (Springer, 2009), pp.
369–387.

3. P. D. Hoff, A. E. Raftery, M. S. Handcock, Latent space approaches to social network
analysis. J. Am. Stat. Assoc. 97, 1090–1098 (2002).

4. Y. Zuo, R. Serfling, General notions of statistical depth function. Ann. Stat. 28,
461–482 (2000).

0 2 4 6 8

co
he

si
on

0 2 4 6 8

0.
00

4
0.

00
8

0.
01

2

−2 0 2 4
−

2
0

2
4

6
0 2 4 6 8

0.
00

5
0.

01
0

0.
01

5

100 dimensions

distance

10,000 dimensions10 dimensions

43
5

Group 1

Group 2

Group 3 BA

0.002 0.006 0.0100.002 0.006 0.010 0.002 0.006 0.010

1 2 3 4 1 2 3 4 1 2 3 4

Group 1 Group 2 Group 3C

distance distance distance

cohesion cohesion cohesion

0.
00

5
0.

01
0

0.
01

5

co
he

si
on

distance co
he

si
on

distance

Fig. 8. We consider points sampled uniformly at random from balls of varying radii over increasing dimensions. In A, we consider the two-dimensional
case to illustrate features of the generated data. In B, we display the associated plots of cohesion against distance together with small visuals of the cor-
responding cluster graphs. Although the variability of within-cluster distances decreases dramatically, with increasing dimension, the variability of cohe-
sion is maintained and is comparable across clusters regardless of density. In B and C, values below the threshold are indicated in gray.

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

Berenhaut et al.
A social perspective on perceived distances reveals deep community structure

PNAS j 9 of 10
https://doi.org/10.1073/pnas.2003634119

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003634119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003634119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003634119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003634119/-/DCSupplemental
https://github.com/moorekatherine/pald-communities
https://github.com/moorekatherine/pald-communities


5. M.Kleindessner,U. von Luxburg, Lensdepth function andk-relativeneighborhoodgraph:
Versatile tools for ordinal data analysis. J.Mach. Learn. Res. 18, 1889–1940 (2017).

6. M. M. Breunig, H. P. Kriegel, R. T. Ng, J. Sander, “LOF: Identifying density-based local
outliers” in Proceedings of the 2000 ACMSIGMOD International Conference onMan-
agement of Data, W. Chen, J. F. Naughton, P. A. Bernstein, Eds. (ACM, 2000), pp.
93–104.

7. R. J. G. B. Campello, P. Kr€oger, J. Sander, A. Zimek, Density-based clustering. Wiley
Interdiscip. Rev. DataMin. Knowl. Discov. 10, 1343 (2020).

8. B. S. Everitt, S. Landau,M. Leese, D. Stahl, Cluster Analysis (JohnWiley & Sons, Ltd, ed.
5, 2011).

9. R. Domingues, M. Filippone, P. Michiardi, J. Zouaoui, A comparative evaluation of
outlier detection algorithms: Experiments and analyses. Pattern Recognit. 74,
406–421 (2018).

10. S. L. Feld, The focused organization of social ties.Am. J. Sociol. 86, 1015–1035 (1981).
11. J. S. Coleman, Social capital in the creation of human capital. Am. J. Sociol. 94,

S95–S120 (1988).
12. M. S. Granovetter, The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).
13. R. S. Burt, Structural Holes: The Social Structure of Competition (HUP, Cambridge,

MA, 2009).
14. L. C. Freeman, The sociological concept of “group”: An empirical test of two models.

Am. J. Sociol. 98, 152–166 (1992).
15. J. Moody, D. R.White, Structural cohesion and embeddedness: A hierarchical concept

of social groups.Am. Sociol. Rev. 68, 1 (2003).
16. C. Stadtfeld, K. Tak�acs, A. V€or€os, The emergence and stability of groups in social net-

works. Soc. Networks 60, 129–145 (2020).
17. K. D. Bailey, Sociological classification and cluster analysis. Qual. Quant. 17, 251–268

(1983).
18. J. R. S. Fonseca, Clustering in the field of social sciences: That is your choice. Int. J. Soc.

Res. Methodol. 16, 403–428 (2013).
19. C. Agostinelli, M. Romanazzi, Local depth. J. Stat. Plan. Inference 141, 817–830

(2011).
20. D. Paindaveine, G. Van Bever, From depth to local depth: A focus on centrality. J. Am.

Stat. Assoc. 108, 1105–1119 (2013).
21. F. Bloch, M. O. Jackson, P. Tebaldi, Centrality measures in networks. https://dx.doi.

org/10.2139/ssrn.2749124 (June 1, 2019).
22. M. Newman,Networks (Oxford University Press, 2018).
23. J. Snow,On theMode of Communication of Cholera (John Churchill, 1855).
24. A. B. Lawson, Hotspot detection and clustering: Ways and means. Environ. Ecol. Stat.

17, 231–245 (2010).
25. A. Ukkonen, “Crowdsourced correlation clustering with relative distance

comparisons” in 2017 IEEE International Conference on Data Mining (ICDM), V.
Raghavan, S. Aluru, G. Karypis, L. Miele, X.Wu, Eds. (IEEE Computer Society, 2017).

26. F. Ros, S. Guillaume, Munec: A mutual neighbor-based clustering algorithm. Inf. Sci.
486, 148–170 (2019).

27. A. Gisbrecht, B. Hammer, Data visualization by nonlinear dimensionality reduction.
Wiley Interdiscip. Rev. DataMin. Knowl. Discov. 5, 51–73 (2015).

28. S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear embed-
ding. Science 290, 2323–2326 (2000).

29. L.McInnes, J. Healy, J.Melville, UMAP:Uniformmanifold approximationandprojection
for dimension reduction. arXiv [Preprint] (2020). https://arxiv.org.arXiv:1802.03426
(Accessed 30December 2021).

30. L.Wasserman, Topological data analysis.Annu. Rev. Stat. Appl. 5, 501–532 (2018).
31. U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007).
32. V. D. Blondel, J. L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communi-

ties in large networks. JSTAT 2008, P10008 (2008).
33. M. Newman, Communities, modules and large-scale structure in networks.Nat. Phys.

8, 25–31 (2012).
34. I. Jolliffe, Principal Component Analysis (Wiley, 2002).
35. I. Borg, P. J. F. Groenen,ModernMultidimensional Scaling (Springer, 2005).
36. A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation.ACMTKDD 1, 1–30 (2007).
37. F. Pedregosa et al., Scikit-learn: Machine learning in Python. JMLR 12, 2825–2830

(2011).
38. I. Dyen, J. B. Kruskal, P. Black, An Indoeuropean classification: A lexicostatistical

experiment. Trans. Am. Philos. Soc. 82, iii-132 (1992).
39. R. D. Gray, Q. D. Atkinson, Language-tree divergence times support the Anatolian

theory of Indo-European origin.Nature 426, 435–439 (2003).
40. T. M. Fruchterman, E. M. Reingold, Graph drawing by force-directed placement.

Softw. Pract. Exper. 21, 1129–1164 (1991).
41. M. Love, R. Irizarray, tissuesGeneExpression, Version 1.0. https://github.com/

genomicsclass/tissuesGeneExpression. Accessed 8 November 2019.
42. M. Muthukrishna et al., Beyond western, educated, industrial, rich, and democratic

(WEIRD) psychology: Measuring and mapping scales of cultural and psychological
distance. Psychol. Sci. 31, 678–701 (2020).

43. R. Inglehart et al., World Values Survey: All Rounds-Country-Pooled Datafile 1981-
2014 (JD Systems Institute, Madrid, 2014).

44. A. V. Bell, P. J. Richerson, R. McElreath, Culture rather than genes provides greater
scope for the evolution of large-scale human prosociality. Proc. Natl. Acad. Sci. U.S.A.
106, 17671–17674 (2009).

45. L. L. Cavalli-Sforza, P. Menozzi, A. Piazza, The History and Geography of Human
Genes (PrincetonUniversity Press, 1994).

46. L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
fAnalysis (JWS, 1990).

47. D. L. Donoho, “High-dimensional data analysis: The curses and blessings of
dimensionality” in American Mathematical Society Conference Math Challenges of
the 21st Century (AMS, 2000).

48. A. N. Gorban, I. Y. Tyukin, Blessing of dimensionality: Mathematical foundations of
the statistical physics of data. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 376,
20170237 (2018).

49. O. Haggstrom, Finite Markov Chains and Algorithmic Applications (Cambridge Uni-
versity Press, 2002).

50. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction (Springer, NewYork, NY, 2009).

51. S. Wright, Evolution and the Genetics of Populations: A Treatise in Four Volumes:
Vol. 4: Variability Within and Among Natural Populations (University of Chicago
Press, 1978).

52. W. Dong, M. Charikar, K. Li, “Efficient K-nearest neighbor graph construction for
generic similarity measures” in Proceedings of the 20th International Conference on
WorldWideWeb, S. Srinivasan et al., Eds. (ACM, 2011), pp. 577–586.

53. T. Cali�nski, J. Harabasz, A dendrite method for cluster analysis. Commun. Stat. Theory
Methods 3, 1–27 (1974).

54. P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl.Math. 20, 53–65 (1987).

10 of 10 j PNAS Berenhaut et al.
https://doi.org/10.1073/pnas.2003634119 A social perspective on perceived distances reveals deep community structure

https://dx.doi.org/10.2139/ssrn.2749124
https://dx.doi.org/10.2139/ssrn.2749124
https://github.com/genomicsclass/tissuesGeneExpression
https://github.com/genomicsclass/tissuesGeneExpression

