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Abstract: White adipose tissues are major endocrine organs that release factors, termed adipokines,
which affect other major organ systems. The development and functions of adipose tissues de-
pend largely upon the glycosaminoglycan heparan sulfate. Heparan sulfate proteoglycans (HSPGs)
surround both adipocytes and vascular structures and facilitate the communication between these
two components. This communication mediates the continued export of adipokines from adipose
tissues. Heparan sulfates regulate cellular physiology and communication through a sulfation code
that ionically interacts with heparan-binding regions on a select set of proteins. Many of these
proteins are growth factors and chemokines that regulate tissue function and inflammation. Cells
regulate heparan sulfate sulfation through the release of heparanases and sulfatases. It is now possible
to tissue engineer vascularized adipose tissues that express heparan sulfate proteoglycans. This
makes it possible to use these tissue constructs to study the role of heparan sulfates in the regulation
of adipokine production and release. It is possible to regulate the production of heparanases and
sulfatases in order to fine-tune experimental studies.
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1. Introduction

White adipose tissues (WATs) regulate energy homeostasis through their ability to
store and release lipids [1]. Further, these tissues provide thermal insulation and act as
shock absorbers [2]. Another critical function is to regulate activities in other organs such
as the liver, lungs, heart, and skeletal muscle through the release of bioactive factors termed
adipokines, making WAT the largest endocrine organ in the body [3,4]. Adipokines are a
highly heterogeneous population of molecules that perform many and varied functions.
They include hormones, cytokines, enzymes, growth factors, and chemokines [5]. The en-
docrine function of WATs depends upon the close and extensive interrelationship between
adipocytes and the microvasculature [6]. The development of WATs and their endocrine
functions throughout life depends in major part on the presence of heparan sulfate pro-
teoglycans on both adipocyte surfaces and vascular surfaces. This review will examine
the functions of HSPGs in these roles. Further, the review will propose the application of
engineered vascularized tissue constructed to understand these functions better.

2. In Vivo Development of WAT

WAT is found in three anatomic locations: subcutaneous, visceral, and medullary/bone
marrow [1,7–10]. Each of these regions initially develops from microvascular plexi that are
supported by mesenchymal mural cells. A subset of these mural cells migrates from the vas-
cular wall and begin to acquire small cytoplasmic lipid deposits [8]. Simultaneously, these
cells begin to secrete laminins and type IV collagen, both components of basement mem-
branes (BMs) [7]. They also begin to acquire cell surface receptors for laminin, which allows
them to initiate BM organization [11]. Another early cell surface antigen is CD146, also
known as melanoma cell adhesion molecule [12]. Tang’s group used genetically marked
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mice to locate and isolate adipogenic progenitors in WAT [13]. They located previously
committed cells in the vascular mural compartment of WAT but not in other tissues. These
cells were identified by their expression of the platelet-derived growth factor-β receptor.

The development of a BM around adipocytes is an anomaly since BMs are typically
found at sites of epithelial-mesenchymal interfaces where many of the molecular compo-
nents are secreted by mesenchymal cells. However, the assembly of the BM is driven by
laminin receptors on epithelial cell surfaces [14]. Adipocytes are unique mesenchymal cells
in that they both produce BM components and express cell surface receptors for laminins,
which means that they can organize BMs [15]. This is a critical step in the development of
the adipocyte as it provides these cells with both mechanical support and a BM that contains
heparan sulfate proteoglycans (HSPGs). Thus, adipose tissues contain two distinct sets of
BMs, those that surround adipocytes and those that surround the microvasculature [16].

3. Heparan Sulfate Proteoglycans

Each HSPG consists of a core protein to which one or more heparan sulfate (HS)
chains are covalently attached [17,18] (Figure 1A,B). Adipose tissues, like other tissues
and organs, contain multiple species of HSPGs that appear on both cell surfaces and in
the matrix [17–19]. These have been allocated into full-time and part-time entities [18]
(Table 1), and both sets are present in adipose tissues. It is important to note that adipose
depots in various anatomic sites differ physiologically [20]. Gesta and co-workers [20]
examined these various sites in both mice and humans to determine whether specific sets
of genes might be differentially expressed. They found that a specific set of genes was more
highly expressed in mouse intraabdominal epididymal depots compared to other anatomic
sites. One of these highly over-expressed genes was the HSPG glypican 4. The same gene
was also highly over-expressed in human visceral fat depots, except in lean individuals
where it was over-expressed in subcutaneous regions. Glypican 4, like other glypicans, is
glycosyl-phosphatidylinositol–anchored (GPI-anchored) to the cell membrane [18]. This
allows it to migrate within the plane of the membrane, a feature that enables it to become
concentrated at specific sites in the membrane. The part-time HSPG CD44 is also present in
adipose tissue. CD44 plays a role in adipose tissue physiology, but it is not clear whether
the HS chain is involved [21]. Betaglycan, which functions as an alternate TGFβ receptor,
has been shown to be downregulated in the visceral fat of obese individuals [22]. The BM
HSPG perlecan is also a major component of adipose tissues. Perlecan is a matrix PG, and
its core protein contains multiple binding domains for other matrix molecules [23]. This
feature enables its insertion into BMs. It also may interact with cell surfaces via the α2β1
integrin [24].

Table 1. Heparan Sulfate Proteoglycans [18].

Proteoglycan Present in Adipose Tissues Location

Full-Time HSPGs

Syndecans 1-4 Syndecans 1, 3, 4 Cell Surface

Glypicans 1-6 Glypican 4 Cell Surface

Perlecan Yes Basement Membrane, Matrix

Agrin Unknown Matrix

Type XVII Collagen Unknown Matrix

Part-Time HSPGs

CD44 Yes Cell Surface

Betaglycan Yes Cell Surface
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Figure 1. (A) Cell Surface HSPGs. HSPGs consist of a core protein to which one or more HS chains 
are covalently attached. Those HSPGs on the cell surface are integrated into the cell membrane either 
as transmembrane molecules, such as syndecans or as GPI-anchored molecules, such as glypicans. 
The HS chains contain domains (in red) in which highly sulfated disaccharides reside. (B) Possible 
Sulfation Sites on HS Disaccharides. There are four possible sulfation sites on HS disaccharides that 
contain L-iduronic acid. 
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four possible sulfation sites on disaccharides that contain iduronic acid and three possible 
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have anywhere between 0 and 4 sulfate units. As sulfation is non-random, this produces 
GAG chains that have distinct domains that recognize heparan binding domains on select 
proteins [27–30]. These domains consist of five or more highly sulfated saccharide units. 
There are multiple sulfation patterns that are recognized by different proteins. For 
example, HGF binds to domains that have a high level of 6-O-S, while FGF-2 binds to 
domains where the principal sulfation is by N-S and 2-O-S [30]. The number of proteins 
that express heparan binding domains is limited. However, many of these molecules are 
involved in the regulation of angiogenesis and are present in adipose tissues (Table S1). 

Figure 1. (A) Cell Surface HSPGs. HSPGs consist of a core protein to which one or more HS chains
are covalently attached. Those HSPGs on the cell surface are integrated into the cell membrane either
as transmembrane molecules, such as syndecans or as GPI-anchored molecules, such as glypicans.
The HS chains contain domains (in red) in which highly sulfated disaccharides reside. (B) Possible
Sulfation Sites on HS Disaccharides. There are four possible sulfation sites on HS disaccharides that
contain L-iduronic acid.

4. Sulfation of Heparan Sulfates and Its Role in Adipose Tissues

The carbohydrate component of HSs consists of repeating disaccharides, each con-
taining an amino sugar and either a uronic or iduronic acid [25]. These are linked into
straight chains that are modified during synthesis. Internal cell-mediated modifications
include acetylation/deacetylation, epimerization, and sulfation [25]. Sulfation is organized
by a family of enzymes termed sulfotransferases [26]. Sulfotransferases are membrane-
bound enzymes that are aligned in linear arrays in the Golgi so that they can organize the
attachment of sulfate groups to specific regions of the HS chains. There are a maximum of
four possible sulfation sites on disaccharides that contain iduronic acid and three possible
sites if uronic acid is present (Figure 1B). This means that a given HS disaccharide can
have anywhere between 0 and 4 sulfate units. As sulfation is non-random, this produces
GAG chains that have distinct domains that recognize heparan binding domains on select
proteins [27–30]. These domains consist of five or more highly sulfated saccharide units.
There are multiple sulfation patterns that are recognized by different proteins. For example,
HGF binds to domains that have a high level of 6-O-S, while FGF-2 binds to domains
where the principal sulfation is by N-S and 2-O-S [30]. The number of proteins that express
heparan binding domains is limited. However, many of these molecules are involved in
the regulation of angiogenesis and are present in adipose tissues (Table S1).

As HSPGs enter the extracellular regions, they become subject to modification by
other sets of cell-derived enzymes that modify the structure and sulfation of HS chains.
Sulfatases are a family of enzymes that mediate the selective removal of sulfate groups
from HS chains [26]. Two heparanases mediate the cleavage of specific carbohydrate
linkages, thus releasing fragments of the HS chain [31]. Individuals with type I diabetes
exhibit high levels of heparanases activity resulting in poorly sulfated HS associated with
β-cells [32]. The fragmentation of HS chains releases chemokines that recruit inflammatory
cells that destroy the β-cells. Similar events occur in mature adipose tissues exposed
to elevated levels of circulating glucose. This results in the upregulation of heparanase
production by adipocytes and other cells in the tissue. Additionally, elevated glucose
activates inflammatory cells resulting in inflamed adipose tissues characteristic of obese
individuals. These enzymes become important in diabetic individuals as the size and
sulfation of HS are modified by glucose levels [31]. The HS-modifying enzymes found in
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adipose tissues are the same as found elsewhere; however, it is possible that their regulation
is modified.

Wilsie and others, using the 3T3-L1 adipogenic model, demonstrated that cell surface
HSPGs play a major role in differentiating adipocytes from pre-adipocytes. They found an
increase in the presence of sulfated PGs upon induction of the 3T3-L1 cells [33]. However,
when the cultures were treated with xyloside compounds, a reduction in sulfation was
observed and was accompanied by reduced lipid uptake by the cells. The xylosides compete
with HS and CS chains for their attachment to their core proteins, resulting in a low sulfated
PG [34]. Other studies have shown that apolipoprotein E-enriched very low-density lipid
(VLDL) possesses heparan-binding domains that allow this molecule to be concentrated on
adipocyte surfaces [33,35]. Adipocytes also produce and secrete lipoprotein lipase (LPL),
which also associates with HS through its heparan-binding domain [33,35]. The mechanism
by which sulfate regulates lipid uptake is not completely clear. One proposed possibility
is that VLDL and LPL are concentrated in proximity to each other on the cell surface and
that LPL mediates the release of triglycerides. These are then internalized by fatty acid
transporters. Alternatively, VLDL is concentrated on the surface adjacent to the VLDL
receptor and/or the lipoprotein receptor-related protein, which mediate the internalization
of lipids [33,36] (Figure 2). This process may also occur when mature adipocytes become
hypertrophic. In addition, 3T3-L1 cells grown under high glucose conditions exhibit a
reduction in cell surface sulfation and a release of bound LPL [37]. In short, HS plays a role
in glucose metabolism.
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Figure 2. Cell surface HSPGs promote the uptake of lipids by adipocytes. Adipocytes produce
and secrete lipoprotein lipase (LPL) that becomes concentrated on the adipocyte surface through its
interaction with HS. Lipoproteins (apo-VLDL) from the circulation also possess an HB-domain that
mediates their attachment to HS on the adipocyte surface. This makes it possible for LPL to mediate
the release of triglycerides from the apo-VLDL, and these molecules are internalized by fatty acid
transporters. Alternatively, apo-VLDL concentrated on the cell surface by their interactions with HS
can be internalized through their binding to lipoprotein receptors. These are possible mechanisms by
which adipocytes acquire lipids during their development and maturation. Adapted from the work
by Wilsie et al. [33].

The heparan-binding protein insulin-like growth factor binding protein-2 has been
shown to interact with preadipocyte cell surfaces to inhibit their development. This further
emphasizes the importance of HSPGs in the regulation of adipogenesis [38]. One of
the adipocyte cell surface HSPGs is glypican-4, a glycosylphosphatidylinositol-anchored
molecule [39]. The expression of this PG is higher in visceral adipose tissues than in
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subcutaneous adipose tissues, and its expression increases with body fat content. One of
the functions of glypican-4 is to interact with the insulin receptor to enhance adipocyte
differentiation and hypertrophy [39]. The core protein can be cleaved, allowing release
from the cell to circulate as an adipokine.

Matsuzawa’s group inhibited HS synthesis in 3T3-L1 cells using CRISPR-Cas9 technol-
ogy to delete the Ext1 gene, an enzyme involved in HS synthesis and found that this loss
resulted in reduced glucose uptake and insulin-dependent intracellular signaling via the
BMP4-FGF1 pathways [40]. They further developed mutant mice in which HS chain syn-
thesis was partially inhibited and found a reduction in visceral adipose tissues. This group
also demonstrated the role of HS in regulating insulin secretion by pancreatic β-cells [32,41].
Thus, HS plays a dynamic role in multiple organs to regulate glucose levels.

Cell surface HSPGs also act as co-receptors for some growth factors. Fibroblast growth
factor-2 and hepatocyte growth factor, both considered adipokines, bind to HS, which
then presents these molecules in an active manner to the appropriate cell surface receptors
to initiate signal cascades [42]. These factors combine with other HB-binding factors
to regulate angiogenesis in adipose tissues: these include vascular endothelial growth
factors (VEGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF),
transforming growth factor- β (TGF- β), and angiopoitin like protein 4 [43]. HB-EGF is
produced by multiple cells in adipose tissues: macrophages, vascular endothelial cells,
and adipocytes. Its expression is upregulated by oxidative stress and obesity. One of its
functions is to increase lipoprotein production by the liver [44].

Heparan-binding EGF is produced in a variety of cells and organs as a transmembrane-
bound molecule that can be released by protease cleavage. In adipose tissues, it is produced
by adipocytes and pro-inflammatory macrophages [41,45]. It circulates and concentrates in
the vasculature, particularly in the liver, where it increases lipoprotein production. It also
activates the EGFR and ERB4 and induces the production of oxidants. Importantly, it has
been shown to be upregulated in obesity [44].

Adiponectin is produced preferentially by subcutaneous adipocytes and is released
into the circulation of lean versus obese individuals, where it promotes insulin sensitiv-
ity [46,47]. Both pro- and anti-angiogenic properties have been ascribed to this factor [6].
This adipokine does not possess an HB-binding domain, but it aggregates with PDGF-BB
that does associate with HS [48]. This association indicates that it tends to concentrate in
subendothelial regions where it may interfere with the activities of PDGF.

Leptin, a product of adipocytes, is released into the circulation, where it travels to the
hypothalamus to regulate satiety [3]. It is more highly produced in obese individuals than
in lean individuals. Leptin also plays a role in adipose tissues to promote the formation of
fenestrated microvessels. In this regard, it acts in a similar manner to VEGF-A, which at
high concentrations also promotes leaky vessels [5].

Adipose tissues are highly vascularized, and this feature is modulated as these tissues
expand or contract. Adipocytes produce angiogenic factors such as VEGF-A165, HGF,
PDGF-BB, and ANGPL-4 play roles in vascular expansion or contraction [6,42]. All these
molecules contain HB-binding domains. As such, these and other HB-binding molecules
become concentrated and protected by their presence in BMs. BMs release these molecules
gradually, creating gradients [49] that are necessary for development events such as angio-
genesis (Figure 3). Perlecan has been shown to regulate neo-angiogenesis by modifying the
concentration of VEGF and its interaction with the VEGF receptor-2 on vascular endothelial
cells [50]. The controlled release of angiogenic factors such as FGF-2 plays a role in adipose
tissue engineering [51,52]. These molecules are also released from adipose tissues and can
also be considered adipokines [4].
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Figure 3. Concentration and diffusion of HB-binding growth factors. The human dermal fibroblast
was cultured to create a 3D matrix. Agarose beads conjugated with heparin were integrated into this
matrix. The cultures were immunostained using an antibody for human FGF-2. As shown in the fig-
ure, FGF-2 is highly concentrated around these beads. A gradient develops from these beads into the
surrounding cultures. In cultures without beads, FGF-2 cannot be detected by immunohistochemical
staining but can be detected in a conditioned culture medium using sensitive ELISAs [53].

HSPGs in BMs play critical roles in the sequestration, concentration, and protection of
heparan-binding factors [25]. Furthermore, these structures regulate the diffusion of these
molecules, thus creating gradients important for cellular communication and guidance
in migration. One area where diffusion gradients are critical is angiogenesis. Molecules
like VEGF-a, PDGF, and HGF play critical roles [50]. Adipose tissues undergo constant
modification. Both pro- and anti-angiogenic factors play roles in these processes [6].

5. In Vitro Adipogenesis

Cell culture has been extensively employed to study adipocyte development. Early
studies concentrated on the use of murine 3T3-L1 cells [54]. However, human adipose
stem cells (ASCs) and mesenchymal stem cells (MSCs) have more recently been shown to
develop as adipocytes following induction [16]. With the identification and isolation of
human adipose stem cells, it has become possible to generate more complex organ-like
cultures. All of these populations, when cultured in an adipocyte induction medium,
undergo a differentiation profile very similar to that seen in vivo. Laminin is an early
secreted product and is followed by other BM molecules [15,16,55]. Each adipocyte in
the culture is surrounded by a BM upon completion of the induction process. Induced
cells acquire the CD146 antigen early upon induction. This provides a marker to separate
responsive versus non-responsive cells.

6. Tissue Engineered Adipose Tissue

Understanding adipose tissue functions have relied largely upon genetic studies in
mice [1]. However, mice differ in a number of critical respects from humans. Repetition of
these genetic studies in humans is not feasible. An alternate approach is to develop in vitro
assays that can be used for these studies.

The ability to tissue engineer complex, vascularized human adipose tissue has been
demonstrated in multiple laboratories [16,56–63]. Differentiated adipocytes are amitotic
and not readily adaptable for such constructs. Adipose tissues contain adipocyte stem cells
that can be activated during hypertrophy of these tissues. As such, a primary source for
these stem cells is the stromal vascular fraction (SVF) from adult adipose tissues [64,65].
The excised tissue is digested with a cocktail of enzymes that release individual cells. This
cellular mixture is subjected to mild centrifugation, during which the lipid-containing
adipocytes float while the remaining cells form a pellet. This pellet fraction contains a
complex mixture of cells that is termed the SVF. The fraction contains stromal cells, stem
cells, pre-adipocytes, vascular cells, macrophages, and other immune cells. Adipocyte stem
cells are removed from this mixture based on their cell surface antigen profile.
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Tissue-engineered vascularized adipose tissue constructs contain three basic cellular
elements: adipocytes, stromal cells, and vascular cells [16]. However, additional cellular
types may be added to increase complexity. Freshly excised adipocytes are terminally
differentiated cells that do not respond well in culture. Instead, a population of adipocyte
stem cells can be obtained from the SVF, or bone marrow are suitable starting popula-
tions [66,67]. These cells can be selected, and culture expanded to achieve a large cellular
population. Cells from the SVF are better suited as they contain a higher percentage of
inducible cells than those from bone marrow. Stromal cells are required to produce an
extracellular matrix that holds the various cellular components together. In addition, these
cells also release angiogenic factors [53]. They are also essential for their ability to initiate
and sustain vascular tubule formation in the constructs [53,68]. They are also essential for
their ability to initiate and sustain vascular tubule formation [53].

The cultures now contain sufficient cellular and matrix support for vascular cells to
spontaneously migrate and associate to form arrays of vascular tubules. The critical issue
here is which population of vascular cells to use for this purpose [65]. Human umbilical
vein vascular endothelial cells are commercially available, relatively easy to culture, and
adaptable for TE purposes. However, these are large vessel endothelial cells, whereas
adipose tissue contains microvascular endothelial cells [6]. Human dermal microvascular
endothelial cells are also commercially available but are somewhat more difficult to work
with than are HUVECs, but they have been employed in these studies [59,64,69]. Another
potential source for microvascular endothelial cells is the SVF [64], which appears to be a
more appropriate source for TE adipose tissues as these cells have already been adapted
to adipose tissues. Human adipose microvascular endothelial cells currently have limited
commercial availability. ScienCell Research Laboratories provides these cells as a catalogue
item. Another source for these cells is iXCells Biotechnologies, which will isolate them on a
customized basis. The SVF contains all the cells needed to make a vascularized adipose
tissue. An alternate approach is to mix SVF cells and allow them to self-assemble to form a
vascularized construct [63].

Crosstalk between various stromal vascular cells and adipocytes regulates the en-
docrine function of WAT. This crosstalk is facilitated by HSPGs that regulate the diffusion
of chemokines and signaling factors. The direction that this crosstalk can take depends
upon the immunological status of the tissue. Animal studies and traditional cell culture
studies cannot fully replicate the varied and changing situations that occur in humans.
More complex organoid systems are needed to better emulate the actual in vivo state.
Rogal et al. [70] have developed a WAT-on-chip approach that can be modified to replicate
various immunological states to study the physiology of this system.

The end result is a vascularized adipose tissue that can be used for in vitro studies, or
which can be prepared for in vivo implantation in athymic mice [55,59]. These constructs
express BMs around both adipocytes and vasculature and contain the HSPG perlecan
(Figure 4). However, it is also possible to modify the basic vascularized adipose construct
through the insertion of other cell types typical of adipose tissues. Macrophages and
immune cells are also present and play a role in creating inflammatory tissue in obese
individuals [5]. It is also possible to modify culture conditions to assess the function of
specific components. Aubin et al. [71] added tumor necrosis factor-α to the culture medium
and found a modification in the release of adipokines into the culture medium. High
glucose levels have been shown to modify the structure of HSPGs through an increase in
heparanase production [31]. This creates an environment where heparan-bound factors are
released so that they can interact with macrophages and immune cells. There are also cul-
ture techniques that can be used to modify the sulfation of HSPGs, as demonstrated by the
incorporation of xylosides into the culture medium [33,34]. Other possibilities include the
genetic modifications of pre-adipocytes and/or vascular cells to up- or down-regulate vari-
ous genes that control the sulfation and syntheses the carbohydrate chains for HS. Sulfation
of GAG chains is mediated by two families of genes: one family mediates the attachment of
sulfates to chondroitin, dermatan, and keratan sulfates, while the second family mediates
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attachment to heparan sulfates [31]. Such studies would provide needed information to
understand better the role of HSPGs in adipose tissue production of adipokines.
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Figure 4. HSPG perlecan in tissue engineered vascularized adipose constructs. This is a tissue
engineered vascularized adipose construct that was immunostained for the heparan sulfate proteo-
glycan perlecan. Note that the linear vascular structures and the individual adipocytes are both
positive. Stromal cells are present but are not positive for perlecan. Adapted from work referenced
previously [16,55].

Adipose tissues contain multiple cellular components that extend beyond the base ele-
ments used to make the engineered tissue and vascularized constructs described above [64].
It is possible to insert other cell types such as macrophages and immune cells to assess
their effects and increase the complexity of the constructs to mimic native tissues. Many
potential variations in the cell composition of such cultures are feasible. It is also possible
to modify culture conditions to test the functions of specific components.

The culture conditions can affect cellular interactions. As indicated above, HSPGs
play a major role in the development and function of adipose tissues. The sulfation of the
HS chains can be modified in culture. The chains are attached to their core proteins via a
xyloside linkage. The addition of xyloside compounds to the medium competes for CS
and HS chain attachment [34]. This results in poorly sulfated proteoglycans. Treatment
of 3T3-L1 cells with a xyloside compound resulted in the inhibition of lipid uptake [19].
The addition of these compounds to complex culture would provide a means to better
understand the role of sulfation in adipose tissue function.

7. Discussion/Conclusions

The studies referenced above indicate that HSPGs play an important role in the
development and function of adipose tissue. Further, these molecules also have a role in
the establishment of inflammation in adipose tissue of diabetic individuals. The functional
roles of HSPGs are not limited to adipose tissues as they are ubiquitous [44,72]. Sulfation
of HS is critical for function as sulfate groups are non-randomly organized to create codes
that are recognized by HB-factors [27]. Many of these factors are present in adipose tissues,
where they mediate communication between adipocytes and vascular cells [73]. This is
important for the maintenance of adipose tissues as an endocrine organ that distributes a
wide variety of adipokines to other regions of the body [4,6]. However, it is also important
to realize that HS chains can be modified once they are in the extracellular regions. There
are two families of enzymes that are released by cells, sulfatases, and heparanases, that
modify HS chains and their functions [28,31]. Elevated blood glucose levels have been
shown to significantly upregulate the production of heparanases by different cell types [40].
This releases chemokines in adipose tissues that recruit inflammatory cells.

It is possible to modify HS in vitro as this has been demonstrated by adding xyloside
compounds to culture media [33,34]. These compounds compete for the attachment sites on
core proteins with the result of producing HSPGs with fewer HS chains, hence decreasing
sulfation. The observation that glucose levels have a direct effect on HS chain structure
suggests that modifying glucose levels in culture media may also result in the modification
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of sulfation levels [37,40]. There are also more subtle ways that HS sulfation can be modified.
Many genes are associated with the glycosidic production and sulfation of HS chains. It
has been shown in other systems that a modification of a single sulfotransferase gene can
produce physiologic responses. Axelsson et al. [74] inactivated the 2-O-sulfotransferase
gene in mice that induced a modification in HS structure so that 6-O- and N-sulfation
were increased. This modification resulted in enhanced neutrophil recruitment from
the vasculature and increased tissue inflammation. Hwang et al. [75] examined the role
of hypermethylation of the 3-O-sulfotransferase 2 genes in lung cancer and found that
reduction of methylation restored the ability of tumor cells to proliferate and migrate.
These studies indicate that modification of a single sulfotransferase can have physiological
effects. It should be possible to genetically modify adipocytes precursors and/or vascular
endothelial cells prior to their incorporation into vascularized adipose tissue construct to
determine the effects of adipokine production and support for inflammation.

This means that it is now possible to design experiments where HS and/or its sulfation
is modified to better define how adipocytes and vascular endothelial cells communicate
with each other. This communication is important for the production and release of
adipokines. Other experimental studies could focus on the creation of an inflammatory
adipose tissue with the addition of macrophages and other inflammatory cells. Intercellular
signaling within adipose tissues plays a major role in their endocrine function. This review
has concentrated on the role of HSPGs in mediating adipocyte function and intercellular
communication. However, our knowledge of how HS regulates these events is still limited.
Thus, more experimental studies are needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10092115/s1, Table S1. Examples of Adipokines
that possess HB-domain.
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