
PROCEEDINGS Open Access

Preferential regulation of stably expressed genes
in the human genome suggests a widespread
expression buffering role of microRNAs
Zhen Yang1, Dong Dong2, Zhaolei Zhang3, M James C Crabbe4, Li Wang5, Yang Zhong1,6*

From Asia Pacific Bioinformatics Network (APBioNet) Eleventh International Conference on Bioinformatics
(InCoB2012)
Bangkok, Thailand. 3-5 October 2012

Abstract

Background: MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate the target gene expression at
post-transcriptional level. They are widely involved in biological processes, such as embryonic development, cell
division, differentiation, and apoptosis. Evidence suggests that miRNAs can constrain the variation of their target to
buffer the fluctuation of expression. However, whether this effect can act on the genome-wide expression remains
controversial.

Results: In this study, we comprehensively explored the stably expressed genes (SE genes) and fluctuant genes
(FL genes) in the human genome by a meta-analysis of large scale microarray data. We found that these genes
have distinct function distributions. miRNA targets are shown to be significantly enriched in SE genes by using
propensity analysis of miRNA regulation, supporting the hypothesis that miRNAs can buffer whole genome
expression fluctuation. The expression-buffering effect of miRNA is independent of the target site number within
the 3’-untranslated region. In addition, we found that gene expression fluctuation is positively correlated with the
number of transcription factor binding sites in the promoter region, which suggests that coordination between
transcription factors and miRNAs leads to balanced responses to external perturbations.

Conclusions: Our study confirmed that the genetic buffering roles of miRNAs can act on genome expression
fluctuation and provides insights into how miRNAs and transcription factors coordinate to cope with external
perturbation.

Background
One of the most remarkable features of biological systems
is their inherent robustness against external perturbations.
Living systems are continuously confronted with a variety
of outside stimuli, such as nutrition, toxins, temperature
and humidity. These external inputs must be properly pro-
cessed to reach a relative self-stability and stability in the
output. To achieve this, there must be certain buffering
mechanisms to compensate for the genetic or environ-
mental perturbation. For example, gene expression in the
cell is rigorously regulated in response to external signals.

These genes should be constrained or “canalized” in their
expression to an appropriate level. On the other hand,
genes have different expression patterns under various
biological and environmental conditions; they present dif-
ferent degrees of sensitivity to external perturbation. The
expression of many genes is considered robust as they are
relatively stable upon perturbations. How this is achieved,
i.e. the genetic buffering mechanisms that mediate the sta-
bility and robustness are largely unknown. It is suggested
that negative feedback loops within regulatory networks
serve to buffer expression variation and reduce expression
noise in the cell [1]. Also, specific genes could play a role
in canalizing gene expression, such as the zygotic gap
genes including kruppel and knirps in Drosophila [2].
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However, it is still largely unclear whether there are any
canalizing/buffering mechanisms acting on the genome
wide expression.
MicroRNAs (miRNAs) are endogenously expressed

small (typically 18-23 nt in length) noncoding RNAs that
regulate gene expression at the post-transcriptional level
[3,4]. By binding to the 3’-untranslated regions (3’-UTR)
of target mRNAs, miRNA can block the expression of
their target genes through translational repression or
mRNA degradation [5]. miRNA-mediated gene expression
regulation is widespread in eukaryotes. A single miRNA
can regulate up to several hundred genes, and it is specu-
lated that more than one-third of the genes in the human
genome are miRNA targets [6]. Considering the preva-
lence of miRNA mediated gene expression regulation in
mammalian cells, it is fascinating to inquire whether these
small ncRNAs can serve as genetic factors that buffer
whole genome expression. This hypothesis has been sup-
ported in several studies. For example, miR-17 can func-
tion in an incoherent feed-forward loop to buffer the
translation of E2F1, which is activated by c-Myc [7].
Another evolutionarily conserved miRNA, miR-7, could
act in some interlocking feedback and feed-forward loops
to confer network stability against perturbation. The miR-
7 mediated network is essential for buffering the gene
expression variation resulting from temperature fluctua-
tion in Drosophila [8].
In addition, some studies have also used bioinformatics

tools to investigate the influence of miRNAs on gene
expression fluctuation. Cui et al. suggested that miRNAs
could decrease the cross-species expression divergence
and constrain the evolutionary expression variation [9].
Another study indicated that miRNA targets are enriched
in duplicated genes, which could be a mechanism for buf-
fering the gene expression variation resulting from whole
genome duplication [10]. However, it was suggested that
on the population level, miRNAs could increase gene
expression variability [11], and Wu et al., indicated that
miRNA targets are enriched in environmental chemical
regulated genes, which have a more variable expressed
pattern than others [12]. This controversy likely results
from the scales used in different studies and the data sets
used, which indicated that a systematic study of this issue
is required.
We therefore explored the stably expressed genes (SE

genes) and fluctuant genes (FL genes) by comprehensive
investigation of mRNA expression profiling data under
various environmental conditions. We found that these
two groups of genes have a very distinct function distribu-
tion. By evaluation of the propensity of miRNA regulation,
we found that miRNA targets are significantly enriched
among SE genes. This effect is independent of the number
of regulatory mRNAs but is relevant to their 3’-UTR
length. These observations indicated that miRNAs can

play a genetic buffering role to confront genome wide
expression fluctuation.

Results
Functional enrichment of SE and FL genes
To inspect the influence of miRNAs on gene expression
fluctuation, we first conducted a comprehensive analysis
of microarray data to retrieve the SE genes and FL
genes. We collected the expression profiles under var-
ious environmental conditions based on the HGU133-
plus2.0 platform. To minimize variation caused by
different experimental platform, we only investigated
expression data generated from this platform. For each
gene, a fluctuant score (FL score) was calculated by
meta-analysis to quantify the expression sensitivity in
response to environmental perturbations. The top and
bottom 5% of genes in the list were defined as SE genes
and FL genes respectively. To evaluate the validity of
this categorization, we performed Gene Ontology (GO)
enrichment analysis on these genes [13]. From the resul-
tant GO graph, we observed a distinct function distribu-
tion for these two groups of genes (see Additional File 1
and Additional File 2). Specifically, for “molecular func-
tion”, the SE genes were enriched in terms of some
basic activities, such as RNA binding, protein binding,
NADH dehydrogenase activity, constituent of the ribo-
some etc, whereas FL genes are involved in environmen-
tal factor response, such as receptor binding, cytokine
activity, growth factor receptor binding, peptide hor-
mone binding and dopamine binding. For “biological
processes”, the SE genes were enriched in translation,
gene expression, metabolic processes, and biosynthetic
processes, whereas FL genes were enriched in signaling
pathways, defence response, regulation of immune sys-
tem process and mediation by a chemical signal etc.
Similar results were also obtained when the top and bot-
tom 10% of genes were defined as SE genes and FL
genes. This suggests that our classification of SR and FL
genes are biologically meaningful and these genes
occupy distinct positions in the cell.

miRNA targets are preferentially enriched in SE genes
We evaluated the propensity of miRNA regulation based
on the SE gene and FL gene classification scheme. The
predicted targets of human miRNAs were retrieved from
TargetScan [6], PicTar [14], PITA [15] and miRanda
[16,17], which to our knowledge are regarded in the com-
munity as having higher prediction accuracy. A more
stringent prediction result derived from intersection of
TargetScan and PicTar provided by the miRGen database
was also used [18]. In addition, another set of experimen-
tally validated miRNA targets integrated from miRTarBase
[19], miRrecords [20], miRWalk [21] and miR2Disease
[22] was also included in this analysis. Based on these data

Yang et al. BMC Genomics 2012, 13(Suppl 7):S14
http://www.biomedcentral.com/1471-2164/13/S7/S14

Page 2 of 10



sets, we observed that miRNA targets were significantly
enriched in SE genes. As shown in Figure 1A, miRNA tar-
gets comprised 42.5% of SE genes, but only 28% of FL
genes as predicted by PicTar (Fisher exact test p-value =
5.8e-07). We observed similar results when using the data
sets from other algorithms and experimentally validated
miRNA targets (Figure 1B-F). As a control, we randomly
selected the same number of genes from the list to analyze
this trend, no obvious propensity of miRNA regulation
was found in the control data sets (see Additional File 3).
The propensity of miRNA regulation was also observed

when we selected the top and bottom 10% of the genes as
SE genes and FL genes respectively (see Additional File 4).
Furthermore, to exclude the interference of datasets from
cancer tissue or cell lines, we selected 69 microarray data-
sets that were derived only from normal tissues to screen
the SE genes and FL genes. The propensity analysis of
miRNA regulation gave similar results (see Additional
File 5).
To avoid potential bias derived from sampling, we

next divided the total genes into two groups and calcu-
lated the average FL score in each group. The first

Figure 1 miRNA targets are enriched among SE genes. This figure shows the number of miRNA targets and non-miRNA targets among SE
genes and FL genes (A) predicted by PicTar, (B) predicted by TargetScan, (C) predicted by both PicTar and TargetScan (intersections), (D)
predicted by PITA, (E) predicted by miRanda and (F) by experimentally validation. The top and bottom 5% of the gene were defined as SE genes
and FL genes respectively.
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group contained all the predicted miRNA target genes
whereas the second group contained the other genes.
We found that the expression fluctuation of miRNA tar-
get genes was significantly lower than that of the non-
miRNA-target genes for the four data sets (Table 1). For
example with PicTar, the average FL score of miRNA
target genes was 5154.0, significantly lower than the
non-miRNA targets (average FL score = 5717.3,
Wilcoxon rank sum test, p-value: 3.53e-58). For a more
detailed analysis, we subgrouped the total genes accord-
ing to their FL scores, and calculated the average FL
score and miRNA target proportion in each group. As
shown in Figure 2, there was a negative correlation
between expression fluctuation and miRNA target pro-
portion, and miRNA target proportion declined dramati-
cally with increasing FL score. Taken together, these
results indicated that miRNA target genes are signifi-
cantly enriched in SE genes, which suggests that miR-
NAs have a negative effect on whole genome expression
fluctuation.

Gene expression fluctuation buffering is independent of
the number of regulatory miRNAs
Several studies have demonstrated that a single miRNA
can regulate hundreds of mRNAs and that a single
mRNA can be regulated by multiple miRNAs. This com-
plex interaction makes the synergistic effect of miRNA
regulation in biological networks and pathways possible
[23,24]. The synergistic effect of different miRNAs on the
expression level of a single gene has been reported [25].
However, whether this effect exists on the genome-wide
level is largely unknown. We therefore analyzed the cor-
relation between number of regulatory miRNAs in the 3’-
UTR and gene expression fluctuation. In the following
analysis, we only use the predicted miRNA targets from
PicTar, TargetScan and PITA in that too large or too
small data sets may introduce interference. Predicted
miRNA target genes were subgrouped according to the
number of regulatory miRNAs within 3’-UTR and then
the average FL score in each group was calculated. We
did not observe any significant correlation between the
number of regulatory miRNAs and the expression

fluctuation (see Additional File 6). This result is some-
what in disagreement with the previously reported posi-
tive correlation between gene expression variability and
miRNA seed number [11]. To account for such disagree-
ment, we propose that following explanation. On one
hand, a gene that is regulated by multiple microRNAs
may be an indication of its functional importance, which
requires complex post-transcriptional control by miR-
NAs. Such functional importance suggests that the
expression of such genes are tightly controlled and has
less variations. On the other hand, such sophisticated
regulation by multiple miRNAs may render it prone to
fluctuations and accumulation of noise. We believe that
these two factors may be both in play for the majority of
the miRNA target genes, and for any given gene it is
uncertain which factor is more dominant. As a result, we
do not expect any straightforward and overwhelming
correlation between the gene expression fluctuation level
and the number of miRNA seeds.

Gene expression fluctuation and 3’-UTR length
Most of the miRNA target sites are located in the 3’-UTR
of mRNAs, whereas the lengths of 3’-UTR of protein cod-
ing genes vary substantially, and it has been shown that
miRNA regulation has an effect on 3’-UTR evolution. It is
also known that genes with different 3’-UTR lengths have
distinct expression patterns [26,27]. Along this line, we
performed a correlation analysis between 3’-UTR length
and gene expression fluctuation. Predicted miRNA targets
were subgrouped by length in 300 nt intervals and the
average FL score within each group was calculated. As
shown in Figure 3, a positive correlation between expres-
sion fluctuation and 3’-UTR length was observed. The
average FL score increased with the 3’-UTR length, for
example among the PicTar prediction results (Figure 3A),
r = 0.85, p value = 1.69e-05. Similar results were obtained
when using miRNA targets predicted by TargetScan
(Figure 3B) and PITA (Figure 3C). This result was con-
firmed when we directly compared the 3’-UTR length of
miRNA targets in both SE genes and FL genes. We found
that the 3’-UTR length of miRNA targets in SE genes was
shorter as compared to that of the FL genes (Figure 4A),
which suggested that miRNA targets with longer 3’-UTR
length were more likely to have higher expression fluctua-
tion, thus other confounding factors may interfere with
the gene expression.
To investigate whether the expression intensity of miR-

NAs have an effect on target expression fluctuation, we
obtained the miRNA expression data from micorRNA.org
database [17] and calculated the average expression level
in 31 normal human tissues. We compared the average
expression intensity of miRNAs that regulate SE genes
and FL genes. We did not find any significant difference
between these groups (Figure 4B), indicating that miRNA

Table 1 Average FL score and standard deviations of
miRNA targets and non-miRNA targets

miRNA targets Non-miRNA targets p-value

PicTar 5154.08 ± 1867.46 5717.35 ± 1891.43 3.53E-58

TargetScan 5150.78 ± 1899.46 5707.21 ± 1873.56 8.62E-53

P & T Intersection 5103.05 ± 1881.42 5654.68 ± 1887.80 6.68E-46

PITA 5191.96 ± 1919.22 5839.51 ± 1824.66 9.83E-74

miRanda 5415.45 ± 1913.18 5752.54 ± 1847.57 6.63E-17

Validated 5203.18 ± 1890.85 5576.93 ± 1897.61 4.86E-18

Average FL score of miRNA targets is significantly lower than that of non-
miRNA targets, the p-value was drawn from Wilcoxon rank sum test.
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expression level is not a decisive factor for target expres-
sion fluctuation.

Discussion
Human genes have different expression patterns and
sensitivity in response to external environment perturba-
tions, thus the global analysis of miRNAs on whole gen-
ome expression has drawn much attention recently. In
this study, we conducted a large scale meta-analysis to
explore the genes with different degrees of expression
fluctuations. The Gene Ontology enrichment analysis
revealed that the stably expressed genes and fluctuant
genes have distinct functional categories. Stably
expressed genes are mainly involved in basic and essen-
tial biological processes and the fluctuant genes are
mainly involved in processes in response to external sig-
nals. We found that miRNA targets were significantly
enriched in stably expressed genes relative to fluctuant
genes, suggesting that miRNAs act on the genome-wide
expression to reduce their fluctuation. In addition, we
found that the gene expression buffering effect was
independent of the number of miRNA target sites
within the 3’-UTR. However, expression fluctuation was
correlated with the 3’-UTR length; and this could result

from alternative polyadenylation signals or cis-acting
elements other than miRNA binding [28,29]. To explore
the miRNAs that play an important role in gene expres-
sion buffering, we counted the number of targets for each
miRNA in both SE genes and FL genes and investigated
whether the targets are more enriched or specific in SE
genes or FL genes. According to their preference of regu-
lation, miRNAs were classified as SE gene-related miRNAs
(SE-miRNA) or FL gene-related miRNAs (FL-miRNA)
(see Additional file 7). Interestedly, we found that the
number of SE-miRNAs is greater than that of FL genes,
which is consistent with the previous observation.
Our work provides some important insights into the

functions of miRNAs. MiRNAs have been postulated to
play a dual role in regulating gene expression, i.e. to regu-
late the mean of the expression output and to modulate
the expression variation [30-32]. On one hand, miRNAs
can regulate the expression level of critical genes during
animal development, which make them indispensable for
the survival and normal growth of the cell, and thus evolu-
tionarily conserved [33-37]. On the other hand, many
miRNAs are believed to preferentially regulate ubiqui-
tously-expressed genes other than tissue-specific genes
[38], and in most cases they only have moderate effect on

Figure 2 Proportion of miRNA target among genes with different average FL scores. (A) miRNA targets predicted by PicTar among genes
with different FL scores, Pearson correlation coefficient r = -0.94, p value = 1.91e-87; (B) miRNA targets predicted by TargetScan among genes with
different FL scores, Pearson correlation coefficient r = -0.96, p value = 1.05e-104; (B) miRNA targets predicted PicTar and TargetScan among genes
with different FL scores, Pearson correlation coefficient r = -0.95, p value = 5.73e-94; (D) miRNA targets predicted PITA among genes with different
FL scores, Pearson correlation coefficient r = -0.96, p value = 7.06e-106. (E) miRNA targets predicted miRanda among genes with different FL scores,
Pearson correlation coefficient r = -0.97, p value = 8.25e-117. (F) experimentally validated miRNA targets among genes with different FL scores,
Pearson correlation coefficient r = -0.94, p value = 5.30e-90.
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Figure 3 Correlation between gene expression fluctuation and 3’-UTR length. Positive correlation between expression fluctuation and 3’-
UTR length was observed. (A) average FL score and 3’-UTR length from PicTar predicted miRNA targets, Pearson correlation coefficient, r = 0.85,
p value: 1.69e-05. (B) average FL score and 3’-UTR length from TargetScan predicted miRNA targets, Pearson correlation coefficient, r = 0.89, p
value: 2.01e-06. (C) average FL score and 3’-UTR length from PITA predicted miRNA targets, Pearson correlation coefficient, r = 0.86, p value:
7.31e-06.
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the mean expression level of the targets as their primary
function is to minimize the expression fluctuation in dif-
ferent tissues and in different conditions [39].
As a part of the expression regulatory network, miR-

NAs are suggested to be involved in mechanisms such
as feedback loops and feed-forward loops. Within these
mechanisms, miRNAs can cooperate with transcription
factors to balance the outputs of their target [40,41].
The expression level of transcription factors are known
to be stochastic, which could induce very high level of
noise in the regulatory network, and could be detrimen-
tal to the cell. The expression buffering role of miRNAs
could beneficial to the organism to minimize such noise.
Motivated by this hypothesis, we obtained the transcrip-

tion factor binding sites (TFBS) that were previously iden-
tified by Xie et al., [42] and the promoter sequences from
UCSC genome browser [43]. As shown in Figure 5, we
found a positive correlation between the number of TFBS
and average FL scores, which indicated that TFs could
contribute to the regulatory complexity. This result is also
consistent with the observation that miRNAs preferentially
regulate genes with high transcriptional regulation com-
plexity [44]. These observations suggest that the coordina-
tion of TFs and miRNAs in complex networks lead to the
internal stability in gene expression of the cell.

Conclusions
It was hypothesized previously that miRNA mediated
regulation can confer expression stability and robustness
of their target genes. In this paper, our systematic study
provided evidence that miRNAs can buffer expression

fluctuation of many human genes. Interestingly we
found such effect to be independent from the number
of miRNA target sites per gene. We further show evi-
dence that coordination between miRNAs and transcrip-
tion factors could result in the stability of transcriptional
regulatory networks.

Methods
Data collection and preprocessing
For identification of the SE genes and FL genes in human
genome, firstly we collected gene expression data sets
based on the standard and widely-used Affymetrix
HGU133plus2.0 platform from the Gene Expression
Omnibus database [45]. We collected expression profiles
that consist of samples under a variety of environmental
factors, including hypoxia, hyperthermia, smoking, alco-
hol, medicine, strong magnetic field, metal ion, small-
sized compounds, chemotherapy, UV, etc. Only data sets
with more than six arrays were retained. Finally, a total
of 149 data sets were obtained. These data sets were clas-
sified as from normal tissues, cancer tissue or cell lines
and other disease (see Additional File 8). For each data
set, the expression values were logarithmically trans-
formed (base 2) if it was above 0, otherwise turned to 0.
Only the maximum expression value was selected if there
were multiple probes for a given gene in each sample.

Identification of SE genes and FL genes
Identification of SE genes and FL genes was performed
according to the method previously described by Hao et al.
with minor modifications [46]. Briefly, the coefficient of

Figure 4 UTR length of miRNA targets and expression intensity of miRNAs that regulate SE and FL genes. (A) 3’-UTR length of predicted
miRNA targets in SE genes is shorter than that of FL genes. (B) No significant difference between average expression intensity of miRNAs that
regulate SE genes and FL genes.
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variance (CV = standard deviation/mean value) of the
expression for each gene in every data set was calculated.
Due to the heterogeneity of the data sets, the CVs of speci-
fic genes from different data set could not be compared
directly. Thus the CVs in each data set were rank ordered
in ascending order, to generate a ranked CV matrix. For
each gene, the FL score was defined as the average rank
order of the CV in the matrix, and was used as the indica-
tion of expression fluctuation. For a specific gene, a rela-
tively high CV was expected if it was more vulnerable to
the perturbation of environmental factors. Its confidence
was deemed higher if this trend was observed in multiple
data sets, thus relative high FL score were expected, and
vice versa. Based on this hypothesis, the genes occupying
the top or bottom of the genes list were taken as the SE
genes and the FL genes respectively (presented as Addi-
tional File 9). To validate this classification, Gene Ontology
enrichment analysis was used to investigate the functional
difference between SE genes and FL genes, performed
using the hypergeometric test from web based software
GOEAST [47]. In addition, the embeded tool of Multi-
GOEAST was used to compare the difference of the GO
terms that were enriched in these two sets of genes.

MiRNA target prediction
Pre-compiled predicted miRNA targets were retrieved
from previously constructed databases including
TargetScan (http://www.targetscan.org/, release 5.1:
April 2009), PicTar (from UCSC table browser, http://
genome.ucsc.edu/) and miRanda (http://www.microrna.
org/, August 2010). These algorithms are considered as
having high accuracy for miRNA target prediction [48,49].
The intersection dataset generated by both TargetScan
and PicTar were retrieved from miRGen database. We

also included another dataset generated from PITA soft-
ware (from the Weizman Institute website, http://genie.
weizmann.ac.il/pubs/mir07/mir07_data.html, no flank,
TOP catalog), which makes predictions based only on
sequence features and target site accessibility. Experimen-
tally validated miRNA targets were integrated from miR-
TarBase http://mirtarbase.mbc.nctu.edu.tw/, miRrecords
http://mirecords.umn.edu/miRecords, miRWalk http://
mirwalk.uni-hd.de/ and miR2Disease http://www.miR2Di-
sease.org.

Computational framework
Three different methods were used to analyze the influ-
ence of miRNAs on gene expression fluctuation. Firstly,
we calculated the proportion of predicted miRNA targets
among SE genes and FL genes at different level of signifi-
cance. As a control, the same numbers of genes were ran-
domly selected from the gene list and the proportion of
miRNA targets among these genes was calculated.
Secondly, to avoid potential sampling bias, we divided
the total genes into two distinct groups. The first group
contained the union of the predicted miRNA targets
(predicted to be a target by at least one method), whereas
the second group contained all of the non-miRNA tar-
gets, i.e., the genes that were not predicted to be a target
by any of these prediction tools. The average FL score
from different groups was calculated to compare the dif-
ferences. Lastly, we used a sliding window method to cal-
culate the correlation between the average FL score and
the proportion of miRNA targets. Specifically, genes were
rank ordered according to their FL scores, the average FL
score and the miRNA target proportion was calculated
for the top 2,000 genes ( = window size) in the first
group, then the window was shifted by 50 genes ( = step

Figure 5 Correlation between TFBS count and expression fluctuation. Positive correlation between TFBS count and average FL score was
observed, Pearson correlation coefficient, r = 0.72, p value: 3.78e-04.
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size) to perform the same calculation on the next group
until the end. Pearson’s correlation coefficient was calcu-
lated between the average FL score and the miRNA tar-
get proportion from different groups.

Additional material

Additional file 1: Figure S1: GO term distribution of SE genes and
FL genes (molecular function). The enriched GO terms were colored
red for SE genes and green FL genes. A distinct GO term distribution of
molecular function for the two sets of genes was observed. SE genes
were mainly enriched in RNA binding, protein binding, NADH
dehydrogenase activity and constituent of ribosome etc, whereas FL
genes were mainly enriched in the receptor binding, cytokine activity,
growth factor receptor binding, peptide hormone binding and
dopamine binding etc.

Additional file 2: Figure S2: GO term distribution of SE genes and
FL genes (biological process). The enriched GO terms were colored red
for SE genes and green FL genes. A distinct GO term distribution of
biological process for the two sets of genes was observed. SE genes
were mainly enriched in translation, gene expression, macromolecule
metabolic, biosynthetic etc, whereas FL genes were mainly enriched in
signaling pathways, defense response, regulation of immune system
process and mediated by a chemical signal etc.

Additional file 3: Figure S3: miRNA targets are not enriched in
control group. This figure shows the number of miRNA targets and
non-miRNA targets among control group predicted (A) by PicTar, (B) by
TargetScan, (C) by both PicTar and TargetScan (intersections), (D) by PITA,
(E) by miRanda and (F) by experimentally validated miRNA targets when
5% of the genes were randomly designated as SE genes and FL genes
respectively.

Additional file 4: Figure S4: miRNA targets are enriched in SE genes
(top 10%). This figure shows the number of miRNA targets and non-
miRNA targets among SE genes and FL genes predicted (A) by PicTar, (B)
by TargetScan, (C) by both PicTar and TargetScan (intersections) and (D)
by PITA, (E) by miRanda and (F) by experimentally validated miRNA
targets when top and bottom 10% of the gene designated as SE genes
and FL genes respectively.

Additional file 5: Figure S5: miRNA targets are enriched in SE genes
derived only from normal tissues. This figure shows the number of
miRNA targets and non-miRNA targets among SE genes and FL genes
predicted (A) by PicTar, (B) by TargetScan, (C) by both PicTar and
TargetScan (intersections) and (D) by PITA, (E) by miRanda and (F) by
experimentally validated miRNA targets when top and bottom 5% of the
genes derived only from normal tissues designated as SE genes and FL
genes respectively.

Additional file 6: Figure S6: correlation between gene expression
fluctuation and number of regulatory miRNAs. No obvious correlation
between expression fluctuation and number of regulatory miRNAs was
observed. (A) average FL score and number of regulatory miRNAs from
PicTar results, Pearson correlation coefficient, r = 0.16, p value: 0. 24. (B)
average FL score and number of regulatory miRNAs from TargetScan
results, Pearson correlation coefficient, r = 0.10, p value: 0.49. (C) average
FL score and number of regulatory miRNAs from PITA results, Pearson
correlation coefficient, r = 0.124, p value: 0.59.

Additional file 7: Table S1: retrieved SE-miRNAs and FL-miRNAs. This
table lists the miRNA ID and number of targets in both SE genes and FL
genes predicted by PicTar, TargetScan and PITA. The p value were
inferred from Fisher exact test.

Additional file 8: Table S2: microarray data sets used for this
analysis. This table lists the GEO ID, brief description, number of samples
and sample type of 149 microarray data sets used for this analysis, which
includes 69 data sets from normal tissue, 59 data sets from cancer tissue
or cell line and 21 data sets from other disease.

Additional file 9: Table S2: retrieved SE genes and FL genes and
their FL Scores. This table lists the SE genes and FL genes obtained

from 149 microarray data sets and from 69 microarray data sets based
on normal tissues respectively.
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