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Abstract
We present a multi-dimensional continuum mathematical model for modeling
the growth of a symbiotic biofilm system. We take a dual-species namely, the
Streptococcus–Veillonella sp. biofilm system as an example for numerical investiga-
tions. The presented model describes both the cooperation and competition between
these species of bacteria. The coupled partial differential equations are solved by using
an integrative finite element numerical strategy. Numerical examples are carried out
for studying the evolution and distribution of the bio-components. The results demon-
strate that the presented model is capable of describing the symbiotic behavior of the
biofilm system. However, homogenized numerical solutions are observed locally. To
study the homogenization behavior of the model, numerical investigations regarding
on how random initial biomass distribution influences the homogenization process are
carried out.We found that a smaller correlation length of the initial biomass distribution
leads to faster homogenization of the solution globally, however, shows more fluctu-
ated biomass profiles along the biofilm thickness direction. More realistic scenarios
with bacteria in patches are also investigated numerically in this study.
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1 Introduction

More than 90% of microbes live in biofilms which can be defined as “assemblages of
bacterial cells attached to a surface and enclosed in an adhesive matrix secreted by the
cells” (Madigan 2012). A biofilm in natura is usually found as a multi-component,
multi-species, heterotopic matter with multi-phase properties. Competition and coop-
eration among species of bacteria are normally involved in multi-species biofilm
systems (Yang et al. 2011). A biological system is symbiotic when cooperation hap-
pens between two different organisms.

Mathematical and numerical modeling is a powerful tool for understanding both
the physical and bio-chemical processes during the formation and development of the
biofilms. Many modeling strategies and models have been developed for describing
biofilm processes. However, mathematical modeling of symbiotic biofilm systems
has not been well studied. Modeling a symbiotic biofilm system naturally requires
the consideration of a multi-species biofilm problem which is usually challenging,
especially for multi-dimensional scenarios.

Several studies on modeling multi-dimensional multi-species biofilm system have
been carried out in the literature. Noguera et al. (1999) presented a Cellular Automa-
ton (CA) model for modeling a dual-species (D. vulgaris–M. formicicum) biofilm
system. Recently, Tang and Liu (2017) developed a multi-species multi-dimensional
CA model to study syntrophic and dissimilatory metal reducing bacterial bioiflm sys-
tem. In their study, a syntrophic ecological system is considered. Martin et al. (2017)
studied a dual-species (S. gordonii–P. gingivalis) oral biofilm system with a further
developed CA model. Three models on the relationship between these two species of
bacteria, namely independence for substrates, competition for substrate, and inhibition
of one to another, are compared in their study. Individual-based Modeling (IbM) have
also been used for studying various multi-species biofilm problems, such as model-
ing ammonium oxidizer bacteria (AOB) and nitrite oxidizer bacteria (NOB) system
(Picioreanu et al. 2004), modeling dormant cell formation (Chihara et al. 2015) pro-
cess, investigation of denitrifying bacteria—sulfate reducing bacteria—methanogens
biofilm systems (Martin et al. 2015) and so forth. These models are not continuum
and are usually categorized as the so-called discrete element based models (Noguera
et al. 1999; Fujikawa 1994; Kreft et al. 2001; Picioreanu et al. 1998; Wimpenny and
Colasanti 1997).

Although the reactionmodel presented in this paper can also be appliedwith discrete
element based models, we present our model within the framework of continuum
biofilmmodelswhich are fully described by partial differential equations (Alpkvist and
Klapper 2007; Cogan 2004; Duddu et al. 2009; Eberl et al. 2001; Klapper and Dockery
2002; Lindley et al. 2012; Wanner and Gujer 1986; Zhang et al. 2008b). Alpkvist
and Klapper (2007) presented a multi-dimensional multi-species biofilm model and
applied it for studying an autotrophs-heterotrophs-inert bifilm system. The growth of
biofilm is modeled as an advective movement of a potential flow due to the production
or reduction of biomass. Instead of modeling the biofilms grow advectively, Rahman
et al. (2015) presented amulti-speciesmulti-dimensional continuumdiffusion-reaction
model. A cross-diffusion process is additionally introduced into themodel to overcome
the internal over-mixing problem. The over-mixing of different species of biomass
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is a common flaw in many diffusion-reaction continuum models as well as some
discrete element based models for multi-species multi-dimensional biofilm modeling
(Tang and Valocchi 2013). Since the advection-reaction biofilm model presented by
Alpkvist and Klapper (2007) does not involve physical diffusion, it is expected to be
less diffusive, although the numerical dissipation is not avoidable. However, when the
reactions become complex, whether locally homogenized biomass distribution will be
obtained or not is still an open question. We look into such a problem by studying the
presented symbiotic biofilm system with an advection-reaction type model, and one
goal of this study is to investigate the solution behaviors of the model.

We take an oral dual-species, namely the Streptococcus–Veillonella sp. biofilm
system (Chalmers et al. 2008), as an example of modeling symbiotic biofilm systems.
Both Streptococcus sp. and Veillonella sp. play vital roles in the formation of dental
biofilms. Dental bacterial biofilms are often of special interested due to their roles in
the treatments of dental implants and diseases (Paquette et al. 2006; Kommerein et al.
2017). Different from many other types of biofilms, the bacteria that form the dental
biofilms need salivary glycoproteins to attach to the teeth surface. Meanwhile, saliva
is also the main nutrient source for the microbes in oral cavities (Chalmers et al. 2008;
Chalmers 2008). Among the Streptococcus group bacteria, Streptococcus gordonii is
a well-known Gram-Positive commensal bacterium in oral cavities which can cause
caries and demineralization of teeth (Nascimento et al. 2009). Streptococcus gordonii
is also the first batch of bacteria that attach to the teeth surface and is known as a
species of early colonizers (Kolenbrander et al. 2010). The early colonizers can build
up a foundation for the later colonizers to attach to the biofilm structure. This makes
them important for studying oral biofilms.

Similar to the S. gordonii, Veillonella sp. is also a group of early colonizers which
congregate with S. gordonii (Periasamy and Kolenbrander 2010). It has been dis-
covered that the Veillonella sp. cannot grow alone in saliva. However, it colonizes
when there is Strptococcus sp. (e.g. S. gordonii) coexisting in the system (Chalmers
et al. 2008). Similar behavior has also been observed in Kara et al. (2007), Mashima
and Nakazawa (2015). A biological interpretation of such phenomenon is that the
Veillonella sp. cannot utilize the carbon source in saliva directly but can ferment the
metabolic production of S. gordonii, namely lactic acid, instead (Periasamy andKolen-
brander 2010). It is worth noting that the lactic acid not only provides a carbon source
for the growth of the Veillonella sp. but also causes a decrease of the pH in the system.
It has been experimentally observed that the Veillonella sp. can tolerate more acid than
the S. gordonii (Bradshaw and Marsh 1998). The presence of the Veillonella which
utilizes the lactic acidmay thus be beneficial to the growth of the S. gordonii indirectly.

In this study, we develop a mathematical model for the symbiotic S. gordonii–
Veillonella biofilm system under the hypothesis that the lactic acid has a negative
influence on the growth of S. gordonii and thus the symbiotic biofilm system studied
in this paper is essentially a mutualistic ecological system. The flow velocity in oral
cavities is known to be very small and does not have much impact on the growth of
the S. gordonii biofilm within a typical characteristic period (12h–24h) (Rath et al.
2017). The mathematical model developed by Alpkvist and Klapper (2007) has been
validated for the S. gordonii biofilm (Rath et al. 2017; Feng et al. 2018). Many studies
have reported that the Streptococcus sp. dominates in a multi-species biofilm, which
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consists of the Streptococcus sp. and Veillonella sp. (Chalmers et al. 2008; Periasamy
and Kolenbrander 2010; Kommerein et al. 2017). For this reason, we develop the
symbiotic biofilm model based on the advection-reaction biofilm growth model.

Themodel presented in this paper canbeused for quantitatively understandingof the
Streptococcus–Veillonella symbiotic biofillm system and in general can be modified
to model a variety of biofilm systems with similar bio-chemical properties. To the best
of our knowledge, a continuum model for such kind of symbiotic biofilm systems has
not been well developed. This study may shed light on understanding the numerical
behaviors of multi-dimensional multi-species continuum (advection-reaction) biofilm
models which involve complex reactions.

This paper is structured as follows. Details of the model will be presented in Sect.
2. Numerical results are presented and investigated in Sect. 3. The symbiotic biofilm
model is highly non-linear.We observed a homogenized numerical solution of biomass
at a later time. To better understand the solution behaviors, we investigated how the
initial condition (see Sect. 3.2) and the symbiotic reaction relationship (see Sect. 3.4)
influence the homogenization of the solutions. In Sect. 4, the results are summarized
and discussed. Further detailed information regarding the dimensionless form of the
governing equations, as well as the corresponding numerical method, are presented in
Appendices A and B.

2 Mathematical Model

2.1 Model Assumptions

The Streptococcus–Veillonella biofilm system is illustrated in Fig. 2. Two biomass
components, namely the S. gordonii and V. PK1910 interact with each other in a
mutualistic relationship. Especially, S. gordonii produces lactic acid, which plays a
vital role in the chain of the symbiotic bio-chemical process is modeled explicitly.
Despite the saliva cannot function as a carbon source for the Veillonella sp., saliva still
may provide other nutrients for the growth of both species due to its complex mixture
substance property. Therefore, a competition of the saliva between S. gordonii and
Veillonella sp. is considered in the model. On the other hand, Veillonella sp. helps
to prevent the environment from being too acid, and thus benefits the growth of S.
gordonii. We develop the mathematical model based on the following assumptions:

• A layer of biomasswith a finite thickness has been presented as an initial condition.
The model does not capture the process in which individual bacteria grow into a
biofilm. On the other hand, the growth process after forming an initial layer of
biofilm is modeled.

• Two species of bacteria, namely the Streptococcus sp., and Veillonella sp. are
considered in the model. The volume fractions of the bacteria sum to one inside of
the biofilm, which implies that the pore space and EPS are not explicitly modeled
(Alpkvist and Klapper 2007).
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• Saliva is considered as a common nutrient source consumed by both species of
bacteria. However, the growth of Veillonella is limited by both the nutrient and the
lactic acid, which is produced by Streptoccus sp. (Chalmers et al. 2008).

• The concentration of hydrogen is not modeled explicitly, but the concentration of
the lactic acid is considered instead as an indicator for it (Gordeeva et al. 2017).

• The fluid-structure interaction process is not considered. This assumption is based
on our previous experimental observations of the formation process of S. gordonii
(Rath et al. 2017).

• No new void spaces of bacteria can develop during the growth of the biofilm. In
other words, the biofilm domain is simply connected (see Fig. 1).

• The nutrients in saliva are fullymixedwith a distance above the biofilm.ADirichlet
boundary condition of the nutrients thus exists (Picioreanu et al. 2006).

• The growth velocity is irrotational (Klapper and Dockery 2002), and different
species of bacteria have the same advection velocity (Alpkvist and Klapper 2007).

• Diffusion coefficients are constant both inside and outside of the biofilm (Alpkvist
and Klapper 2007).

To make the model simple, we introduced assumptions more than necessary. One
can include the EPS as an additional biomass component in the model, as in Xavier
et al. (2005). It is also convenient to assign heterogeneous modeling parameters, such
as diffusion coefficient, density, or even growth rate in the model (Fig. 2). The pH can
also be modeled by slightly extending the model, as presented in Khassehkhan and
Eberl (2008).

The main limitation of the presented model is the requirement of being simply
connected (biofilm domain) during biofilm growth. This is mostly due to the difficulty
of enforcing proper potential (or pressure) boundary conditions for the newly generated
biofilm-fluid surface. Such a problem may come up when trying to model the merge
of different colonies. As illustrated in Fig. 1b, when there is a new biofilm-fluid
interface (Γ2) generated during the merge of colonies, it is not straightforward to
enforce boundary conditions of the potential on Γ1 and Γ2. On the other hand, the
model can be used to model the merge of different colonies if only the scenario, as
shown in Fig. 1a, occurs. Modeling the merge of colonies is beyond the aim of this
paper. For the readers interested in this topic,we refer to the three-dimension numerical
study in Alpkvist and Klapper (2007).

2.2 Model Domain

To build up the model based on the above assumptions, the mass balance of each
substrate and component of biomass in the biofilm is considered. Eventually, the
mathematical model, which is essentially a free boundary problem, consists of five
partial differential equations (PDEs) including four coupled nonlinear time depen-
dent advection–diffusion-reaction (or advection-reaction) equations and a Poisson’s
equation.

Taking a 2D model as an example, the biofilm is modeled within a computational
domain of Ω = {x = (x, z) : 0 ≤ x ≤ W , 0 ≤ z ≤ H} with the corresponding
boundary ∂Ω . The top border is denoted as Γht and the other sides are denoted by
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Fig. 1 Typical biofilm patterns generated during the merge of two colonies

Fig. 2 Illustration of the symbiotic biofilm system. The Veillonella sp. PK1910 and Streptococcus gordonii
are taken as example species of the bacteria in the illustration. Both species of bacteria compete for the
nutrients in saliva. The Streptococcus gordonii produces lactic acid, which is a carbon source for Veillonella
sp. The lactic acid also prevents the growth of gordonii

Γs1 = ∂Ω � Γht . The outward-pointing normal vectors of Γs1 and ∂Ω are denoted
as ns1 and ns2 respectively. A sub-domain Bt ∈ Ω refers to the biofilm domain above
which a bulk fluid domain Ft is assumed. The biofilm-fluid interface Γint = Bt ∩ Ft ,
which is a free boundary, moves over time induced by the growth of the biofilm.

2.3 Mass Balance of Biomass

The growth of both S. gordonii and Veillonella are modeled as advective movements
driven by the production and reduction of biomass inside of the biofilm. Writing the
mass balance equations of S. gordonii and Veillonella sp. in terms of their volume
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Fig. 3 Two dimensional
illustration of the computational
domains of the symbiotic
biofilm model

fraction ϑ reads

∂ϑ1

∂t
+ ∇ · (uϑ1) = g1

ρs
, x ∈ Ω, (1a)

∂ϑ2

∂t
+ ∇ · (uϑ2) = g2

ρv

, x ∈ Ω, (1b)

where u [LT−1] denotes the growth velocity of the biofilm, indexes “1” and “2” are
used to refer physical quantities of the S. gordonii and Veillonella bacteria respectively
and, ρs and ρv denote the density of the corresponding biomass. In Eq. (1), g refers
to the mass production/reduction rate of the biomass. A no-flow boundary is applied
for both Eqs. (1a) and (1b)

ns2 · (uϑi ) = 0, (i = 1, 2), x ∈ ∂Ω. (2)

It has been experimentally found that the S. gordonii can tolerate less acid than the
Veillonella sp. and the Veillonella sp. may become dominant even in the environment
with pH < 5.0 (Bradshaw and Marsh 1998). The growth of S. gordonii is sensitive
to the acid and, on the other hand, Veillonella can grow in a small pH environment.
Therefore, we only model the negative influence of lactic acid on the growth of S.
gordonii. The mass production process of S. gordonii is limited by the concentration
of saliva (s1) and suppressed by the lactic acid (s2)

g1 = ϑ1ρsμ1
s1

k11 + s1

kl
kl + s2

. (3)

In Eq. (3), μ1 [T−1] and k11 [ML−3] refer to the maximum growth rate and the
half-rate constant of the S. gordonii in the Monod kinetic respectively. We introduce
a parameter kl [ML−3] for modeling the suppression process induced by the lactic
acid. A benefit of choosing g1 in the form as Eq. (3) is, when s2 → +∞, g1 → 0.
This means the growth of the S. gordonii stops when the concentration of the lactic
acid is infinitely large.
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The growth of Veillonella is limited by both the concentration of the nutrients in
saliva s1 and the concentration of the lactic acid s2

g2 = ϑ2ρvμ2
s1

k21 + s1

s2
k22 + s2

. (4)

In Eq. (4),μ2 [T−1] denotes the maximum growth rate of Veillonella and k21 [ML−3]
and k22 [ML−3] are the half-rate constant in the Monod kinetic.

2.4 Mass Balance of Saliva and Lactic Acid

The chemical reactions of components in the saliva environment are very complex,
and the corresponding reaction parameters are mostly unknown. Instead of describing
detailed chemical reactions of all involved chemical components in saliva, we consider
the saliva itself as one substance demanded by both species of bacteria. Since the time
scale of the transport process of the substrate (solutions) is much smaller than the time
scale of the biofilm growth (Picioreanu et al. 2000), the mass balance of the saliva is
modeled as a stationary diffusion-reaction process as

− D1∇2s1 = r11 + r12, x ∈ Ω, (5)

where r11 and r12 [ML−3T−1] denote the saliva (nutrients in saliva) consumption rates
by S. gordonii and Veillonella sp. respectively, and D1 [L2T−1] denotes the diffusion
coefficient of the saliva. As a remark, one can also write (5) as a time-dependent
equation (Wanner and Reichert 1996).

The nutrient in saliva comes from the outside of the modeling domain Ω . We are
interested in the symbiotic behavior of bacteria in a batch system with sufficient sup-
plying nutrients in this study. For this reason, we consider a specific batch system with
a controlled concentration of nutrients. Accordingly, we apply a boundary condition
where a constant value s̄1 is set at the top of the computational domain Γht (as shown
in Fig. 3)

s1 = s̄1, x ∈ Γht . (6)

As a remark, if the nutrient concentration s1 is not controlled in the application, one
needs to modify Eq. (5) by involving the time-dependent term and also apply a no-flow
boundary at the top of the computational domain. A no-flow boundary is applied on
the other borders of the computational domain as

ns1 · ∇s1 = 0, x ∈ Γs1, (7)

where ns1 denotes the normal vector of Γs1.
The reaction term corresponding to the consumption of saliva by S. gordonii is

described by using the Monod kinetics and reads

r11 = − 1

Ys1
g1, (8)
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where Ys1[−] denotes the corresponding yield of the S. gordonii by consuming rate
of the saliva. Similarly, the consumption rate of the saliva due to the Veillonella reads

r12 (s1, s2, ϑ2) = − 1

Yv1
g2, (9)

where Yv1 [−] is the yield of the Veillonella.
The lactic acid which is secreted by the S. gordonii accumulates over time in the

system. If a batch system is considered, the lactic acid is produced inside of the biofilm
domain Bt and stays in the system. In this case, the mass balance of the lactic acid
cannot be modeled as a quasi-steady state since the absence of the Dirichlet boundary
condition. For these reasons, the mass balance of the acid has to be modeled as a
time dependent process. The mass transport of acid is diffusion-reaction dominated.
Therefore, one can simplify themodel by neglecting the advection process and achieve
comparable, accurate results. Moreover, the production and consumption of the lactic
acid by S. gordonii and Veillonella sp. are also considered respectively. The mass
balance of the lactic acid reads

∂s2
∂t

+ ∇ · (us2) − D2∇2s2 = r21 + r22, x ∈ Ω, (10)

where D2 [L2T−1] is the diffusion coefficient of the lactic acid. r21 [ML−3T−1]
and r22 [ML−3T−1] describe the production of the lactic acid by S. gordonii and
the consumption rate of the acid by the Veillonella respectively. As a remark, the
advection term in (10) is negligible. The Péclet number for the corresponding process
has an order of magnitude 10−4 (estimated by using parameters in Table 1). We solve
all time-dependent equations simultaneously using the stabilized space-time finite
element method (see Appendix B). Keeping the advection term in (10) makes it more
convenient for the numerical implementation.

S. gordonii grows by consuming saliva and producing lactic acid at the same time.
Thus the reaction term r21 can be written as

r21 = λg1, (11)

where λ [−] is a parameter which describes the mass production rate of acid by unit
mass of S. gordonii. Only the Veillonella sp. in the system consumes lactic acid,
therefore, the reaction kinetic can be written as

r22 (s1, s2, ϑ2) = − 1

Yv2
g2, (12)

where Yv2 refers to the yield of Veillonella by consuming the lactic acid. A no-flow
boundary is applied on ∂Ω for Eq. (10) as

ns2 · (u∇s2 − D2∇s2) = 0, x ∈ ∂Ω, (13)

where ns2 denotes the normal vector on ∂Ω .
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We applied a no-flow boundary condition in the saliva’s mass balance equation.
Such a boundary condition implies that a batch system is modeled. For flow chamber
systems, one may also invoke a Dirichlet boundary for the acid (see later discussions
in Sect. 3.1.2). Alternatively, one can apply a diffusive boundary layer (Feng et al.
2017) which essentially is a Robin boundary condition (Ghasemi et al. 2018; Wanner
and Gujer 1986) for allowing the acid to leave the domain.

2.5 Potential Equation for theMovement of the Biofilm

We model the movement of the biofilm as a potential flow driven by the production
of the biomass inside of the biofilm following (Klapper and Dockery 2002; Alpkvist
and Klapper 2007). It is assumed that the two species of bacteria compose the whole
biofilm. Therefore, the volume fractions of the S. gordonii and Veillonella sum up to
one in the biofilm domain Bt as

2∑

i=1

ϑi = 1, x ∈ ∂Bt . (14)

Following the previous potential flow assumption, the biofilm growth velocity is
described as the gradient of the potential Φ. Substituting Eqs. (1a) and (1b) into
(14) yields the potential equation

∇ · u = ∇2Φ = g1
ρs

+ g2
ρv

, x ∈ Bt , (15a)

Φ = 0, x ∈ Γint , (15b)

nΦ · ∇Φ = 0, x ∈ ΓΦ. (15c)

In Eq. (15), nΦ denotes the norm vector of ΓΦ . Additionally, u = 0 in the domain
outside of the biofilm Bt.

2.6 Dimensionless Form of the Governing Equations

Equations (1), (5), (10) and (15a) together with their corresponding boundary con-
ditions compose the full mathematical model which describes the symbiotic biofilm
system illustrated in Fig. 2.

To obtain the dimensionless form of the governing equations, we introduce the
following dimensionless variables

X = x
H

, T = t

td
, χ = tdΦ

H2 , S1 = s1
s̄1

,

S2 = s2
s̄1

, D∗
2 = D2td

H2 , Θ2
11 = H2ρsμ1

Ys1D1s̄1
, Θ2

12 = H2ρvμ2

Yv1D1s̄1
,

Θ2
21 = λρsμ1td

s̄1
, Θ2

22 = ρvμ2td
s̄1Yv2

, Ψ1 = μ1td, Ψ2 = μ2td,
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K11 = k11
s̄1

, K21 = k21
s̄1

, K22 = k22
s̄1

, KL = kl
s̄1

. (16)

In Eq. (16), H and td are characteristic length and time which are taken as the height
of the computational domain and the time of a day respectively in this study.

Substituting Eq. (16) into Eqs. (1), (5), (10) and (15a) yields the dimensionless
form of the governing equations. The detailed dimensionless governing equations
are listed in Appendix A, and the corresponding numerical strategy for solving these
dimensionless equations is presented in Appendices B and C.

3 Results

We investigate the solution behaviors of the mathematical model in this section. An
initially evenly mixed scenario has been investigated in Sect. 3.1. It turns out that the
solution is spatially homogenized at a later time. To better understand the solution’s
homogenization property, we studied howdifferent random initial conditions influence
the solutions in Sect. 3.2. We also look into more realistic scenarios with an initial
condition of one species embedded in another and investigate the role of symbiotic
reactions in the generation of homogenized solutions (in Sects. 3.3 and 3.4).

Two-dimensional simulations are carried out with the modeling parameters listed
in Table 1. For all numerical simulations, a 200 × 200 spatial mesh with four-node
bilinear elements is applied and the time step size is taken as Δt = 1

200 [day]. The
TDG-FIC scheme (see Appendix B) with a 3rd order time accuracy is applied for
solving the governing equations. In this study, we aim at investigating the reactive
dynamics of the symbiotic biofilm system instead of a specific experimental scenario.
We apply an initial condition for S2 by assuming no lactic acid in the system as

S2 (X, t = 0) = 0, X ∈ Ω∗. (17)

3.1 Evenly Mixed Case

A wave shape initial biofilm-fluid interface in the dimensionless domain is applied

Γ 0
int :→ Z = 0.1 + 0.05 sin

(
4πX + π

2

)
, X ∈ Ω∗. (18)

We also consider that these two species of bacteria are initially evenly mixed as

ϑ1 (X, t = 0) = ϑ2 (X, t = 0) = 0.5, X ∈ Ω∗. (19)

3.1.1 Biomass Evolution and Distribution

Simulation results of biomass distribution of both S. gordonii and Veillonella at early
and late times are shown in Fig. 4. Since the numerical solutions are symmetric regard-
ing themiddle line X = 0.5, only the half plane of a solution of each species of biomass
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Fig. 4 Simulation results of the symbiotic biofilm system at different times (from top to bottom are at
t = 9.6h(T = 0.4) and t = 48h(T = 2.0)). Left column: Volume fraction distributions of S. gordonii
and Veillonella; Right column: Volume fraction profiles of S. gordonii and Veillonella and total biomass in
depth at X = 0.5

is shown in the figure. The white curve in Fig. 4 represents the biofilm-fluid interface.
The simulation results demonstrate that a flat biofilm pattern is generated after the
growth of the biofilm for a certain time. This is due to the nutrients are not scarce in
the system. However, we still can observe that the waved biofilm-fluid interface has
quite an impact on the local distribution of the lactic acid (see later discussions).

Biomass volume fraction profiles of S. gordonii, Veillonella and total biomass at
different times along X = 0.5 are shown in the right column in Fig. 4. It is observed
that S. gordoniimoves up as a result ofwinning the competition for nutrients in saliva in
the vicinity of the biofilm-fluid interface. Such a phenomenon has also been observed
in experimental studies (Chalmers 2008) as shown in Fig. 5. In the figure, S. gordonii
andVeillonella PK1910 are colored in green and blue respectively.We observe that the
S. gordonii locates above the Veillonella in the areas within the red squares in Fig. 5.
As a remark, we are not trying to reproduce the biofilm pattern shown in Fig. 5 in this
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Fig. 5 Spatial distribution of S.
gordonii (in green) and
Veillonella PK1910 (in blue)
observed with confocal laser
scanning microscopy in 2h
flowcell biofilms (Chalmers
2008)

paper. The pattern of biofilms highly depends on nutrients conditions. A diluted saliva
(Chalmers 2008) is used as a nutrient in the experiments corresponding to Fig. 5. We
applied the calibrated model parameters corresponding to the growth of S. gordonii
from our previous experimental study (Rath et al. 2017). The S. gordonii is cultured in
the Tryptic Soy Brothmedium instead of the diluted saliva. Under such a condition, we
find the S. gordonii build up a biofilm of layering pattern (Rath et al. 2017; Kommerein
et al. 2017). It has been observed that the Streptococcus sp. dominates when they are
coaggregated with the Veillonella sp. Therefore, all numerical examples in this paper
are set up with layered initial conditions.

The inhibition parameter kl has a significant influence on the growth of both species
of bacteria. According to Eq. (3), the lactic acid does not prevent the growth of S.
gordonii when kl is an infinitely large number. In this case, one would expect the S.
gordonii grows at a large rate. As shown in Fig. 6, we observe a faster growth of both
species of bacteria by using a larger value of kl . As a remark, it is not surprised to see
that the Veillonella sp. also grows faster associatively with the S. gordonii. This is due
to the mutualistic relationship between these two species.

It should be noted that the simulation results correspond to an evenly mixed initial
biomass volume condition. In nature, it is observed that S.gordonii usually attaches
to a surface first and Veillonella attaches to Streptococcus afterwards. They form the
so-called “corn cob” pattern (Kolenbrander et al. 2010) in vitro. Such a pattern demon-
strates that the initial condition of either the geometry of the biofilm-fluid interface or
the biomass distribution in such a symbiotic biofilm system is heterogeneous. To study
such complex heterogeneity properties that are influenced by the initial conditions,
an attachment process with considerations of bacteria receptors has to be considered.
The attachment process normally happens at an individual bacterium scale and can
hardly be considered only with a continuum model. To capture the attachment pro-
cess, modeling the whole biofilm system with a multi-scale model will be promising.
However, this is beyond the scope of this paper.
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(a) Volume fraction evolution profiles of Strep-
tococcus sp. with different inhibition parameter
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(b) Volume fraction evolution profiles ofVeil-
lonella sp. with different inhibition parameter
kl.

Fig. 6 Sensitivity analysis of the inhibition parameter kl on the growth of bacteria

3.1.2 Lactic Acid

Distribution of the lactic acid in terms of its dimensionless concentration S2 at different
times is presented in Fig. 7. The lactic acid is produced by the S. gordonii and consumed
by the Veillonella. The acid is transported diffusively and accumulates in the fluid
domain. It is observed that a higher concentration of acid accumulates above the
biofilm-fluid interface, especially, after the S. gordonii becomes dominant at the top
layer of the biofilm. Since there is more S. gordonii at the valley of the biofilm surface
at T = 1.0 and T = 1.6, two punctiform sources of the acid at the biofilm valley
are observed. This is why we observe the maximum acid concentration appears in the
middle of the computational domain, and the acid diffuses to the top boundary. The
Veillonella wins the competition at the lower part of the biofilm (see biomass profiles
in Fig. 4) where the lactic acid is largely consumed by the Veillonella. What should be
noted is that the distribution of the lactic acid is also influenced by the biofilm patterns
and the generation of biofilm patterns might be influenced by the distribution of the
lactic acid as well.

Figure 8 shows profiles of the lactic acid at X = 0.5 at different times. For each plot,
the concentration of the lactic acid increases from the bottom of the biofilm to the top
of it and decreases slightly afterwards in the bulk fluid. The profiles demonstrate that
the location of the maximum concentration moves together with the biofilm interface.
The profiles also show that the lactic acid accumulates in the bulk fluid domain over
time. Comparing the two profiles of t = 1.6 day(T = 1.6) and t = 2.0 day(T = 2.0),
the difference of the acid concentrations at the bottom of the biofilm is rather small.
It seems the solution reaches a steady state locally there.

Since we apply a no-flow boundary to model the acid transport in a batch system.
The acid accumulates in the fluid domain over time. One can also apply a Dirichlet
boundary for s2. By assuming the acid is removed immediately at the top of the
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(a) T = 0.4 (b) T = 1.0

(c) T = 1.6 (d) T = 2.0

Fig. 7 Distribution of lactic acid of the symbiotic biofilm system at different times (T = 0.4, 1.0, 1.6, 2.0).
The white curve in the figures denotes the biofilm-fluid interface

computation domain, Eq. (13) can be replaced by

s2 = 0, x ∈ Γht. (20)

As shown in Fig. 9, the lactic acid profiles are different than the profiles shown
in Fig. 8 in the fluid domain. We further compare the solutions of the lactic acid by
using different boundary conditions in Fig. 10. It turns out that different boundary
conditions do not affect the acid profiles much in the biofilm.

The lactic acid plays a twofold role in biofilm growth. On the one hand, it is
the carbon source for Veillonella. On the other hand, the acid inhibits the growth of
Streptococcus. In this study, we apply a relatively large value of kl (see Table 1), which
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Fig. 8 Dimensionless
concentration profiles of lactic
acid at X = 0.5 at different times
(T = 0.4, 1.0, 1.6, 2.0) with a
no-flow boundary condition
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Fig. 9 Dimensionless
concentration profiles of lactic
acid at X = 0.5 at different times
(T = 0.4, 1.0, 1.6, 2.0) with a
Dirichlet boundary condition
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reduces the second effect. Since the acid does not accumulate in the bulk fluid when
the Dirichlet boundary is applied, its concentration is relatively smaller, especially
at a later time (e.g., the peak value of S2 at T =2.0). Therefore, the biofilm grows
slower. The dimensionless thickness of the biofilm reduces 3% at T = 1.6 by using
the Dirichlet boundary. At T =2.0, the reduction is increased to 6%. This study aims
to investigate the solution behaviors, the boundary condition of the acid will not affect
our investigation results.

The simulation results of this 2D example shed a light on the properties of the
multi-dimensional numerical solutions of the presented biofilm model. First, hetero-
geneous biomass distribution is obtained with this model even though a fully mixed
initial condition is applied. On the other hand, the biomass is homogenized locally in
the biofilm. Second, the biofilm-fluid interface is flatted in time. However, the non-flat
interface has an influence on the lactic acid distribution. Based on those observations,
we ask ourselves: (1) Will the local homogenization process always happen in this
model regardless of the initial biomass distribution? If so, will the initial distribution
influence the homogenization process? (2) How will a heterogeneous initial biomass
distribution influence the morphology of the biofilm interface as well as the compo-
nents (including the biomass and the lactic acid) distributions during the growth?
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Fig. 10 Comparison of lactic
acid profiles at X = 0.5 with
different boundary conditions at
T = 0.4, 1.6 and 2.0
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3.2 Sensitivity to Initial Biomass Distribution

In order to answer these questions raised in the previous section, we study the sen-
sitivity of the presented mathematical model to different types of initial biomass
distributions. As a matter of fact, the initial distribution of different species of bacteria
in a biofilm can be never evenly mixed in nature. As shown in Fig. 11, we consider
three cases of the random initial distribution of biomass. Random fields are gener-
ated by using given different correlation lengths. The correlation length measures the
distance of two correlated points (e.g., the points with correlated material properties
or physical quantities). Thus, the correlation length is often seen as a measure of the
roughness of surfaces. In this study, different correlation lengths of 2Δx , 4Δx , and
8Δx are applied in each case, in which Δx = 1

200 denotes the length of a spatial
element in the horizontal direction. As a remark, the total initial mass (or volume) of
each species of bacteria is the same. To simplify the problem, the initial biofilm-fluid
interface is modeled as a flat line, and a constant initial biofilm thickness of 60 μm
(Z = 0.2) is assumed. Following our previous numerical setup, we assume that there
is no lactic acid in the system initially.

As shown in Fig. 12, the Veillonella patches are stretched and thus generating
plume-like structures during the biofilm formation in all three cases. This indicates
that processes happen mainly in the vertical direction, and the horizontal movement
is not obvious. By increasing the correlation length of the initial biomass distribution,
the size of the plumes increases. This results in that the biomass volume fraction
profiles along a vertical line, for instance at x = 150 μm (X = 0.5) as shown in
Fig. 13, get less fluctuated with a larger correlation length. However, this does not
mean that with a larger correlation length, the biomass homogenizes faster. In order to
study how different biomass initial distributions influence the homogenization time,
we compare the numerical solutions corresponding to the random initial distributions
to the solution with an evenly mixed initial biomass distribution. Since the simulation
involves moving domains, measuring the homogenization process is nontrivial. We
calculate the difference of the volume fractions of the Veillonella between the evenly

123



Modeling of symbiotic bacterial biofilm growth Page 19 of 36 48

Fig. 11 Initial random volume fraction distribution of Veillonella with different correlation lengths

mixed and randomly distributed cases to measure the homogenization process

Mdiff,i = 1

N

∥∥ϑ2|mixed − ϑ2|i
∥∥ , (21)

where ϑ2 is the solution vector of the volume fraction of Veillonella, N is the num-
ber of the unknowns in the vector and indexes “mixed” refers to the evenly mixed
initial condition. The index i = 1, 2, 3 refers to scenarios with different correlation
lengths of 2Δx , 4Δx and 8Δx . Since the evenly mixed case always presents a locally
homogenized solution which produces a comparable biofilm thickness evolution as
the other cases at an early time, a smaller Mdiff corresponds to a solution which is
more homogenized.
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Fig. 12 Volume fractions of Veillonella at different times corresponding to different initial distribution with
various corrlation lengths. Figure from left to right refer to simulation results corresponding to different
initial correlation lengths of 2Δx , 4Δx and 8Δx . Figure from top to bottom refer to simulation results at
different times of t = 0.1 day (T = 0.1), t = 0.5 day (T = 0.5) and t = 1.5 day (T = 1.5)

The evolution of Mdiff corresponding to these three scenarios is illustrated in Fig.
14. The results demonstrate that the numerical solutions are homogenized in all these
three cases as soon as the simulation starts. The case corresponding to a smaller
correlation length requires less time to reach the state of a given value of Mdiff at the
early time. In other words, the system homogenizes faster when the correlation length
is smaller. However, as mentioned earlier, more fluctuated vertical biomass profiles
are observed corresponding to the scenarios with larger correlation length. Moreover,
Mdiff increases at a later time (as shown in Fig. 14). This is due to even though the
initial biomass in the homogeneous case is the same as these three heterogeneous
cases, the distribution of the lactic acid is different from case to case which results
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Fig. 13 Volume fraction profiles
of Veillonella at X = 0.5 at
t = 0.1 day (T = 0.1; early
time), t = 0.5 day (T = 0.5;
middle time) and t = 1.5 day
(T = 1.5; late time)
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(c) t = 1.5 day

in different biomass production in the heterogeneous cases than in the homogeneous
case. Such a difference may accumulate over time and leads to an increase in the
measured mass difference Mdiff at late time. In a word, the presented heterogeneous
system will not converge to the homogeneous system where the biomass is initially
evenly mixed.
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Fig. 14 Homogenization times
of three scenarios corresponding
to initial biomass distribution
with different correlation lengths
2Δx , 4Δx and 8Δx

0 0.5 1 1.5
Time [Day]

0.5

1

1.5

2

2.5

M
di

ff

10-4

2 x

4 x

8 x

Fig. 15 Two scenarios of initial biomass distribution (blue:bulk fluid; purple: S. gordonii; green:Veillonella)

3.3 Initial Biomass Distribution with Patch-shape Veillonella

One could also argue that a random initial distribution of biomass is not realistic. It
is more often found in mature biofilm systems that the Veillonella group bacteria are
embedded in Streptococcus group bacteria (Chalmers et al. 2008; Kommerein et al.
2017). Therefore, we carry out studies with two different initial biomass distribution
scenarios as shown in Fig. 15. The irregular geometry of the Veillonella clusters, num-
bered from 1 to 4 (from left to right), are generated by using an implicit superquadric
function which is defined by an implicit equation with random parameters (Well-
mann and Wriggers 2012) and is rotated by a random angle. In case (a), the initial
biofilm-fluid interface is flat, while a non-flat initial interface is assigned in case (b).

Simulation results of these two cases with different initial biomass distributions
are shown in Figs. 16 and 17. The simulation results demonstrate that the locally
homogenization occurs at a late time (at 1.0 day). Some Veillonella patches are still
observable even at T = 1.0. One may expect that the patches will be homogenized if
we run the simulation long enough. Also, a non-flat biofilm-fluid interface is generated
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Fig. 16 Simulation results of the symbiotic biofilm system at different times (corresponding to the case
in Fig. 15a). The white curve denotes the biofilm-fluid interface. From top to bottom are at t = 0.05 day
(T = 0.05), t = 0.5 day (T = 0.5) and t = 1.0 day (T = 1.0). Left column: Volume fraction distributions
of S. gordonii; Middle colume: Volume fraction distributions of Veillonella; Right column: Dimensionless
concentration of lactic acid (black curves denote isolines of S2)

during the growth even if the interface is flat initially (as shown in Fig. 16). This is
due to the heterogeneous reactions, which result in a heterogeneous biofilm growth
velocity field. With the homogenization of the solution, the biofilm interface gets
flatted again

Contours of the volume fraction of Veillonella ϑ2 = 0.6 of each case at t = 0
and at t = 1.0 day are plotted in Fig. 18. In Fig. 18a, the second Veillonella cluster
(numbered in Fig. 15) seems to be rotated anticlockwise. However, the third cluster
moves up together with the growth of the biofilm. The forth one is simply stretched and
shrunken. In case (b), as shown in Fig. 18b, we observe an interesting feature of the
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Fig. 17 Simulation results of the symbiotic biofilm system at different times (corresponding to the case
in Fig. 15b). The white curve denotes the biofilm-fluid interface. From top to bottom are at t = 0.05 day
(T = 0.05), t = 0.5 day (T = 0.5) and t = 1.0 day (T = 1.0). Left column: Volume fraction distributions
of S. gordonii; Middle colume: Volume fraction distributions of Veillonella; Right column: Dimensionless
concentration of lactic acid (black curves denote isolines of S2)

numerical solution that the third and the forth Veillonella clusters cannot be captured
by the contour line ϑ2 = 0.6 at 1.0 day. This demonstrates that those two clusters are
homogenized faster than the other two clusters. The simulation results suggest that the
homogenization time varies spatially which might be induced by the heterogeneous
reactions.
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Fig. 18 Movement of Veillonella clusters over time. The purper curve and the black curve denote contour
lines of volume fraction of Veillonella ϑ2 = 0.6 at t = 0 day (T = 0) and t = 1.0 day (T = 1.0)
respectively

3.4 The Role of the Symbiotic Reactions

Following the discussions in the previous section, the presented reactionmodelmay be
one of the main reasons that cause local biomass homogenization. To understand the
role of the reaction terms in themathematicalmodel,we compare the simulation results
presented in Fig. 18b to the results by using a model without symbiotic reactions. The
same model setup, as the case shown in Fig. 18b, has been applied in this study. We
simplify the symbiotic model (SM) presented in Sect. 2 by applying:

g1 = ϑ1ρsμ1
s1

k11 + s1
, (22)

g2 = ϑ2ρvμ2
s1

k21 + s1
, (23)

and
r22 = 0. (24)

Themodel reduces to a competitivemodel (CM) inwhich the growth of both species
of bacteria is limited only by the nutrient (saliva). In this case, the lactic acid does
not play a role in biofilm growth, and it accumulates in space. One would expect that
by applying CM, the biofilm grows faster than using SM due to the absent limitation
of the lactic acid. Meanwhile, the species which has a larger maximum growth rate
becomes dominant during the growth. As shown in Fig. 19, the simulation results of the
Veillonella sp. by using CMmeet the above expectations. The Veillonella sp. becomes
dominating during the growth and wins the competition. The simulation results of
the CM (as shown in Fig. 19) do not homogenized as in the SM (see Fig. 18b). This

123



48 Page 26 of 36 D. Feng et al.

Fig. 19 Simulation results of volume fractions of Veillonella sp. at different times by using the competitive
model. The white curve denotes the biofilm-fluid interface. The black and grey curves denote contour lines
of volume fraction of Veillonella ϑ2 = 0.6 and ϑ2 = 0.8 respectively

demonstrates that the symbiotic interaction is one of the main reasons that lead to the
homogenized solutions.

4 Summary and Discussion

4.1 Summary

We have presented a new mathematical model for modeling the growth of symbi-
otic biofilms in this paper. An intermediate product, namely the lactic acid produced
by the Streptococcus sp., has been explicitly modeled. We found that the volume
fractions of different species of bacteria homogenize at a later time. To understand
the solution behaviors, we studied how the initial biomass distribution influences the
homogenization process. Random distributions of the biomass volume fractions with
different correlation lengths were taken as initial conditions. We compared the sim-
ulation results of the case where the bacteria were initially evenly mixed. As would
be expected, the biomass homogenized faster associating with an initial state with a
smaller correlation length. However, the random distribution cases do not converge to
the same concentration distribution as the evenly mixed one, although the same initial
mass and morphology of the biofilm surface (flat surface) have been assigned.

For a better understanding of the role of the initial distributions, we investigated
scenarios with patch-shape biomass. The simulation results demonstrate that the local
growth field can lead to changes in the morphology of the biofilm surface and differ-
ent bacteria patches’ movements. Moreover, we also observe various homogenization
speeds that are induced by the heterogeneity of the symbiotic reactions. To understand
the role of the reactions in the homogenization process, we simplified the model by
switching off the symbiotic reactions, resulting in a competitive model. The compet-
itive model’s numerical solution does not get homogenized, which demonstrates that
the symbiotic reaction is one of the main reasons for spatial homogenizations.
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4.2 Discussion

It is well-known in microbiology that bacterial biofilms’ biological behaviors are a
lot more complicated than a mere competition of “food” in nature. Many efforts have
been put in the past decades to understand how different bacteria species interact in a
biofilm. The symbiotic relationship between two species of bacteria is one of the most
interesting phenomena in microbiology systems.

Mathematical modeling has been proved to be a powerful tool for understanding
biofilm’s biological behaviors in the past years (Mattei et al. 2017). Tens or even hun-
dreds of mathematical models have been developed for modeling the bacterial biofilm
systems since the 1980s (Rittmann and McCarty 1980). Nowadays, biofilm models
are getting more comprehensive than earlier ones due to a deeper understanding of
the biological mechanisms. Based on the previous pioneer continuum biofilm models
(Alpkvist and Klapper 2007; Klapper and Dockery 2002), we studied a dual-species
biofilm system’s symbiotic behavior by using mathematical modeling.

To the best of the authors’ knowledge, this study provides the first comprehensive
investigation of the dynamics of a biofilm’s symbiotic reactions using a continuum
mathematical model. We modeled the biofilm growth as an advective movement of
a reactive potential flow in this study. The model has the advantage of capturing a
sharp biofilm interface without introducing additional parameters; however, it suffers
limitations on modeling merge of different colonies (see Discussion in Sect. 2). To
overcome this drawback, one can improve the model by considering the fluid phase
explicitly and thus lead to the mixture models (Zhang et al. 2008a). Alternatively, one
can model the biofilm growth as a diffusion process (Ghasemi et al. 2018; Rahman
et al. 2015), and apply the reaction models presented in this paper directly.

Instead of modeling the colonies’ merge, we are more interested in the reaction
model developed for the symbiotic biofilm systems. Even though the simulation results
demonstrate that themodel can represent the species of bacteria’s symbiotic behaviors,
we found that the reactive model can lead to homogenized solutions. The presented
model may fail to predict the biological behavior of the symbiotic biofilms after a
certain time when the numerical solution becomes over-homogenized. Therefore, it is
necessary to investigate what factors influence the homogenization speed in themodel.
It turned out that the speed of the homogenization depends on the initial biomass
distribution.

Individual bacteria are never resolved in a continuum biofilm model. This might
be another potential reason which leads to the over-mixing of the biomass. However,
the discretized element based biofilm models can also result in considerable internal
mixing, especially for multi-species problems (Tang and Valocchi 2013). It would
be interesting to compare the mixing behavior occurred in different continuum and
discretized element based biofilmmodels in future studies. As amatter of fact, there are
stillmanyopenquestions onmodelingmulti-species biofilmproblems.A third possible
reason that results in the unwanted homogenized solution is missing important bio-
processes in the model. There could be specific quorum sensing (QS) mechanisms that
prevent the mixing process in nature. Egland et al. presented experimental evidence
of signaling between S. gordonii and V. atypica (Egland et al. 2004). The diffusive
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short distance signaling induced by the quorum sensing (QS) might be one of the
key reasons that lead to the “corn cob” pattern of the biofilm system. Mathematical
modeling the QS in biofilm systems has already attracted much attention in recent
years (Emerenini et al. 2015; Zhao and Wang 2017; Ghasemi et al. 2018). However,
many more detailed QS mechanisms are still unclear (Egland et al. 2004) and may
result in many uncertainties in the model.
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A Dimensioless Form of Governing Equations

Mass balance for saliva

−∇2S1 = −Θ2
11ϑ1

S1KL

(K11 + S1) (KL + S2)
−Θ2

12ϑ2
S1S2

(K21 + S1) (K22 + S2)
, X ∈ Ω∗.

(25)
Mass balance for lactic acid

∂S2
∂T

+ ∇χ · ∇S2 − D∗
2∇2S2

= Θ2
21ϑ1

S1KL

(K11 + S1) (KL + S2)
− Θ2

22ϑ2
S1S2

(K21 + S1) (K22 + S2)
−

S1S2

[
ϑ1Ψ1KL

(K11 + S1) (KL + S2)
+ ϑ2Ψ2S2

(K21 + S1) (K22 + S2)

]
, X ∈ Ω∗.

(26)
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Mass balance for S. gordonii

∂ϑ1

∂T
+ ∇χ · ∇ϑ1

= ϑ1S1

[
(1 − ϑ1) Ψ1KL

(K11 + S1) (KL + S2)
− ϑ2Ψ2S2

(K21 + S1) (K22 + S2)

]
, X ∈ Ω∗.

(27)

Mass balance for Veillonella

∂ϑ2

∂T
+ ∇χ · ∇ϑ2

= ϑ2S1

[
(1 − ϑ2) Ψ2S2

(K21 + S1) (K22 + S2)
− ϑ1Ψ1KL

(K11 + S1) (KL + S2)

]
, X ∈ Ω∗.

(28)

Potential equation

∇2χ = S1

[
ϑ1Ψ1KL

(K11 + S1) (KL + S2)
+ ϑ2Ψ2S2

(K21 + S1) (K22 + S2)

]
, X ∈ B∗

t . (29)

B Numerical Methods

Two types of PDEs, namely the elliptic Eqs. (25) and (29) and the time dependent
advection-diffusion-reaction (ADR) Eqs. (27) and (28) (or advection-reaction equa-
tions) are involved in the current biofilm model. The mass balance equations of the
lactic acid and the biomass (S. gordonii and Veillonella) are solved simultaneously
in this study. The Time-discontinuous Galerkin (TDG) method (Hughes and Hulbert
1988; Hulbert 1992) is applied for solving the time dependent PDEs. The finite incre-
ment calculus (FIC) method (Oñate 1998; Oñate et al. 2007) is used to stabilize the
numerical solutions.Wewould like to refer to (Sapotnick andNackenhorst 2012; Feng
et al. 2017) for more detailed interpretation of the TDG-FIC method on solving the
time dependent ADR equations. In this study, 4-node bi-linear iso-parametric elements
are applied for spatial discretization of the mass balance equations of the saliva, lactic
acid and biomass. 8-node second order iso-parametric elements are used for solving
the potential equation. The free boundary (moving biofilm-fluid interface) at each time
step is captured by using an iso-line of 80% of total biomass volume fraction. Detailed
information on the numerical schemes involved in the numerical strategy will be pre-
sented in the following part. As a remark, only one and two- dimensional problems
are studied in this paper even through the mathematical model also can be applied for
three-dimensional problems.

B.1 Finite Element Approximation of Nonlinear Poisson Equation with C0

Elements

Equations (25) and (29) are Poisson equations. In this study, they are solved by using
conventional Galerkin finite element method with C0 type of elements. Both of these
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two equations can be written generally as

−∇2q = f , q ∈ B, (30a)

q =c, q ∈ ΓD, (30b)

n · ∇q =0, q ∈ ΓN , (30c)

where q represents the primary variables as S1 or χ in the governing equations. f
denotes a function as f = −Θ2

11ϑ1
S1KL

(K11+S1)(KL+S2)
− Θ2

12ϑ2
S1S2

(K21+S1)(K22+S2)
for Eq.

(25) and f = −S1
[

ϑ1Ψ1KL
(K11+S1)(KL+S2)

+ ϑ2Ψ2S2
(K21+S1)(K22+S2)

]
for Eq. (29). B refers to the

computational domain with the corresponding Dirichlet and Neuman boundaries ΓD

and ΓN . n is the norm vector on the Neuman boundary and c is a constant value
corresponding to the Dirichlet boundary. The weak form of Eq. (30) can be written as

a(q, w) = F(w), ∀w ∈ V, (31)

where,

a(q, w) =
∫

B
∇q∇wdV , (32a)

F(w) =
∫

B
f wdV . (32b)

w is an arbitrary test function in space V which is a subspace of the Hilbert spaceH1.
As a remark, the Newton-Raphson method (Wriggers 2008) is used when the equation
is nonlinear.

B.2 TDG-FIC Approximation of Time Dependent Advection–Diffusion-reaction
Equation

Equations (26)–(28) are time-dependent PDEs. Therefore, they are solved simultane-
ously by using the TDG-FIC method. Those three equations can be written as a set of
time dependent advection-diffusion-reaction partial differential equations as

∂q
∂t

+ ũT ∇̃q − ∇̃TQD∇̃q − f (q) = 0, (33)

where q = (S2, ϑ1, ϑ2)
T denotes the unknown vector. Detailed information on the

matrix form of each term in Eq. (33) can be found in C.
Applying discontinuous Galerkin method for time discretization and standard

Galerkin discretization in space yields a time-space weak form of Eq. (33) over a
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time-space domain Ω × Tn (see Figure 2 in Feng et al. (2019))

∫

Ω

w

∫

Tn
ν

(
∂qh

∂t
+ ũT ∇̃qh − ∇̃T

D̃∇̃qh − f
(
qh

))
dtdΩ

+
∫

Ω

wν+
n−1�q

h
n−1�dΩ = 0,

(34)

whereΩ and Tn denote the spatial and temporal computational domains, respectively.
qh denotes the time-space approximation of the variable vector. Since the nodal value
at a time point is discontinuous, a jump value of qhn−1 at tn−1, which is notated as
�qhn−1�, is introduced as

�qhn−1� = qh+
n−1 − qh−

n−1. (35)

Due to the non-linearity of the reaction terms f
(
qh

)
, the Newton–Raphsonmethod

(Wriggers 2008) is applied and Eq. (34) is linearized by introducing an incremental
process with qh,0 = 0 as

qh,β+1 = qh,β + Δqh, (36a)

f
(
qh,β+1

)
≈ f

(
qh,β

)
+ ∂ f

∂q

∣∣∣∣
qh,β

Δqh . (36b)

Substituting (36) into (34) yields the linearized time-space weak form

∫

Ω

w

∫

Tn
ν

(
∂Δqh

∂t
+ ũT ∇̃(Δqh) − ∇̃T

D̃∇̃(Δqh) − ∂ f
∂q

∣∣∣∣
qh,β

Δqh
)
dtdΩ

+
∫

Ω

wν+
n−1Δqh+

n−1dΩ =
∫

Ω

wν+
n+1q

h−,β
n−1 dΩ −

∫

Ω

wν+
n−1q

h+,β
n−1 dΩ

−
∫

Ω

w

∫

Tn
ν

(
∂qh,β

∂t
+ ũT ∇̃qh,β − ∇̃T

D̃∇̃qh,β − f (qh,β)

)
dtdΩ.

(37)

The unknown field of qh is interpolated over the time-space space by

qh =
nt∑

k=1

N̂k

nn∑

j=1

Ñ j
ˆ̃q jk, (38)

where nt and nn refer to temporal and spatial total degrees of freedoms respectively.
N̂ and Ñ are the temporal and spatial shape functions and ˆ̃q denotes the time-space
nodal variable vector.
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Discretization of Eq. (37) in space and time by adopting Eq. (38) within single
time-space element Ωe × Tn yields

[(
Ñ

T
, Ñ

)e ⊗ Tn
a

+
((

−B̃
TQu, Ñ

)e +
(
B̃
T
D̃, B̃

)e −
(
Ñ

T ∂ f
∂q

∣∣∣∣
qh,β

, Ñ

)e)
⊗ Tn

b

]
Δ ˆ̃q

=
( ˆ̃q−

n−1, Ñ
T
)e ⊗ Tn

c −
(
Ñ

T
, Ñ

)e ⊗ Tn
a
ˆ̃qβ

−
[
(−B̃

TQu, Ñ)e ˆ̃qβ +
(
B̃
T
D̃, B̃

)e ˆ̃qβ −
(
f

(
ˆ̃qβ

)
, Ñ

T
)e]

⊗ Tn
b,

(39)

where

(m, n)e =
∫

Ωe
mmdΩ, (40)

ˆ̃q refers to the time-space approximation of the nodal variables. Ta , Tb, Tc are time
matrixes with only temporal shape function N̂ involved

Ta =
∫

Tn
N̂

T dN̂
dt

dt +
(
N̂

+
n−1

)T
N̂

+
n−1, (41a)

Tb =
∫

Tn
N̂

T
N̂dt, (41b)

Tc =
(
N̂

+
n−1

)T
N̂

−
n−1. (41c)

Ñ is extended spatial shape function depending on the spatial element type (see C for
detailed matrix form of Ñ).

The diffusion term in (33) only affects the mass balance equation of the lactic
acid and does not appear in the mass balance equations of biomass. Therefore, the
system of the mass balance equations in this model is still hyperbolic dominated. It
is well known that solving hyperbolic PDEs with the conventional Galerkin method
suffers from convective instability (Donea and Huerta 2003). One way to relieve such
a problem is by adding an additional artificial diffusion (balancing diffusion) term into
the system. This yields the so-called “stabilization methods” (Codina 1998; Franca
et al. 1992; Lian et al. 2016) which have been developed for Galerkin methods over
the past decades. In this paper, one of the widely used stabilization methods, namely
the finite increment calculus (FIC) method, which introduces a nonlinear balancing
artificial diffusion term in (39) is adopted. Thus, the diffusion coefficient matrix D̃ is
replaced by

D̃
ST B = D̃ + D̃F IC , (42)

where

D̃F IC =
⎛

⎝
D∗

I (S2) 0 0
0 D∗

I I (ϑ1) 0
0 0 D∗

I I I (ϑ2)

⎞

⎠ (43)
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D∗
I , D

∗
I I and D∗

I I I are 2× 2 diagonal matrices depending on the variables S2, ϑ1 and
ϑ2 respectively as in (43). Detailed calculation procedures of these D∗ matrices for
multi-dimensional problems can be found in (Feng et al. 2017). As a remark, D̃F IC

depends on the solution of each spatial element at the current time step. Moreover,
the artificial balancing diffusion is introduced along the directions of the principle
curvatures of the solution and thus it must be calculated in a local coordinate system
and then transferred to the global Cartesian coordinate system afterwards. Therefore,
the FIC stabilized algorithm becomes nonlinear and iterations at each time step are
required even if a linear problem is considered.

C Matrices in the Advection–Reaction Equation

For two-dimensional problems, the advection and diffusion coefficients matrices read

ũ =I3×3 ⊗ u =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ⊗
(
ux
uy

)
=

⎛

⎜⎜⎜⎜⎜⎜⎝

ux 0 0
uy 0 0
0 ux 0
0 uy 0
0 0 ux
0 0 uy

⎞

⎟⎟⎟⎟⎟⎟⎠
, (44a)

∇̃ =I3×3 ⊗ ∇ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ⊗
(

∂
∂x
∂
∂ y

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂x 0 0
∂
∂ y 0 0

0 ∂
∂x 0

0 ∂
∂ y 0

0 0 ∂
∂x

0 0 ∂
∂ y

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (44b)

D̃ =
⎛

⎝
D∗
2 0 0
0 0 0
0 0 0

⎞

⎠ , (44c)

where ux and uy are the advection velocity components along x and y coordinates
respectively. I denotes an identity matrix and⊗ is the Kronecker product. I denotes an
identical matrix and ⊗ is the Kronecker product. D∗

2 denotes a 2× 2 diagonal matrix
with D∗

2 placed at the main diagonal and 0 denotes a 2 × 2 null matrix. Furthermore,
f (q) reads

f (q) = ( f1 (S2, ϑ1, ϑ2) , f2 (S2, ϑ1, ϑ2) , f3 (S2, ϑ1, ϑ2))
T , (45)

where f1, f2 and f3 denote the reaction terms of Eqs. (26)–(28) respectively.
For four-node 2D bi-linear element, the shape function is extended to

Ñ = N ⊗ I3×3, (46)
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where N = [N1, N2, N3, N4] is the shape function of the four-node 2D bi-linear
element. Similarly,

B̃ = B ⊗ I3×3. (47)
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