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Imaging genetics posits a valuable strategy for elucidating genetic influences on brain

abnormalities in psychiatric disorders. However, association analysis between 2D genetic

data (subject× genetic variable) and 3D first-level functional magnetic resonance imaging

(fMRI) data (subject × voxel × time) has been challenging given the asymmetry in

data dimension. A summary feature needs to be derived for the imaging modality to

compute inter-modality association at subject level. In this work, we propose to use

variability in resting state networks (RSNs) and functional network connectivity (FNC) as

potential features for purpose of association analysis. We conducted a pilot study to

investigate the proposed features in a dataset of 171 healthy controls and 134 patients

with schizophrenia (SZ). We computed variability in RSN and FNC in a group independent

component analysis framework and tested three types of variability metrics, namely

Euclidean distance, Pearson correlation and Kullback-Leibler (KL) divergence. Euclidean

distance and Pearson correlation metrics more effectively discriminated controls from

patients than KL divergence. The group differences observed with variability in RSN and

FNC were highly consistent, indicating patients presenting increased deviation from the

cohort-common pattern of RSN and FNC than controls. The variability in RSN and FNC

showed significant associations with network global efficiency, themore the deviation, the

lower the efficiency. Furthermore, the RSN and FNC variability were found to associate

with individual SZ risk SNPs as well as cumulative polygenic risk score for SZ. Collectively

the current findings provide preliminary evidence for variability in RSN and FNC being

promising imaging features that may find applications as biomarkers and in imaging

genetic association analysis.
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INTRODUCTION

Most psychiatric disorders have been characterized to present moderate to high heritability
in family and twin studies (Kendler and Eaves, 2005). In the past decade, advancement
in high-throughput genetic profiling techniques has enabled further characterization of the
underlying genetic structure. Particularly for the five major psychiatric disorders, schizophrenia
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(SZ), bipolar disorder (BD), major depression, autism and
attention deficit/hyper activity (ADHD), large genome wide
association studies (GWAS) lend support for their polygenic
nature, where single nucleotide polymorphisms (SNPs) were
estimated to explain 17–29% of the variance in liability (Lee et al.,
2013). Among the five disorders, the most well-characterized
is schizophrenia, for which 108 genome-wide significant risk
loci have been identified in a large GWAS of 36,989 cases and
113,075 controls (Ripke et al., 2014). Meanwhile, sample size is
continuing to increase and has started to yield potential risk loci
for other disorders (Sklar, 2012; Sullivan et al., 2013; Anney et al.,
2017).

From the neurobiological perspective, patients with
psychiatric disorders present brain structural and functional
abnormalities, which may underlie the clinical manifestations.
Characteristic abnormalities include extensive gray matter
reductions compared with healthy controls and aberrant
regional activations during various cognitive tasks (Manoach
et al., 2000; Monks et al., 2004; Harris et al., 2006; Green et al.,
2007; Ivleva et al., 2012). Meanwhile, there has been growing
interest in resting state functional network analysis, where
disrupted network coherence (He et al., 2007; Yu et al., 2013; Xu
et al., 2015) and inter-network connectivity have been reported
in several psychiatric disorders, including SZ (Calhoun et al.,
2011; Bassett et al., 2012; Meda et al., 2012; Manoliu et al., 2013;
Rashid et al., 2014) and BD (Calhoun et al., 2011; Yu et al., 2011;
Meda et al., 2012; Rashid et al., 2014). Notably, resting state
networks are suggested to be heritable (Glahn et al., 2010; Fu
et al., 2015). Glahn et al. has reported a heritability of 0.42 for the
default-mode network connectivity. In line with this, aberrant
resting state functions have been noted in people at high risk of
developing psychiatric disorders (Meda et al., 2016).

Thus there is a pressing need to characterize genetic
underpinnings of brain abnormalities in psychiatric disorders
which helps elucidate the biological mechanisms and inspire
treatment therapies. A direct test on individual mutations’
associations with individual brain phenotypes is straightforward,
and has identified genetic loci related to reduced volumes in
putamen and hippocampus (Hibar et al., 2015, 2017). However,
this type of analysis in general suffers from insufficient power
due to the moderate effect sizes of individual genetic variants.
In contrast, multivariate multimodal techniques boost statistical
power by mining genetic/imaging data to capture the interactive
or integrated effect of multiple genetic variants/brain regions and
assess the covariation or association of multiple data modalities,
which is also considered as a type of fusion (Chen et al., 2013b;
Liu and Calhoun, 2014; Vergara et al., 2014; Calhoun and
Sui, 2016). Parallel independent component analysis (pICA) is
a technique designed for this purpose, building upon ICA to
conduct separate multivariate analysis in two data modalities and
then optimizing the inter-modality association (Liu and Calhoun,
2014). It has found wide applications in integrating genetic and
neuroimaging data including gray matter density, gray matter
volume, and task-related activation (Meda et al., 2014; Pearlson
et al., 2015).

While parallel ICA is designed for imaging genetic association
analysis, its application is restricted to second-level functional

magnetic resonance imaging (fMRI) data (i.e., either a time
dimension or a spatial dimension, but not both; Liu et al.,
2009; Meda et al., 2014). It would be desirable to extend the
pICA approach to link genetics to first-level functional data
for direct association optimization, which might better reveal
genetic influence on coherent functional networks. To achieve
data fusion between 2D genetic data (e.g., subject × SNP) and
3D neuroimaging data (e.g., subject× voxel× time), a summary
feature needs to be derived for the imaging modality to associate
with the genetic modality at subject level. Here we propose to
utilize two features including variability in resting state network
(RSN) and variability in functional network connectivity (FNC).
Variability in RSN has been explored by Damoiseaux et al.
(2006) in the context of cross-session reliability. Another study
compared the overall inter-subject variability as measured with
pairwise correlation in early-blinded subjects with that in sighted
subjects to infer differences in cortical reorganization (Boldt et al.,
2014). A more relevant work by Finn et al. has demonstrated that
the functional connectivity profile of a specific subject obtained
from one session is more similar to his/her own functional
connectivity profile than others’ obtained from a different session
of the same condition, lending support for substantial and
reproducible individual variability in connectivity (Finn et al.,
2015). However, neither of these studies sought to quantify the
individual variability at network or overall connectivity level,
which may serve as potential neuroimaging biomarkers.

In the current work, we demonstrate a framework to
estimate the variability in subject-specific RSN and FNC based
on spatial group ICA. Theoretically, group-level components
capture spatial coactivation patterns in brain shared across all
the subjects, each component is an independent brain network.
In this sense, a group-level component can be interpreted
as a cohort-common pattern presenting a functional network
template conserved in all the subjects. Consequently, it is
worthwhile to investigate how much the RSN (i.e., component
in resting state fMRI) and resulting FNC (i.e., cross correlation
among components’ time courses) deviate from the cohort-
common pattern and whether this deviation may serve as a
biomarker and be regulated by genetics. Our results suggest that
variability in RSN and FNC consistently discriminate controls
from patients with SZ and show preliminary SNP associations,
lending support for it being a promising feature in imaging
genetic association analysis.

MATERIALS AND METHODS

Participants
We tested the proposed framework in a total of 305 subjects with
good quality SNP and resting fMRI data aggregated fromCOBRE
and FBIRN studies. Details regarding recruitment and data
collection can be found in our previous publications (Damaraju
et al., 2014; Yu et al., 2015; Aine et al., 2017; Chen et al., in press).
The cohort consisted of 171 controls (123 males, 48 females;
mean age 37.81) and 134 patients with SZ (115 males, 19 females;
mean age 37.76). Informed consent was obtained from each
participant prior to scanning in accordance with the Internal
Review Boards of corresponding institutions. For the FBIRN
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study, 162 volumes, and for the COBRE study, 149 volumes of
resting state scans were collected on 3-Tesla scanners with a TR
of 2 s.

fMRI Data Preprocessing
Data processing was performed using a combination of toolboxes
including AFNI (http://afni.nimh.nih.gov/afni), SPM (http://
www.fil.ion.ucl.ac.uk/spm/software), GIFT (http://mialab.
mrn.org/software/gift), and custom code written in Matlab.
Imaging data were preprocessed using an automated SPM8-
based preprocessing pipeline. Images were realigned using
INRIalign (http://www-sop.inria.fr/epidaure/Collaborations/
IRMf/INRIAlign.html) and slice-time correction was applied
using the middle slice as the reference frame. Data were then
spatially normalized to standard MNI space (http://www.mni.
mcgill.ca/) and resampled to 3 × 3 × 3mm voxels using the
nonlinear registration implemented in the SPM toolbox. Finally,
data were smoothed using 6mm FWHMGaussian kernel.

After initial standard preprocessing, the imaging data
was decomposed into functionally homogeneous cortical and
subcortical regions exhibiting temporally coherent activity using
a high model order (75) group-level spatial ICA. Group
ICA is an extension of ICA model that can be applied
to group data for estimation of a set of common sources
for all subjects (Calhoun et al., 2001; Calhoun and Adali,
2012).

SNP Data Preprocessing
The genotyping and genetic quality control procedures were
same as described in our previous work (Chen et al., in
press), which is briefly summarized here. DNA was extracted
from blood or saliva samples. Illumina Human Omni1-Quad,
Illumina Human Omni5, and Illumina Infinium MEGAEX
+ Psych were used for genotyping. No significant difference
was noted in genotyping call rates between blood and saliva
samples. A standard quality control (QC) (Chen et al., 2013b)
was performed using PLINK (Purcell et al., 2007). Then
imputation was conducted with SHAPEIT for pre-phasing
(Delaneau et al., 2012), IMPUTE2 for imputation (Marchini
and Howie, 2010), and the 1,000 Genomes data as the
reference panel (Altshuler et al., 2012). Only markers with
high imputation qualities (INFO score > 0.95) were retained.
Finally linkage disequilibrium (LD) pruning (r2 > 0.9) was
applied to yield 977,242 SNPs for which population structure
was corrected using principal component analysis (Price et al.,
2006).

Variability in RSN and FNC
For each spatial brain component and each subject, we computed
the Euclidean distance, Pearson correlation and Kullback-Leibler
(KL) divergence between the subject-level component and the
group-level component to measure variability in RSN. Figure 1
presents a flowchart of the proposed framework for computing
variability. The resting fMRI data is decomposed with spatial
group ICA, before which a cohort-common group mask is first
generated using the following method: (1) For each subject,
we obtain the subject-level mask by locating the voxels that

have activations greater than the mean activation across all
the voxels; (2) We obtain the group mask as the intersection
of all the subject-level masks. Only voxels in the group
mask will be included in the subsequent group ICA analysis.
The masked 2D subject-level data are concatenated along the
time dimension for N subjects. Group-level components are
estimated from the aggregated data, denoted as Sagg. Following
the component estimation, subject-level components and time
courses (Si and Ai for ith subject) are recovered from Sagg
through back reconstruction. Then for each subject, variability
metric is computed between Si and Sagg to quantify the
variability of his/her function networks from the cohort-common
pattern. The resulting variability matrix is denoted as P. For
exploratory purpose, we tested three types of commonly used
metric of difference, including Euclidean distance (ρED), Pearson
correlation (ρPC), and KL divergence (ρKL), which enabled us
to examine both linear and nonlinear relationships of similarity
between the two patterns, as listed in Equations (1–3). The
subscript i and j represent the subject and component index,
respectively. K denotes the number of voxels and M denotes
the number of bins for the histogram Q. Note that the subject-
level variability in RSN is computed between subject-level
component and group-level component that both span the whole
group mask. This avoids underestimating the variability for
someone who has an RSN pattern greatly different from the
cohort-common pattern. In the current work, 75 components
were extracted from group ICA following our previous work
(Yu et al., 2011). For the computation of KL divergence,
the number of bins was set to 100. The resulting variability
features were evaluated for case vs. control differences while
controlling for age, sex and dummy-coded site covariates,
considering that various scanning protocols were used in data
collection.

We also evaluated the variability in FNC as a potential imaging
feature. The connectivity matrix C was constructed as the cross-
correlations among components’ time courses, as shown in
Equation (4) where i denotes subject index, j1 and j2 denote
component indices. Then variability metric can be computed
between the individual connectivity matrix Ci and the mean
connectivity across all the subjects (C). Equation (5) shows an
example for the computation of Euclidean distance, where D
stands for the number of connections. Specifically in the current
work, 50 of 75 components were selected for FNC analysis
following a common practice that (1) the components were
characterized as not related to physiological signal, movement,
or imaging artifacts; and (2) the components fell into the major
cortical networks commonly used to construct FNC (Yu et al.,
2011, 2015; Allen et al., 2014). The time courses of these
50 components were detrended, motion corrected, despiked
and bandpass filtered at 0.01–0.08Hz. An FNC matrix was
constructed for each subject based on the correlations among
time courses of these 50 components. Then the variability feature
was computed based on normalized FNC (z-score) and evaluated
for case vs. control difference while controlling for age, sex
and dummy-coded site covariates. Considering that there were
more controls than patients in this cohort, which might bias
the results given that the mean FNC was employed as the
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FIGURE 1 | Graphic presentation of the proposed similarity matrix estimation.

reference pattern in this preliminary analysis, we repeated the
above analysis using a balanced subcohort of 134 patients and
134 controls.
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Variability vs. Global Efficiency
For a physiological interpretation, we assessed the relationship
between proposed features of variability in RSN and FNC with
FNC global efficiency. Global efficiency is known as measuring
the overall efficiency of parallel information transfer in the
network, which is defined as the inverse of the harmonic
mean of the minimum path length between each pair of nodes
(Latora and Marchiori, 2001). Specifically in this work, the
global efficiency was computed using weighted and undirected
connectivitymatrix following (Rubinov and Sporns, 2010), where
absolute values of time course correlations were used to capture
the connection strength. Finally the average of the nodal level
global efficiencies was computed to reflect the holistic network
efficiency. This global efficiency measure was then evaluated for
group difference as well as correlations with variability in RSN
and FNC.

Genetic Association With Variability in RSN
and FNC
The group-discriminating variability features were further
investigated for potential genetic associations. Two sets of SNPs
were selected for investigation, including: (a) a set of 5,907
SZ risk SNPs that showed a group discrimination p-value <

1×10−4 in the largest psychiatric genomic consortium (PGC) SZ
GWAS, denoted as PGC set; and (b) a set of 418 SNPs residing
in the BDNF and CREB family genes known to be involved
in schizophrenia and neural development (Bramham and
Messaoudi, 2005; Carlezon et al., 2005), denoted as CREB-BDNF
set. For each SNP set, we first evaluated the associations between
the identified group-discriminating RSN/FNC variability features
and the individual SNPs using regression, where the variability in
RSN/FNC was modeled as a function of a single SNP. Bonferroni
correction was used to guard against false positives. In addition,
we computed the polygenic risk score (PRS) for SZ of the
whole set of SNPs, which was a linearly weighted sum of the
genotype profiles with weights derived from the odds ratios of
the PGC SZ GWAS (Purcell et al., 2009; Ripke et al., 2014).
The group-discriminating variability features were then assessed
for associations with PRS for SZ using regression where the
variability feature was modeled as a function of PRS for SZ.

Data and Code Availability
Data analyzed in this study were aggregated from COBRE and
FBIRN studies. The COBRE data have been deposited through
COINS (https://coins.mrn.org). Availability of the FBIRN data
is upon request from the principal investigator: Dr. Steven G.
Potkin. We plan to release software implementing the approach
within the Fusion ICA Toolbox (FIT: http://mialab.mrn.org/
software/fit).

RESULTS

Variability in RSN
The variability in RSNmeasured with Euclidean distance showed
significant group differences (after Bonferroni correction) in
10 out of 75 components, majorly involved in visual and
sensorimotor functions (IC12: inferior occipital gyrus; IC16:

Frontiers in Neuroscience | www.frontiersin.org 4 March 2018 | Volume 12 | Article 114

https://coins.mrn.org
http://mialab.mrn.org/software/fit
http://mialab.mrn.org/software/fit
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. Genetics and Brain Variability in Schizophrenia

right fusiform gyrus; IC30: right middle temporal gyrus; IC35:
left cuneus; IC39: right precentral gyrus; IC49: right cuneus;
IC55: parahippocampal gyrus; IC58: postcentral gyrus; IC70: left
thalamus and IC74: left lingual gyrus), as show in Figure 2.
The directions of effects were consistent across these 10
components, with the patients presenting more deviation from
the cohort-common networks compared with the controls.
Variabilities in these 10 components all significantly and
negatively correlated with global efficiency (mean correlation:
−0.19, SD: 0.06). After controlling for diagnosis, 8 out of these
10 components still showed significant correlations with global
efficiency. Meanwhile, patients presented significantly lower
global efficiency (p = 9.89 × 10−6). For one of the group-
discriminating components, IC55, a significant association
(t = −4.99, p = 8.18 × 10−7, percentage of variance
explained= 7.72%, passing Bonferroni correction) was observed
between its variability measured with Euclidean distance and
one SZ risk SNP, rs11926768 in TRANK1. Figure 3 shows the
scatterplot of imaging genetic association between rs11926768
and IC55. No significant association was observed with CREB-
BDNF SNPs or the PRS for SZ of either set.

When Pearson correlation was used to measure spatial
variability, the same 10 components were noted to show
significant group differences, which was not surprising given
that features computed using Euclidean distance and Pearson
correlation were highly negatively correlated (|r| > 0.99). The
patient group presented lower correlations between the subject-
level and group-level components, indicating more deviation
from the cohort-common patterns. When measured with KL
divergence (number of bins = 100), the variability in one of the
cognitive control components (IC 26: Inferior Parietal Lobule)
showed a significant group difference with patients showing

higher divergence. For variability measured with either Pearson
correlation or KL-divergence, no significant genetic association
was noted.

Variability in FNC
For the visualization of FNC, The 50 selected RSNs were grouped
into 6 functional domains, i.e., auditory (AUD), sensorimotor
(SM), visual (VIS), cognitive control (CC), default-mode (DM)
and cerebellum (CB), as show in Figure 4A. Figure 4B presents

FIGURE 3 | Scatterplot of rs11926768 and variability in IC55 measured with

Euclidean distance.

FIGURE 2 | Spatial maps and boxplots of components showing significant group differences in RSN variability measured with Euclidean Distance.
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FIGURE 4 | (A) Composite spatial maps of the resting-state networks. (B) Mean FNC maps of the control (left) and patient (right) groups.

the mean FNC of the patient and control group, respectively.
Significant group differences were noted when the variability in
FNC was measured with Euclidean distance (p = 2.80 × 10−11)
or Pearson correlation (p = 1.96 × 10−11). Given that these two
features were again highly anti-correlated (r = −0.99), Figure 5
simply shows the boxplot of FNC variability measured with
Euclidean distance for a demonstration. This group difference
remained to be observed in the balanced subcohort of 134
patients and 134 controls, showing the same direction of change
(p = 1.37 × 10−8 for Euclidean distance and p = 1.29 ×

10−8 for Pearson correlation). The FNC variability significantly
correlated with global efficiency: r = −0.28, p = 9.01 × 10−7

(Euclidean distance) and r = 0.28, p = 8.15 × 10−7 (Pearson
Correlation), which remained to be significant after covarying
out diagnosis (r = −0.21, p = 3.11 × 10−4 and r = 0.21,
p = 2.97 × 10−4). Both FNC variabilities showed significant
associations with PRS of the CREB-BDNF SNPs: t = 2.73,
p = 6.64 × 10−3, percentage of variance explained = 2.41%
(Euclidean distance) and t =−2.78, p= 5.83× 10−3, percentage
of variance explained = 2.48% (Pearson correlation). Figure 6
shows the scatterplot between PRS and variability in Euclidean
distance for a demonstration. It can be seen that the higher the

PRS for SZ, the larger the distance to the cohort-common pattern.
Meanwhile, no significant association was noted with PRS of the
PGC set or with individual candidate SNPs of either the PGC or
the CREB-BDNF set.

DISCUSSION

We demonstrate that variabilities in RSN and FNC may serve
as meaningful brain-based phenotypes in imaging genetic
association analysis. We proposed to compute subject-specific
variabilities in a group ICA-based framework and tested
three different variability metrics. The results indicate that
Euclidean distance and Pearson correlation are apparently
more sensitive than KL divergence in terms of detecting group
difference related to SZ. The identified group differences
consistently point to SZ patients presenting increased
deviation from the cohort-common network and connectivity
pattern. Furthermore, the RSN and FNC variability were
found to associate with individual SZ risk SNPs as well as
cumulative polygenic risk score for SZ, suggesting a genetic
regulation.
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FIGURE 5 | Boxplot of variability in FNC measured with Euclidean distance.

FIGURE 6 | Scatterplot of PRS of CREB-BDNF SNPs and FNC variability

measured with Euclidean distance.

The identified 10 RSNs where variability measured with
Euclidean distance or Pearson correlation showed significant
group differences are mostly involved in visual and sensorimotor
functions. Previous studies reported impaired functional
activities in both visual and sensorimotor regions in SZ
(Schröder et al., 1995; Butler et al., 2001, 2005). For instance,
IC49 that showed the most significant group difference
(Euclidean distance: p-value= 3.66× 10−8; Pearson correlation:
p-value = 3.39 × 10−8) highlighted the right cuneus region.
This visual component has been found to show hyperactivation
in SZ patients while performing facial emotion discrimination
tasks (Seiferth et al., 2009; Habel et al., 2010), suggesting it
plays an important role in dysfunctional emotion recognition

in SZ patients. IC55 is one significant component that did
not fall into visual or sensorimotor domain, highlighting the
parahippocampal gyrus and thalamus. These regions have also
been documented to show functional anomalies in SZ patients.
Specifically, abnormal activity in parahippocampal gyrus has
shown association with auditory hallucination in SZ (Silbersweig
et al., 1995; Diederen et al., 2010; Escartí et al., 2010).

We also tested how variability in FNC differed between
patients with SZ and healthy controls. The results concurred with
the observations for variability in RSN, suggesting patients’ FNC
patterns showing larger distance and lower correlation to the
mean FNC across the cohort. In the current analysis, we simply
used themean FNC as the cohort-common template for assessing
subject-level variability. The fact that this may not be the ideal
template does not hinder it being revealed that patients presented
FNC patterns more distant from the cohort-common pattern
than controls. The additional analysis using the subcohort of
balanced patients and controls alleviated the possibility that the
findings being biased due to the controls contributing more to
the mean FNC. There have been extensive studies on FNC in the
context of SZ, which has been documented for dysconnectivity
in distributed brain regions including default-mode (Whitfield-
Gabrieli and Ford, 2012), frontotemporal (Lawrie et al., 2002),
and frontoparietal (Deserno et al., 2012) networks. While both
hyper- and hypo-connectivity have been noted for individual
networks in SZ, they appear to contribute in the same direction
to the holistic variability feature, resulting in higher variability.
Collectively, the analysis of variabilities in RSN and FNC suggest
that the brains of patients with SZ deviate from the cohort-
common pattern in both spatial and temporal domain.

The physiological interpretation of the variability features
remains to be elucidated. For the variability in FNC, it
likely captures the holistic network deviation from a “normal
construction” in the time domain. We speculate this might
underlie functional integration. To test this hypothesis, we
assessed the correlation between variability in FNC and global
efficiency, the latter suggested as a superior measure of
integration (Achard and Bullmore, 2007; Rubinov and Sporns,
2010). As expected, we observed a significant negative correlation
between variability in FNC and global efficiency, which indicated
that more deviation from the mean FNC associated with
lower global efficiency. This observation not only provides a
physiological interpretation of part of the variance captured
by the variability in FNC, it also lends support for the mean
FNC to some extent reflecting a “normal construction” which
likely relates to optimal global efficiency. The variability in RSN
depicts the deviation of network’s spatial construction from
the cohort-common pattern. This feature also correlated with
global efficiency, though less significantly than variability in
FNC, which is not surprising given that global efficiency is
largely a measure of FNC. Considering that variability in RSN
indicates shift of network centers, we speculate this feature may
directly relate to wiring cost, i.e., the anatomical distance between
functional nodes (Alexander-Bloch et al., 2013), which awaits
further verification.

Some preliminary genetic associations have been noted with
the proposed variability features. The variability in IC55 showed
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a significant correlation with rs11926768 residing in TRANK1. As
shown in Figure 2, IC55 highlights the parahippocampal gyrus
and thalamus. TRANK1 has been identified as one of the top risk
genes for BD in a large GWAS (Chen et al., 2013a). Particularly,
valproic acid, a treatment of mania, has been demonstrated to
increase TRANK1 mRNA expression, suggesting a relevance of
this gene to emotional instability (Chen et al., 2013a). Meanwhile,
TRANK1 also confers SZ risk in PGC SZ GWAS (Ripke et al.,
2014) and mood disturbances are common in SZ (Craddock
et al., 2009). Together, these observations indicate a possibility
of TRANK1 being a common risk gene for SZ and BD and these
two disorders partially converging onmood dimension (Ruderfer
et al., 2014), for which some preliminary evidence has been
provided (Goes et al., 2012). Echoing the genetic interpretation,
the brain regions highlighted by IC55, parahippocampal gyrus
and thalamus, are well characterized for their role in mood and
emotion (Dasari et al., 1999; Strakowski et al., 2005; Drevets
et al., 2008), lending support for the imaging genetic association
in the current work. Another imaging genetic association was
observed between PRS for SZ of CREB-BDNF SNPs and the
variability in FNC. BDNF, regulated by CREB (Lonze and Ginty,
2002; Carlezon et al., 2005), plays an important role in synaptic
plasticity (Schinder and Poo, 2000; Bramham and Messaoudi,
2005) which relates to functional connectivity (Sporns et al.,
2000, 2005; Bullmore and Sporns, 2009; Van Dijk et al., 2010).
Thus the observed association indicates a portion of SZ risk may
disrupt synaptic plasticity which further leads to FNC deficits
in SZ. Both imaging genetic associations warrant independent
replications.

In summary, we propose to investigate subject-level variability
from a cohort-common pattern in RSN and FNC as potential
features for fusion of genetic and first-level resting fMRI data.We
demonstrate that the proposed features have clinical relevance,
revealing that patients with SZ present larger deviations
from the cohort-common pattern in both spatial (RSN) and
temporal (FNC) domain, and these variabilities show relations
to global efficiency of brain connectivity. We also provide
some preliminary evidence for genetic associations with the

proposed features, lending support for their potential application
to imaging genetic association.While the current findings answer
a few top questions about the proposed model, one limitation
lies in that we simply used a cohort-common pattern as the
reference to compute the subject-specific variability. Our future
work involves a comprehensive investigation on other potential
references. We also expect to characterize the heritability of
the variability features as well as complete the physiological
interpretation before implementing the feature into the current
parallel ICA framework.
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