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A versatile class of prototype 
dynamical systems for complex 
bifurcation cascades of limit cycles
Bulcsú Sándor & Claudius Gros

A general class of prototype dynamical systems is introduced, which allows to study the generation 
of complex bifurcation cascades of limit cycles, including bifurcations breaking spontaneously a 
symmetry of the system, period doubling and homoclinic bifurcations, and transitions to chaos 
induced by sequences of limit cycle bifurcations. The prototype systems are adaptive, with 
friction forces f(V(x)) being functionally dependent exclusively on the mechanical potential V(x), 
characterized in turn by a finite number of local minima. We discuss several low-dimensional 
systems, with friction forces f(V) which are linear, quadratic or cubic polynomials in the potential 
V. We point out that the zeros of f(V) regulate both the relative importance of energy uptake and 
dissipation respectively, serving at the same time as bifurcation parameters, hence allowing for an 
intuitive interpretation of the overall dynamical behavior. Starting from simple Hopf- and homoclinic 
bifurcations, complex sequences of limit cycle bifurcations are observed when the energy uptake 
gains progressively in importance.

The term ‘prototype dynamical system’ is employed for generic, but otherwise reduced systems, allowing 
to study and to understand a certain relevant phenomenon (like dynamical behavior and/or bifurcation 
scenario). For this, the dynamical behavior of the system should be dominated by the prime phenome-
non of interest, with the system being otherwise simple enough to allow for straightforward numerical 
and (at least partial) analytic investigations1–4. Additionally, their dynamical behavior can often be under-
stood in terms of general concepts, such as energy balance, symmetry breaking, etc.

Examples of prototype systems are the normal forms of standard bifurcation analysis5,6 and classical 
systems, like the Van der Pol oscillator5, or the Lorenz model7, which have been of central importance for 
the development of dynamical systems (systems) theory. As an example we consider the Liénard equation,

+ ( ) + ( ) = , ( )̈x f x x g x 0 1

a generic adaptive mechanical system, which includes the Van der Pol oscillator and the Takens-Bogdanov 
system8,9. The periodically forced extended Liénard systems with a double-well potential have also been 
studied by many authors (see e.g. the double-well Duffing oscillator10–12).

In this paper we propose a new class of autonomous Liénard-type systems, which allow to study cas-
cades of limit cycle bifurcations, using a bifurcation parameter controlling directly the balance between 
energy dissipation and uptake, and hence the underlying physical driving mechanism. Though there 
are a range of alternative construction methods for dynamical systems in the literature (see e.g.13–15), 
they generally involve abstract concepts, such as implicitly defined manifolds, or mathematical tools 
accessible only to researchers with an in-depth math training. In contrast to these methods, we provide 
here a mechanistic design procedure, based on the construction of attractors through the interaction of 
generalized friction forces with potential forces, an intuitive concept especially suitable for interdiscipli-
nary investigations (e.g. in modeling cardiovascular systems16 or for solving optimization problems17), 
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making it easily accessible and implementable for other scientific communities (such as neuroscience, 
biology etc.) as well.

As an introductory example for the role of balance between energy uptake and dissipation, in both 
local and global bifurcations, we reconsider the Bogdanov-Takens system,
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which is often used as a prototype system for homoclinic bifurcations5. Here, the mechanical potential is 
a third order polynomial, as illustrated in Fig. 1. The friction force is directly proportional to the velocity 
y, hence fixpoints of (2) correspond to the minima and the maxima of the potential V(x).

The dynamics of the Bogdanov-Takens system is controlled by the parameter μ, defining, in terms of 
the mechanical energy E, the regions of dissipation and energy uptake in the potential valley,
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E x y E

y
V x

2 3
2

2

compare Fig.  1. The region x >  μ of energy uptake increases when the bifurcation parameter μ is 
decreased, leading to two consecutive transitions. Initially the potential minimum becomes repelling, 
undergoing a supercritical Hopf bifurcation and a stable limit cycle emerges. Decreasing μ further, the 
extension of the limit cycle increases, merging at μc with the stable and unstable manifolds of the saddle, 
resulting in a homoclinic bifurcation.

Results
The key mechanism leading to the bifurcations in the Bogdanov-Takens systems is the availability of a 
parameter, allowing to change the balance between energy uptake and energy dissipation along limit 

Figure 1. The Bogdanov-Takens system (2) with the potential function V(x) = x3/3 − x2/2 and a friction 
term x − μ (top row), and its generalization (4) to a friction term μ1 − V(x) (bottom row), compare Eq. 
(6). Left column: The potential function together with the color-coded regions of energy dissipation and 
uptake respectively, compare Eq. (3). Right column: The phase planes at the respective homoclinic bifurcation 
points, with the unstable foci and the saddles denoted by open circles. The green and blue trajectories are 
the stable and unstable manifolds, while the red trajectory corresponds to the homoclinic loop.
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cycles. Our aim is to generalize this idea to the case of mechanical systems characterized by an arbitrary 
number of potential minima. For this purpose we consider
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= ( ( )) ,
( )







f V V
E f V

x
y x y x

x y
y

4
2

which describes a 2d—dimensional system, with d spatial coordinates, and friction forces f(V(x)) depend-
ing functionally only on the mechanical potential V(x), allowing for a fine-tuned control of the energy 
dissipation and uptake around the respective potential minima. A well known example of a system of 
type (4) is the Van der Pol oscillator:

ε ε− ( − ) + = , ( ) = ( − ), ( ) = , ( )̈x x x x f V V V x x1 0 1 2
2 5

2
2

for which the regions of energy uptake and dissipation remain fixed, with ε regulating the overall influ-
ence of the velocity-dependent force.

The simplest generic class of friction functions f(V) entering (4) are polynomial:
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where α regulates the overall strength of the friction, and the individual μ1 <  μ2 <  μ3 are the respective 
zeros, the points at which dissipation changes to anti-dissipation and vice versa, compare Fig. 2.

When using f1(V) and the mechanical potential V(x) =  x3/3 −  x2/2, the resulting flow in phase space 
is equivalent to the one of the Bogdanov-Takens system (2), as shown in Fig. 1.

Generalized mechanical potentials. We are interested in using (4) as prototype dynamical systems, 
especially for the case of non-trivial mechanical potentials V(x) having an arbitrary number M of local 
minima. One could in principle consider higher-order polynomials for this purpose, however these do 
not allow to control the overall height of the potential and the relative width of the local minima in as 
simple a fashion.

For this purpose we use throughout this study potential functions of the kind
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where the zn >  0 determine the half-width of the respective local minima, and the pn satisfy the 
self-consistent condition:
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since g(0) =  0. For deep minima, with (zi +  zj) ≪  |xi −  xj|, the positions and the heights of the local min-
ima are close to xn and Vn respectively. We found that a relative accuracy of 10−2 for Vn can already be 
achieved in general after three or four iterations.

Limit cycle bifurcation cascades. The system of type (4) allows to describe complex cascades of 
limit cycle bifurcations. In Fig.  2 we show some illustrative examples, using a symmetric double-well 
potential and linear/quadratic/cubic friction functions f1(V)/f2(V)/f3(V) respectively, see Eq. (6). We used 
numerical methods (see the Methods section) to obtain the respective full bifurcation diagrams, with 
solid/dashed lines denoting stable/unstable fixpoints and limit cycles. The corresponding flow in phase 
space is illustrated in Fig. 3.

For negative μ1 the two fixpoints (± 1, 0) are stable, for the case of f1(V) and f3(V), and stable limit 
cycles evolve via two supercritical Hopf bifurcations (bifurcations). For f2(V), on the other hand, a sub-
critical Hopf bifurcation is observed at μ1 =  0. The respective stable/unstable limit cycles merge for f1(V) 
and f2(V) in a homoclinic bifurcation, whereas a more complex bifurcation diagram emerges for f3(V). 
Saddle node bifurcations of limit cycles are present for both f2(V) and f3(V).

Chaos via period doubling of limit cycles. We consider now a prototype system (4) with a 
two-dimensional symmetric potential function V(x),

( ) = ( − ) ( − ), ( ) = ( / ), ( )V g g gx x x x x z ztanh 4 9 91 2
2
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as defined in (7), having two minima x1,2 =  ± (1, − 1), and a linear friction term f1(V) =  0.5(μ −  V). Both 
diagonals in the (x1, x2) plane are symmetry axes of the system, as discussed in the Methods section. In 
Fig. 4 we present examples of stable limit cycles and of a chaotic trajectory, as projected to the (x1, x2) 
plane. In Fig. 5 the corresponding bifurcation diagram is presented. The diagram shows Hopf bifurca-
tions (H), homoclinic bifurcations (HO), branching of limit cycles via spontaneous symmetry breaking 
(SSB), period doubling of limit cycles (PD), and a transition to chaotic behavior:

Figure 2. Left column: Double well potential, as defined by Eq. (7), with x1,2 = ±1, V1,2 = 0, z1,2 = 1 and 
p1,2 = 1. The regions of energy dissipation <E 0 and uptake >E 0 are color coded. For the friction 
functions (6) we used f1 with α =  1 (top row), f2 with μ2 =  0.6 and α =  5 (middle row), and f3 with μ2 =  0.3, 
μ3 =  0.6 and α =  5 (bottom row). Right column: Bifurcation diagrams of the respective generalized 
Liénard systems (4), functions of μ1. All other μi (when present) are kept constant. Stable/unstable fixpoints 
or limit cycles are denoted by continuous/dashed curves respectively. Black lines are fixpoint lines, while the 
maximal/minimal amplitude of x in a cycle is denoted with red/green color. H points denote Hopf 
bifurcations, HO corresponds to homoclinic bifurcations of a saddle, SNC points denote saddle node 
bifurcations of limit cycles. The dotted, dashed and continuous vertical gray lines are just guides for the eyes.
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H At μ =( ) 0H
1  the two potential minima become unstable, just as for the one-dimensional spatial 

system presented in Fig. 2, resulting in two equivalent supercritical Hopf bifurcations. We note that, as 
a result of the symmetric potential function (9), a second branch of limit cycles is created by the two 
Hopf bifurcations (see the discussion in the Methods section and the Supplementary Information). 

Figure 3. Flow diagrams for the systems presented in Fig. 2, using respectively linear/quadratic/cubic 
friction functions f1(V)/f2(V)/f3(V) (top/middle/bottom row). The values μ = . / .( / ) 0 1 0 2a b

1 , 
μ = . / .( / ) 0 1 0 11c d

1  and μ = . / .( / ) 0 032 0 04e f
1  for the respective μ1 are indicated by arrows in the 

corresponding bifurcation diagrams in Fig. 2.
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However, since in the parameter region of interest these limit cycles are mostly unstable, we have not 
investigated them in detail.

HO At μ ≈ .( ) 0 143HO
1  the limit cycles merge, as in Fig. 4(a,b), in a homoclinic transition. The limit 

cycle stays, however, exactly on the diagonal x1 +  x2 =  0.
SSB At the first branching point of limit cycles, μ ≈ .( ) 0 171SSB

1  the symmetry with respect to the 
diagonal (1, − 1) is spontaneously broken, as in Fig. 4(b,c), with the two limit cycles still being symmetric 
with respect to the (1, 1) diagonal. The latter symmetry is broken at the second branching point 
μ ≈ .( ) 0 260SSB

1 , as in Fig. 4(c,d), creating four symmetry related stable limit cycles.
PD For larger values of the bifurcation parameter μ1 a series of period-doubling of limit cycles is 

observed, with the first occurring at μ ≈ .( ) 0 268PD
1 , as in Fig. 4(d,e). The next period-doubling transition 

occurs at μ ≈ .( ) 0 270PD
1 , as shown in Fig. 5.

For reference we note that the saddle of the potential is located at V(0, 0) =  0.505, viz at a substantially 
larger value.

For μ μ> ≈ .( ) 0 2705chaos
1 1  we observe seemingly chaotic trajectories, as illustrated in Fig.  4(f). 

Studying the transition to chaos is not the subject of the present investigation and we leave it to future 
work. We presume however, that the transition occurs via an accumulation of an infinite number of of 
period-doubling transitions of limit cycles, similar to the ones observed for the Lorenz system18 and for 
the Rössler attractor19,20.

Our prototype system (4) is not generically dissipative. We have evaluated the average contraction rate 
σ, as defined by (22) in the Methods section, and presented the results in Fig. 5. Phase space contracts 
trivially along the attracting limit cycles, but also, on average, in the chaotic region, where the average 
Lyapunov exponent λ becomes positive. λ is negative for μ1 <  0, when only stable fixpoints are present, 
vanishing for intermediate values of μ1, when stable limit cycles are present. The later is due to the fact, 
see Fig. 7 and the corresponding Methods section, that two initially close trajectories will generally flow 
to the same limit cycle with the relative distance becoming constant.

Figure 4. Stable limit cycles and chaotic orbits of the Liénard prototype system (4) in a two-dimensional 
symmetric double well potential V(x) (color coded, as defined by Eq. (9)) and with a linear friction term 
f1(V(x)) = 0.5 (μ1 − V(x)). The bifurcation parameter μ1 is 0.1, 0.15, 0.25, 0.265, 0.2698, 0.3 from (a) to (f). 
In (d) the four limit cycles can be mapped onto each other by using the symmetry operations σ1,2 or σ3,4, as 
discussed in the Methods section. For (e) only a single of the four stable limit cycles is shown. This needs 
to circle the two potential minima twice in order to retrace itself. In (f) an example of a chaotic trajectory is 
given.
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For larger values of μ1 >  0.322 the chaotic region transforms into a phase of intermittent chaos as 
illustrated in Fig. 6, in which an extended quasi-regular flow along the (−1, 1) diagonal is interseeded by 
a roughly perpendicular bursting flow. This behavior is, to a certain extend, reminiscent to a scenario of 
intermittent chaos21, in which a strange attractor is embedded in a higher-dimensional space with partly 
unstable directions. We have, however, not investigated the observed intermittent dynamics in detail.

Discussion
We have proposed and discussed a prototype dynamical system (4) in which the friction forces ∝  f(V) 
depend functionally only on the mechanical potential V(x). We have shown that complex cascades of 
limit cycle bifurcations can be obtained even for two dimensional phase spaces, when the friction func-
tion f(V) alternates between regions of energy uptake and dissipation.

We have also introduced a generic class of potential functions (7), which allows to define, in a relative 
straightforward manner, mechanical potentials with an arbitrary number of local minima and varying 
depth. Considering a simple double-well prototype system with two spatial dimensions (and with a 
four-dimensional phase space), we have shown that symmetry induced bifurcations of limit cycles and 
period-doubling of limit cycle transition to chaotic behavior can occur.

As discussed in the Methods section, the presence of stable and unstable fixpoints, the birth of limit 
cycles through transition from dissipation to energy uptake in the neighborhood of the local minima, 
or the symmetry properties of the prototype system do not depend on the particular method used to 

Figure 5. Top row: The numerically obtained bifurcation diagram for a four-dimensional prototype 
Liénard system with symmetric double-well potential and a linear friction force, as for Fig. 4. The second 
branches of limit cycles emerging from the two destabilized minima (see Supplementary Fig. S1) are not 
shown here. One observes Hopf and homoclinic bifurcations (H and HO), branching of limit cycles via 
spontaneous symmetry breaking and period doubling (SSB and PD), as well as a transition to chaos for 
μ1 >  0.2705. The red/green lines indicate the maximal/minimal x1-values of the respective limit cycles. The 
blue curve is the second x1-maxima after period doubling. The right diagram represents a zoom-in of the 
transition to a chaotic region, indicated by the shaded green and red areas. Only the first two period 
doubling bifurcations are shown. Bottom row: The average Lyapunov exponent λ and the contraction rate 
σ, calculated as described in the Methods section, for the corresponding μ1 parameter intervals. For the 
left figure Δ μ1 =  0.001 parameter stepsize was used. Increasing the resolution more and more periodic 
windows (with =λ 0) become visible, as shown on the right plot, where Δ μ1 is decreased by a factor of ten.
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construct the potential function. The only requirement it has to fulfill is the existence of a certain number 
of local minima.

Hence, other potential functions could also be considered. For example, one could study the biquad-
ratic version

( ) → ( − ) ( − ) , ( )V x x x x x 101
2

2
2

of the potential (9), used in our study of chaotic behavior with the prototype system (4). We did not 
study in detail the bifurcation diagram for the potential function (10), however, we have checked that 
one would get similar results to the ones presented in Figs 4 and 5, having the same underlying driving 
mechanism in terms of a linear friction function f(V) ∝  (μ1 −  V). For increasing values of the μ1 control 
parameter, first stable fixpoints, then spatially separated-, merging- and symmetry breaking limit cycles 
can also be observed. Furthermore, using the potential function (10) chaotic behavior has also been 
found.

As a future perspective, we note that by changing the depth of the minima, one could control the order 
in which the fixpoints are going to be destabilized, which might lead to other interesting phenomena. 
Adding an extra (maybe slow) dynamics to the positions or depths of the minima, the metadynamics 

Figure 7. The logarithmic growth rate 〈ln(Δr)〉 averaged for 100 random initial conditions as 
a function of time for three qualitatively different types of dynamics: spiraling into a fixpoint 
(μ1 = −0.05), limit cycle oscillations (μ1 = 0.2) and chaotic behavior (μ1 = 0.3). Brown lines correspond 
to the best linear regression. In the first and last case, the line is fitted only to the first part of the trajectory. 
The dashed line indicates that the distance of the point pairs has reached the maximal accuracy of the 
integrator.

Figure 6. Left: Quasi-periodic windows with different time scales in the time-series plot of x1 for 
μ1 = 0.34. Right: Phase space plot of the trajectory projected to the (x1, x2) plane for the same parameter. 
The magenta curve corresponds to the quasi-periodic time interval tp =  [4 ⋅  103, 12 ⋅  103], denoted with the 
same color in the x1(t) plot.
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of the attractors22 may also be considered. In this case the pn parameters should be recalculated in each 
time-step using the self-consistent equations (8), which proved to be fast enough for practical purposes.

Models, for which the equations of motion are derived from higher order principles, provide prom-
ising results for the understanding of many different phenomena, such as the optimization hardness of 
boolean satisfiability problems17 or the complex dynamics of biological neural networks23,24. Generally, 
these methods involve the construction of a generating functional, such as the cost function or energy 
functional25–28, with the dynamics of the system being defined by a gradient decent rule. When all equa-
tions are derived from the same generating functional, the system corresponds mathematically to a gra-
dient system for which the asymptotic behavior is determined by stable fixpoints (nodes). They can 
thus not produce limit cycles or oscillatory behaviors. To by-pass this problem, additional equations 
of motions are usually defined, derived either from a second generating functional, to induce objective 
function stress29,30, or from other considerations. In our model, the system has an inherent inertia, which, 
in the presence of dissipation, leads to damped oscillations around the equilibria (minima of the poten-
tial). By creating regions of antidissipation, stable oscillatory dynamics and chaotic behavior is stabilized. 
Considering nonsymmetric and/or higher dimensional potential functions, we expect to find an even 
richer set of dynamical behaviors (see the Methods section), a scenario worth to be investigated in the 
future. As a possible application one could use the system for modeling the dynamics of various, complex 
and adaptive dynamical systems, for which the generalized potential function (energy landscape, cost 
functional, etc.) is approximated by (8) or is found from some other considerations. An alternative type 
of prototype dynamical system has been shown to be useful for understanding the coexistence of spiking 
and bursting neural activity observed in electrophysiological experiments2.

Finally, we note that the concepts of dynamical systems theory, such as attractors, slow points and 
bifurcations have been used recently to understand phenomena of surprisingly diverse fields. We mention 
here the modeling of birdsongs31 and migraine dynamics32, and the control mechanisms for the move-
ments of humanoid robots33. The common approach, considered in these works, is the aim to construct 
simple and, to a certain extend, idealized dynamical systems, which allow for an in-depth understanding 
of certain dynamical behaviors. We hence believe that prototype systems allowing, in an intuitive man-
ner, for the construction of models with a predefined set of attractors, as presented here, could offer a 
useful tool for understanding the behavior of a range of interesting interdisciplinary problems.

Methods
The bifurcation diagrams shown in Figs 2 and 5 have been constructed by using the PyDSTool34 software 
package. In this section we provide the analytic calculations for the study of fixpoint stability for 2-, 3- 
and 2d-dimensional prototype systems respectively. We note that, these properties are valid irrespective 
of the particular shape considered for the potential function. This is followed by a discussion of symme-
try properties, and presentation of numerical methods used to estimate the average Lyapunov exponent 
and the contraction rate.

Hopf bifurcations in the prototype system. 2-dimensional prototype systems. The local maxima 
of the potential function, i.e. where ″( ) <⁎V x 0, which are saddle points, separate the phase plane into 
different attraction domains with their stable manifold. Local minima with ″( ) >⁎V x 0 become, on the 
other hand, repelling focuses as a result of an Andronov-Hopf bifurcation, when dissipation changes to 
antidissipation in their neighborhood, having a simple pair of purely imaginary eigenvalues 

= ± ″( ),λ ⁎i V x1 2 .

4-dimensional prototype systems. Analogously, the
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fixpoints of the 4-dimensional prototype systems (4) correspond to critical points of the V(x1, x2) poten-
tial function. Classification of the local minima and saddle critical points with respect to their stability 
can be achieved by evaluating the eigenvalues of the Jacobian of the system in terms of the Hessian of 
the potential function:
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where we have defined the friction term and the second order partial derivatives of the potential at the 
respective critical points as

= ( ( , )), = −
∂

∂ ∂
, = −

∂

∂
.

( ),

,
, ,

⁎ ⁎

⁎ ⁎ ⁎ ⁎

a f V x x c V
x x

d V
x 12x x x x

1 2

2

1 2
1 2

2

1 2
2

1 2 1 2



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:12316 | DOi: 10.1038/srep12316

Defining also

( )γ γ= −( + ) ± ( + ) − ( − ) , ∈ ( )± ± d d d d d d c1
2

4 131 2 1 2
2

1 2
2

we can express the eigenvalues of the Jacobian J(q*) as

( )γ= ± − . ( ), , , ±λ a a1
2

4 141 2 3 4
2

For general potential functions the local minima, defined by the conditions Δ  =  det(H) =  d1d2 −  c2 >  0 
and ρ =  tr(H) =  − (d1 +  d2) <  0 (or equivalently by γ± >  0), undergo a Hopf bifurcation, when the f(V) 
friction term changes sign, i.e.:

γ= ( ( , )) = ⇒ = ± . ( ), , , ±λ⁎ ⁎a f V x x i0 151 2 1 2 3 4

However, saddles of the potential function, i.e. Δ  =  det(H) <  0, are saddle type fixpoints of the dynamical 
system, having always a positive eigenvalue, as γ+ >  0 and γ− <  0.

Here we note that in case of the potential function (9), due to the symmetries one gets a double pair of 
imaginary eigenvalues, since d1 =  d2 and c =  0, and thus Eq. (13) yields γ+ =  γ−. This results in a second 
branch of limit cycle solutions, not investigated in this paper, emerging from the Hopf-point.

2d-dimensional prototype systems. For arbitrary dimensions d one can express the Jacobian in terms of 
block matrices:

( ) =



−





,
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H aI
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16

d d

d d

where a =  f(V), and where Od and Id are the d-dimensional zero and identity matrices. 
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fixpoints.
To determine the eigenvalues of the Jacobian one has to solve the equation:
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where we used the properties of square block matrices. By introducing γ =  λ(a −  λ) on finds with
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that the 2d eigenvalues λi
± of the Jacobian can be expressed in terms of the d eigenvalues γi of the Hessian 

matrix and hence

( )γ= ± − . ( )
±λ a a1

2
4 19i i

2

Consequently, at the local minima of the potential, i.e. when γi >  0, a Hopf-bifurcation occurs, with 
γ= ±±λ ii i , when the friction term a =  f(V) changes sign. For general potential functions this might 

lead to the birth of higher dimensional tori or several branches of limit cycle bifurcations.

Symmetries of the 4-dimensional system. The results shown in Figs 4,5 and 6 are found for the 
4-dimensional prototype systems (4) with a linear friction force f1(V), as defined by (6), and a mechanical 
potential V(x) given by (9). The minima V(x1,2) =  0 of the potential, viz. x1 =  (+ 1, − 1) and x2 =  (− 1, + 1) 
are connected by the symmetry operations

σ σ=
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of the system. Thus, if (x1, x2, y1, y2) is a solution, then
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are also solutions.
As one could expect from the definition of the class of prototype systems introduced here (see Eq. (4)), 

the symmetry properties of the system are closely related to the particular symmetries of the potential 
function considered for modeling a certain behavior. Thus, finding the corresponding σi symmetry oper-
ations, could reveal new limit cycle solutions related by symmetry.

Lyapunov exponent and contraction rate. The local Lyapunov exponent λ is determined from the 
growth rate of the distance Δ r(t) =  Δ r0eλt, between point pairs with an initial displacement, which we 
have taken to be Δ r0 =  10−8. The measurement of the Lyapunov exponent was started after a transient 
of ttr =  1.5 ⋅  104. Considering 100 random initial conditions the average Lyapunov exponent λ is then 
given by the slope of the initial linear part of the 〈 ln(Δ r)〉  curve (as given by the brown lines in Fig. 7).

The contraction rate σ, is defined as the average of local contraction rates along a set of trajectories 
Γ  for different initial conditions:

∫σ = ∇ ⋅ ,
( )ΓL

dsf1
22

where L  =  ∫Γ  ds is the length of the trajectory, and f is the flow, viz the right-hand side of the evolution 
equations (4). σ is negative for dissipative systems, in which the phase space contracts5,6.
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