
ORIGINAL PAPER

Modelling the delay between pharmacokinetics and EEG effects
of morphine in rats: binding kinetic versus effect compartment models
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Abstract
Drug–target binding kinetics (as determined by association and dissociation rate constants, kon and koff) can be an important

determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a

target binding model to describe hysteresis. Here we investigate when the drug–target binding model should be used in lieu

of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the

combined effect compartment–target binding kinetics (EC–TB) model were tested on either plasma (ECPL, TBPL and EC–

TBPL) or brain extracellular fluid (ECF) (ECECF, TBECF and EC–TBECF) morphine concentrations and EEG amplitude in

rats. It was also analyzed when a significant shift in the time to maximal target occupancy (TmaxTO) with increasing dose,

the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear

relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in

describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis

of the shift in TmaxTO (DTmaxTO) as a result of increasing dose revealed that DTmaxTO is decreasing towards zero if the

koff is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine

concentration. The results for the morphine PKPD modelling and the analysis of DTmaxTO indicate that the EC and TB

models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug

concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of

these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of kon and

koff, a target binding model should be considered more often for mechanistic modelling purposes.
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Abbreviations
AIC Akaike information criterion

CNS Central nervous system

CV Coefficient of variation

DE Direct effect

ECF Extracellular fluid

EC Effect compartment

IE Indirect effect

GOF Goodness of fit

IIV Inter-individual variability

OFV Objective function value

Pgp P-glycoprotein

PKPD Pharmacokinetic–pharmacodynamic

TB Target binding

TmaxPD Time between dosing and maximal drug effect

TmaxTO Time between dosing and maximal target

occupancy

DTmaxTO TmaxTO of the lower dose - TmaxTO of the

higher dose

VPC Visual predictive check
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Introduction

Drug–target binding kinetics is an important criterion in the

selection of drug candidates, as it can be a determinant of

the time course and the selectivity of drug effect [1–4].

However, the in vivo time course of drug action is

influenced by multiple factors including plasma pharma-

cokinetics, target site distribution, target binding kinetics,

competition with endogenous ligands, turnover of the tar-

get, signal transduction kinetics and the kinetics of home-

ostatic feedback. As a consequence, the influence of

binding kinetics on drug action can only be understood in

conjunction with these kinetic processes and its relevance

is still not fully understood and subject to an ongoing

debate [3, 5–8].

One of the arguments against an important role of

binding kinetics for in vivo drug action is that binding

kinetics are most often not required to get a good fitting

PKPD model for small molecules. However, numerous

examples are available were binding kinetic models have

been successfully applied, and binding kinetics are rou-

tinely incorporated in models for biologics and PET data

[9–17]. The sparsity of target binding PKPD models for

small molecules can be explained by the relatively fast

binding kinetics of many drugs currently on the market,

compared to their pharmacokinetics [3]. In addition, when

a delay between drug concentrations and effect is observed,

this delay is often described by an effect compartment or

indirect response model [18, 19].

Here we study the difference between the effect com-

partment (EC) model, the target binding (TB) model, the

direct effect (DE) and the indirect effect (IE) model, which

are described below. The EC model describes the delay

between pharmacokinetics (PK) and pharmacodynamics

(PD) by including first order distribution of the drug into

and out of a hypothetical target-site (biophase) compart-

ment, which drives the pharmacodynamics [20]. The

indirect effect (IE) model describes the delay between

pharmacokinetics and pharmacodynamics by the zero order

synthesis and first order degradation of an effector mole-

cule which represents the pharmacodynamics [21]. The

target binding (TB) model describes the delay between

pharmacokinetics and pharmacodynamics by the second

order drug–target association and first order dissociation of

the drug–target complex [22–24]. The DE model describes

no delay between the pharmacokinetics and pharmacody-

namics and links the drug concentration directly to the

effect measurements. All of these models can account for

saturation of the PK–PD relationship (i.e. increasing drug

concentrations do not increase the drug effect beyond a

certain concentration), but this saturation can occur at

different steps in the process between the drug

concentration and the drug effect. For the EC model, the

relationship between drug concentrations in the effect

compartment and the effect can be saturable. For the IE

model, both the relationship between the drug concentra-

tion and the synthesis or degradation rate of the effector

molecule can be saturable. For the TB model, the rela-

tionship between the drug concentration and the target

occupancy is saturable and the relationship between target

occupancy and effect can be saturable. For the DE model,

the relationship between the drug concentration and the

drug effect can be saturable.

These models thus result in a zero, first and second order

formation of the the pharmacodynamics in the EC, TB and

IE model, respectively. This results in different dose

dependencies of the time to the maximal effect (TmaxPD).

As a current paradigm, the shift in TmaxPD (DTmaxPD) in a

PKPD dataset as a consequence of a change in the dose

identifies the appropriate PKPD model to describe the data:

with increasing dose, the TmaxPD can increase for the

indirect response model, decrease for the TB model and is

constant for the EC model [25–27].

However, in contrast to common belief, the indirect

response model does not always result in an increasing

TmaxPD with increasing doses but can also give rise to a

decreasing TmaxPD with increasing doses, as shown by

Peletier et al. [28]. If the relationship between target

occupancy and effect is not delayed and monodirectional

(i.e. an increase in target occupancy never results in a

decrease in effect and vice versa), the TmaxPD coincides

with the time to the maximal target occupancy (TmaxTO).

To start with this most simple situation, we focus in this

paper only on the TmaxTO. A comprehensive analysis of

the conditions for which a shift in TmaxTO for changing

doses occurs in a TB model is currently not available. It

might be that EC models have been used while TB models

could have been applied equally well to describe the data in

previous PKPD studies.

One example in which performance of TB and EC

models has been investigated indicates comparable per-

formance in describing the data of eight calcium channel

blockers, but this study used only one dose level for all

drugs [14] and therefore cannot be used to validate the

relationship between dose and DTmaxPD. An additional

complexity in choosing the most appropriate PKPD model

to describe PKPD data is that, for most drugs, factors as

target site distribution, drug–target binding and turnover of

signaling molecules occur in parallel. It is not always

needed to incorporate all these factors in the PKPD model,

as only the rate limiting mechanism is required for a proper

model fit that describes the observed data. However,

leaving out such factors will never lead to understanding of

the individual contributions and the interplay between

these factors. Combined EC–TB models [13, 29, 30] as
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well as combined IE–TB models [10] have been applied

successfully to discriminate between the contributions of

separate factors. However, this discrimination is not always

possible if one of the factors is relatively fast and does not

contribute significantly to the delay between pharmacoki-

netics and pharmacodynamics [31–33]. In short, the rele-

vance of drug–target binding kinetics cannot be excluded if

one of the other models is successfully fitted to a dataset,

and there is a need to generate more insight into the dif-

ference between the TB model and the EC model.

The aim of the current study is to investigate if the TB

and EC model can give similar drug effect versus time

curves and under what conditions this will occur. In this

study, a historical PKPD dataset for morphine was used

[34] to compare the goodness of fit for the TB model with

the EC model and the combined EC–TB model in

describing the time course of the EEG effect following

administration of three different doses of morphine (4, 10

and 40 mg/kg). Both plasma and brain extracellular fluid

(ECF) drug concentrations were measured and tested in

this study to be connected to the pharmacodynamics via an

EC, TB or EC–TB model. Subsequently, a more general

insight in the shift of TmaxTO (DTmax TO) for different

dose levels in the drug–target binding model is obtained to

identify for what parameter values the TB model can be

discriminated from the EC model based on the DTmaxTO.

To that end, comprehensive simulations and mathematical

model analysis was performed for a wide range of drug–

target association and dissociation rate constants, for var-

ious plasma elimination rate constants, target concentra-

tions, and dose levels.

Methods

Pharmacokinetic and pharmacodynamic (PKPD)
data of morphine in rats

All pharmacokinetics and pharmacodynamics data used in

this study were obtained from the experiments described

earlier [35]. In short: Morphine was intravenously admin-

istered to Male Wistar rats, during a 10-min infusion, in 4

different dose groups: 0, 4, 10 or 40 mg/kg with 5, 29, 11

and 14 animals, respectively. The P-glycoprotein (Pgp)

inhibitor GF120918 or vehicle was given as a continuous

infusion. In the group of 29 animals that received 4 mg/kg

morphine, 9 animals received GF120918, the other 20

animals received the vehicle. Furthermore, while plasma

concentrations were measured in all animals, brain ECF

concentrations were measured with microdialysis in 29

animals, of which 15 received 4 mg/kg, 0 received 10 mg/

kg, 9 received 40 mg/kg and 5 received 0 mg/kg morphine,

see also Table 1.

For the modelling data set, all data entries without time

recordings, without concentration data or with concentra-

tion data equal to 0 were removed from the dataset. The

lower limit of quantification for morphine in plasma sam-

ples was 88 nM and 1.75 nM for morphine in ECF sam-

ples. The pharmacodynamics of morphine was measured as

the amplitude in the d frequency range (0.5–4.5 Hz) of the

EEG and recorded every minute. The EEG data were fur-

ther averaged for every 3-min interval to reduce the noise

and decrease the model fitting time.

General model fitting methods

Data fitting was based on minimization of the objective

function value (OFV = - 2 * log likelihood) as imple-

mented in NONMEM 7.3 [36]. Simulations and visuali-

sations were performed in RStudio version 3.4.0. To

account for the number of parameters for the comparison of

non-nested models, the Akaike Information Criterion

(AIC) was calculated by adding two times the number of

estimated parameters to the OFV [37]. Variability in the

data was described by IIV (Inter Individual Variability:

variability in parameter values between animals) and a

residual error term. IIV was implemented assuming a log-

normal distribution according to Eq. 1:

Pi ¼ Ppop � egi ð1Þ

In which Pi is the individual parameter value, Ppop is the

typical parameter value in the population and gi is normally

distributed around a mean of zero with variance x2

according to Eq. 2:

gi �N 0;x2
� �

ð2Þ

The remaining variation between the data and the model

predictions are incorporated as residual error for which

both a proportional (Eq. 3) and a combined proportional

and additive (Eq. 4) error model were tested.

obsij ¼ predij � 1 þ eprop;ij
� �

ð3Þ

obsij ¼ predij � 1 þ eprop;ij
� �

þ eadd;ij ð4Þ

In these equations, obsij is the observation, predij is the

model prediction, eprop,ij is the proportional error and eadd,ij
is the additive error for individual i at time point j. Both

eprop,ij and eadd,ij are normally distributed around a mean of

zero with variance r2 according to Eqs. 5 and 6:

eprop;ij �N 0; r2prop
� �

ð5Þ

eadd;ij �N 0; r2add
� �

: ð6Þ
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Morphine plasma pharmacokinetics modelling

One-compartment, two-compartment and three-compart-

ment models were fitted to the plasma pharmacokinetics

data, with both proportional and additive plus proportional

error models, and with IIV on the various parameters. The

differential equations and model scheme are given in

Supplement S1. The best fits (based on AICs) of each

structural model were compared for their Goodness Of Fits

(GOFs) and AICs. Since the purpose of the plasma phar-

macokinetics modelling was to get the best possible input

for the pharmacodynamics modelling, GOF was assessed

by the AIC and by individual fits. Over- or underestimation

of IIV and population parameter estimates and high

uncertainties in population parameter estimates were not

regarded as problematic, since only the right individual

parameter estimates were required for pharmacodynamics

modeling.

Morphine brain ECF pharmacokinetics Modelling

The individual parameter estimates that were estimated to

describe the plasma pharmacokinetics were used as fixed

parameters to describe the plasma pharmacokinetics profile

as input for the brain ECF concentrations. To describe the

ECF concentrations, we thus assumed that the distribution

of the drug into and out of the ECF did not lead to a change

in plasma concentrations. The differential equations and

model scheme are given in Supplement S1. The best fits,

based on the AICs, of each structural model were compared

for their GOFs and AICs. Since the purpose of the brain

ECF pharmacokinetics modelling was to get the best pos-

sible input for the pharmacodynamics modelling, GOF was

assessed by the AIC and by individual fits. Over- or

underestimation of IIV and population parameter estimates

and high uncertainties in population parameter estimates

were not regarded as problematic, since only the right

individual parameter estimates were required for pharma-

codynamics modeling.

EEG pharmacodynamics modelling

To maximize the identifiability of the pharmacodynamics

model parameters, all pharmacokinetic parameters were

used as fixed parameters to describe the plasma and brain

ECF concentrations as input for all the described pharma-

codynamics models to describe EEG effects [38]. The

different type of models that were tested are outlined in

Table 2. The differential equations are given in Supple-

ment S1. For each model, the most informative variations

on the model structure are given in the results section.

To compare structural models that linked plasma or

brain ECF concentrations directly to the PD, the models

that used plasma pharmacokinetics were fitted to the

reduced dataset that only contained animals with plasma

PK, brain ECF and EEG measurements. Model comparison

was based on the AIC, visual inspection of the GOF and a

VPC (Visual Predictive Check) to check if the IIV was

captured appropriately.

Drug–target binding model simulations

Simulations with a one-compartment binding model with

IV administration were performed for a wide range of kon

Table 1 Overview of treatment groups and data collection

Morphine dose Pgp inhibitor Plasma pharmacokinetics data ECF pharmacokinetics data EEG data Dosed animals

0 mg/kg - 0 5 5 5

4 mg/kg - 20 7 16 20

4 mg/kg ? 9 8 9 9

10 mg/kg - 11 0 11 11

40 mg/kg - 14 9 13 14

Total 54 29 54 59

Table 2 Overview of the different model types, the data that were

used and the model numbers as used in this manuscript

Model type Concentrations linked to effect Model number

EC Plasma ECPL1 – ECPL4

EC ECF ECECF1

TB Plasma TBPL1–TBPL5

TB ECF TBECF1

EC–TB Plasma ECTBPL1–ECTBPL5

IE ECF IEECF1

DE ECF DEECF1

EC effect compartment, TB target binding, EC–TB effect compart-

ment–target binding, IE indirect effect, DE direct effect, ECF brain

extracellular fluid
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and koff values and for a variety of elimination rate con-

stants, target concentrations and drug dose levels (Table 3).

The TmaxTO was compared for two different doses to

determine the influence of the drug dose on the TmaxTO.

The DTmaxTO values were calculated by subtracting the

TmaxTO of the highest dose from the TmaxTO of the lowest

dose and DTmaxTO was plotted against kon and koff.

Results

Morphine pharmacokinetics modelling

Modelling of morphine pharmacokinetic data in plasma

and brain ECF as described in Supplement S1 identified

very similar model structures as previously described for

pharmacokinetic modelling of the same dataset by Groe-

nendaal and coworkers [35]. In short, the plasma concen-

trations were described by a three-compartment model and

the ECF concentrations were described by passive distri-

bution into and out of the brain combined with saturable

active influx and first-order efflux.

EEG pharmacodynamics modelling

ECPL model fitting

EC and TB models have been applied to the morphine data

to describe the relationship between the observed plasma

concentrations and EEG amplitude and direct effect (DE),

indirect effect (IE), EC and TB models have been applied

to brain ECF and EEG amplitude data. The differential

equations for these models are given in Supplement S1.

Firstly, the originally published ECPL model structure was

optimized by adding a slope-parameter, which describes

the linear decline of EEG amplitude over time during the

experiment independently of the drug effect, and by

including IIV on the baseline EEG amplitude only. For this

model, a transit compartment was required between the

plasma and the effect compartment for the best description

of the data [34]. An overview of the different variations on

this basic model structure is given in Table 4. The structure

of all ECPL is identical and is depicted in Fig. 1. Based on

the AIC, the parameter estimates and the GOF, model

ECPL1 was chosen as the best parameterization for the

effect compartment model in Fig. 1.

TBPL model fitting

The TBPL model was applied to describe target binding

from plasma, all TBPL models in Table 5 shared the same

structure as represented in Fig. 2. The parameter estimation

results are given in Table 5. Since the target concentration

is of influence only if it is similar to the drug concentration

(which is mostly above 100 nM in plasma and in brain

ECF, as shown in Supplement S1), the target concentration

could not be estimated in this model and was fixed to an

arbitrary low value of 1 nM in the model estimations. This

low target concentration prevents the influence of the target

concentration on the EEG amplitude in the model. The

influence of blocking Pgp has been incorporated by esti-

mating separate parameter values with and without the

presence of Pgp blocker. While the influence of blocking

Pgp on the koff or KD is mechanistically not plausible, the

improved model fits for the models which incorporate these

influences might indicate that the estimated koff and KD

values refer to apparent values which include not only the

molecular properties. The target occupancy is linearly

related to the EEG amplitude in model TBPL1–TBPL5, as

nonlinear relationships could not be identified accurately in

this study. On basis of the objective function values, model

TBPL4 was selected as the best drug–target binding model.

It should be noted that the AIC of model TBPL4 is 338

points higher than model ECPL1, which means that model

ECPL1 performs better in fitting the data. All TBPL models

have one compartment less than the transit–EC models

ECPL1–ECPL4. Therefore, the combined EC–TBPL models

EC–TBPL1 to EC–TBPL5 were developed.

EC–TBPL model fitting

The EC–TBPL model structure that was tested to describe

the EEG data is shown in Fig. 3. This model enables the

comparison between the target binding and effect com-

partment mechanism, as both models have an additional

compartment between the plasma compartment and the

compartment that is linked directly to the effect. The

parameter values, OFVs and AICs are given in Table 6.

Parameter values and objective function values of the tes-

ted EC–TBPL models describing the EEG data, based on

plasma concentrations. CV denotes the coefficient of

variation as percentage. OFV denotes the Objective

Function Value, AIC denotes the Akaike Information Cri-

terion. x2 and r2 denote the variances of the exponential

Table 3 Overview of the different simulation scenarios

Simulation # kel (1/h) Rtot (nM) C0 low (* KD) C0 high (* KD)

1 0.03 0.1 0.5 5

2 0.03 0.1 5 50

3 0.03 10 0.5 5

4 0.3 0.1 0.5 5

For each simulation, kon and koff varied between 10-3 and 103/nM/h

and between 10-3 and 103 h-1, respectively
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IIV distribution and the proportional error distribution,

respectively. Model EC–TBPL1 was selected as best model

on basis of the AIC, but this AIC is still 39 points higher

than Model ECPL1. The uncertainty in the parameter esti-

mate of the KD in the presence of the Pgp blocker (KD–

Pgp) is rather high with 93%, but this was allowed to test

the conclusion that none of the binding models (TBPL1–

TBPL5 and EC–TBPL1 to EC–TBPL5) yielded lower AICs

than the best effect compartment model (ECPL1) in a

conservative manner.

ECECF, TBECF, IEECF and DEECF model fitting

The last models that were fitted to the EEG data were based

on the ECF concentrations instead of the plasma concen-

trations. Various model structures were tested, as shown in

Fig. 4. To compare the model fits based on ECF concen-

trations (ECECF1, TBECF1, IEECF1 and DEECF1) with the

model fits that were based on plasma concentrations (ECPL,

TBPL and EC–TBPL), the best plasma model (ECPL1) was

fitted to the limited dataset that included only animals with

ECF data. This model fit was compared to the ECF-based

model fits on basis of their AICs, as shown in Table 7.

Of all the models that are described above, model ECPL1

has the lowest AIC. To evaluate its performance in more

detail, the most relevant diagnostic plots are given in

Figures S6–S10. These diagnostic plots indicate that the

main trend of the data is captured, although the obtained fit

is not optimal (which is especially clear from Figure S10).

The small difference in AIC between the best combined

EC–TB model (EC–TBPL1) and the best EC model

Table 4 Parameter values and objective function values of the tested EC models describing the EEG data, based on plasma concentrations

Parameter definition ECPL1 selected

model

ECPL2 no

slope

ECPL3

k1e = keo

ECPL4 no Pgp

effect

OFV 44,748.0 45,084.2 44,853.3 44,868.4

AIC 44,770.0 45,104.2 44,871.3 44,886.4

Parameter Parameter definition Value (%CV) Value

(%CV)

Value (%CV) Value (%CV)

k1e(/min) Distribution to transit compartment 0.0393 (18) 0.0432 (10) 0.0403 (10) 0.0375 (8)

keo(/min) Distribution from effect compartment 0.0382 (14) 0.0458 (9) – 0.0375 (8)

k1e–Pgp (/

min)

Distribution to transit with Pgp blocker 0.0565 (44) 0.0661 (38) 0.0295 (18) –

keo–Pgp (/

min)

Distribution from effect with Pgp blocker 0.016 (46) 0.0203 (20) – –

E0 (lV) Baseline EEG amplitude 45.1 (4) 42.2 (4) 45.8 (4) 45.9 (4)

Emax (lV) Maximal increase in EEG amplitude 27.9 (23) 25.3 (16) 26.1 (18) 27.0 (18)

EC50 (nM) concentration giving half-maximal increase in EEG

amplitude

1270 (52) 1220 (31) 912 (37) 1000 (37)

NH Hill factor 1.44 (43) 2.02 (27) 1.46 (36) 1.37 (33)

slope (lV/

min)

Increase in baseline EEG over time - 0.024 (22) 0 FIX - 0.0263

(15)

- 0.0267 (15)

x2 E0 (lV) IIV variance on E0 0.111 (20) 0.125 (19) 0.115 (20) 0.116 (20)

r2 prop Variance of proportional error 0.0554 (7) 0.0584 (7) 0.0562 (6) 0.0564 (6)

Fig. 1 Schematic representation of the ECPL model structure that was

used to describe the morphine EEG amplitudes over time. kie, first-

order in- and outward distribution rate constant for the transit

compartment. keo, first-order outward distribution rate constant from

the effect compartment. The effect compartment concentrations were

linked to the EEG amplitude by a sigmoidal Emax model. The

distribution from plasma to the tissue compartments and the brain

ECF compartment is described in Supplement S1. The arrows indicate

morphine flows, the dotted line indicates a direct relationship
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(ECPL1) is also reflected by very similar VPC results, as

shown in Figure S11. Moreover, the best model with only

binding from plasma (TBPL4) also provided a similar VPC

result (see Figure S12).

Dose-dependency of TmaxTO in a TBPL model

Simulations of drug-target binding in a TBPL model for the

range of the most relevant binding kinetics demonstrated

that the observable influence of dose on TmaxTO, which

discriminates the TB model from the EC model, is limited

to a confined range of kon and koff combinations. As visu-

alized in Fig. 5, if the koff has a value around the elimi-

nation rate constant of 0.03/h, DTmaxTO is maximal. Also,

the initial drug concentration C0 should not be above a

specific threshold value which is approximately equal to

the target concentration. The absolute DTmaxTO for dif-

ferent doses (as shown in Fig. 5) will be most relevant for

the identification of the dose-dependent DTmaxTO in a

PKPD modelling study. However, for the understanding of

the underlying determinants of this shift in DTmaxTO, the

ratio of the DTmaxTO values belonging to the two doses

should also be considered, as shown in Fig. 6. For example,

if the two different TmaxTO values obtained from the two

doses are 1 and 3 min, their ratio is 3, but the absolute

difference is 2 min. If the two TmaxTO values are 1 and

3 h, their ratio is still 3, but the difference is now 2 h. In

this latter case, the influence of the dose on the TmaxTO

will be more easily identified. Representative example

simulations that can help to understand the characteristics

of Fig. 5 are provided in Supplement S2.

Interestingly, the relationship between the DTmaxTO,

the elimination rate constant, the target concentration and

the dose could be approximated mathematically for the

upper region, the lower-left region and the lower-right

region of Fig. 5 as presented in Supplement S3. From this

analysis, it follows that for the upper half of Fig. 5, where

the koff is much larger than the kel, TmaxTO is always small,

and a significant DTmaxTO will thus not be observed. For

Table 5 Parameter values and objective function values of the tested TBPL models describing the EEG data, based on plasma concentrations

Parameter definition TBPL1 no Pgp effect

slope = 0

TBPL2 no Pgp

effect

TBPL3 Pgp on

koff

TBPL4 selected

model

TBPL5

slope = 0

OFV 45,677.7 45,170.1 45,166.6 45,092.1 45,536.9

AIC 45,689.7 45,184.1 45,182.6 45,108.1 45,550.9

Parameter Parameter definition Value (%CV) Value (%CV) Value (%CV) Value (%CV) Value

(%CV)

koff (/min) Dissociation rate constant 0.017 (8) 0.0103 (13) 0.0109 (17) 0.009 (26) 0.0149 (15)

koff–Pgp (/

min)

Dissociation rate constant with

Pgp blocker

– – 0.0087 (26) – –

KD (nM) Equilibrium constant 1980 (37) 995 (36) 935 (37) 1570 (59) 3610

KD–Pgp

(nM)

Equilibrium constant with Pgp

blocker

381 (88) 715

E0 (lV) Baseline EEG amplitude 42.4 (4) 45.9 (4) 45.8 (4) 45.4 (4) 42.2

Emax (lV) Maximal increase in EEG

amplitude

32.2 (14) 29.3 (13) 28.9 (13) 32.9 (20) 38.9

Rtot (nM) Target concentration 1 FIX 1 FIX 1 FIX 1 FIX 1 FIX

slope (lV/

min)

Increase in baseline EEG over

time

0 FIX - 0.0313 (13) - 0.0315

(12)

- 0.0299 (12) 0 FIX

x2 E0 (lV) IIV variance on E0 0.135 (18) 0.117 (20) 0.117 (20) 0.113 (19) 0.13 (17)

r2 prop Variance of proportional error 0.0639 (6) 0.059 (6) 0.059 (6) 0.0584 (6) 0.0626 (6)

Fig. 2 Schematic representation of the TBPL model structure that was

used to describe the morphine EEG amplitudes over time. kon is the

second-order drug-target association rate constant. koff is the first-

order drug-target dissociation rate constant. Target occupancy is

linearly related to the EEG amplitude. The distribution from plasma

to the tissue compartments and the brain ECF compartment is

described in Supplement S1. The arrows indicate morphine flows, the

dotted line indicates a direct relationship
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the lower and the lower-right part of Fig. 5, where the koff
is much smaller than the kel, it is found that TmaxTO does

not depend on the dose. More specifically, when the initial

drug concentration is much lower than the target concen-

tration (and koff is smaller than kel), the TmaxTO is merely

determined by the kel. On the other hand, when the initial

drug concentration is much larger than the target concen-

tration (and koff is smaller than kel), the TmaxTO is given by

a relation between koff and kel. This relationship between

the DTmaxTO, the elimination rate constant, the target

concentration and the dose is illustrated in Fig. 7.

Fig. 3 Schematic representation of the EC–TBPL model structure that

was used to describe the morphine EEG amplitudes over time. kon is

the second-order drug-target association rate constant. koff is the first-

order drug-target dissociation rate constant. keo is the first-order

distribution rate constant into and out of the effect compartment.

Target occupancy is linearly related to the EEG amplitude. The

distribution from plasma to the tissue compartments and the brain

ECF compartment is described in Supplement S1. The arrows indicate

morphine flows, the dotted line indicates a direct relationship

Table 6 Parameter values and objective function values of the tested EC–TBPL models describing the EEG data, based on plasma concentrations

Parameter definition EC–TBPL1

selected model

EC–TBPL2 no

Pgp effect

EC–TBPL3 Pgp

on keo

EC–TBPL4

koff = 1

EC–TBPL5

slope = 0

OFV 44,790.9 44,880.3 44,873.8 45,008.2 45,235.3

AIC 44,808.9 44,896.3 44,891.8 45,024.2 45,251.3

Parameter Parameter definition Value (%CV) Value (%CV) Value (%CV) Value

(%CV)

Value (%CV)

koff (/min) Dissociation rate constant 0.0275 (14) 0.0243 (14) 0.0247 (14) 1 FIX 0.0400 (9)

keo (/min) Distribution rate constant to effect

compartment

0.0327 (17) 0.0365 (12) 0.0389 (14) 0.0162 (28) 0.036 (13)

keo–Pgp (/

min)

Distribution to effect compartment

with Pgp blocker

– – 0.0265 (31) – –

KD (nM) Equilibrium constant 1520 (34) 1150 (30) 1110 (30) 2110 (50) 3150 (36)

KD–Pgp

(nM)

Equilibrium constant with Pgp

blocker

296 (93) – – 385 (78) 594 (47)

E0 (lV) Baseline EEG amplitude 45.0 (4) 45.7 (4) 45.6 (4) 45.2 (4) 41.9 (4)

Emax (lV) Maximal increase in EEG amplitude 31.8 (11) 30.7 (11) 30.5 (11) 34.4 (18) 37.3 (12)

Rtot (nM) Target concentration 1 FIX 1 FIX 1 FIX 1 FIX 1 FIX

slope (lV/

min)

Increase in baseline EEG over time - 0.0276 (15) - 0.0296 (13) - 0.0296 (13) - 0.0273

(14)

0 FIX

x2 E0

(lV)

IIV variance on E0 0.111 (20) 0.116 (20) 0.116 (20) 0.111 (19) 0.129 (18)

r2 prop Variance of proportional error 0.057 (7) 0.0565 (7) 0.0565 (7) 0.0576 (7) 0.0597 (7)
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Discussion

In this study, TB and EC models were compared to

describe the delay between morphine plasma concentra-

tions and EEG effects for three different dose levels. Model

discrimination was difficult to obtain and selection of the

best model (the ECPL model in this study) was only pos-

sible on basis of the objective function value differences.

Moreover, simulations with the TBPL model showed that a

shift in TmaxTO with increasing doses, the distinctive

future of the TB model compared to the EC model, only

occurs for a limited range in parameter values. Both a koff
value much smaller and much larger than the kel value and

a target concentration larger than the initial drug concen-

tration decrease this shift in TmaxTO towards zero.

Since the simulations show that the TmaxTO does not

depend on the dose for koff values much lower than the kel
and target concentrations much higher than the initial drug

concentration, this means that the TBPL model for these

parameter values behaves like an ECPL model, with a first

order increase and decrease in the concentration that is

linked to the effect. Together with the small differences in

EC and TB model fits to the morphine EEG data, this

shows that for many parameter combinations, a TB model

gives rise to similar drug effect profiles as an EC model.

This means that neither a successful fit of a TB or EC

model necessarily supports the relevance of target binding

or target site distribution, respectively, while a single

successful fit is often presented as such support

[11, 23, 39]. To obtain support for one of the two mecha-

nisms, both models should be fitted to the data and com-

pared on basis of objective metrics such as the AIC. This

approach demonstrated the added value of the combined

EC–TBPL model compared to the ECPL and the TBPL

model for buprenorphine and AR-HO47108 [13, 29].

However, this method also demonstrated that the TBPL

model performed similarly as the ECPL model for eight

calcium antagonists [14] and that the EC model performed

similarly as the EC–TBPL model for fentanyl [13]. This

demonstrates that even if objective metrics are used, dis-

crimination between two models is not always possible.

Moreover, obtained model discrimination strictly informs

on the data fit of each model, not directly on the plausibility

of the represented mechanism. This lack of discrimination

between TB and EC models means that a visually satis-

fying model fit of the EC model does not indicate that the

TB will be not applicable. The TB model should therefore

be considered and tested more often as mechanistic

Fig. 4 Schematic representation of the ECECF, TBECF, IEECF and

DEECF model structures that were used to describe the EEG data,

based on brain ECF concentrations. The different structures represent

a the DEECF model, b the ECECF model, c the TBECF model and d the

IEECF model, with ksyn being the zero-order effect generation rate

constant, and kdeg being the first-order effect degradation rate

constant. The distribution from plasma to the tissue compartments

and the brain ECF compartment is described in Supplement S1. The

arrows indicate morphine flows, the dotted line indicates a direct

relationship
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alternative to the EC model to find the best fitting model.

Moreover, the TB model parameters can be measured

partially in vitro/ex vivo, which enables a better in vitro–

in vivo extrapolation (IVIVE).

In this study, the models based on brain ECF concen-

trations did not perform better than the models based on

plasma concentrations. One would expect that the brain

ECF concentrations would reflect the target site concen-

tration better than the plasma concentrations, especially if

brain distribution is relatively slow and nonlinear, as it was

in this study. The inferior performance of the brain ECF-

based models might be explained by the extremely high

variability in the brain ECF data of the 4 mg/kg dose

group, as shown in Figure S5. However, a direct effect

model (DEECF1) could be identified from the brain ECF

concentrations and showed an only 39 points higher AIC

than the best model IEECF1, while an IE model fit could not

be obtained from the plasma concentrations, indicating that

the ECF concentrations reflect the target site concentration

more closely compared to the plasma concentrations. This

is in line with the relevance of drug concentrations in the

brain for CNS effects that has been demonstrated by sev-

eral other studies [40–43] and the difference between

plasma and brain concentrations that has been identified for

several compounds [44]. In all our target binding models, a

linear target occupancy–effect relationship had to be

assumed to keep the model parameters identifiable. Such a

linear relationship has been observed and can be expected

unless for full agonists in tissues with relatively high target

concentrations compared to the concentration of signal

transduction molecules (i.e. for a high receptor reserve)

[24].

Only a one compartment pharmacokinetic model was

used in this study in combination with the simplest TBPL

model to investigate the DTmaxTO. The same principles are

expected to apply if the TBPL model has a two-compart-

ment or three-compartment pharmacokinetic model or with

target turnover and signal transduction models, but the

Table 7 Parameter values and objective function values of the tested models describing the EEG data, based on ECF concentrations

Parameter definition ECPL1 ref.

model

TBECF1

binding model

DEECF1

direct effect

ECECF1 effect

compartment

IEECF1

indirect effect

OFV 25,996.1 26,284.1 26,284.0 26,255.1 26,240.3

AIC 26,118.1 26,300.1 26,300.0 26,273.1 26,258.3

Parameter Parameter definition Value

(%CV)

Value (%CV) Value (%CV) Value (%CV) Value (%CV)

k1e (/min) Distribution to transit compartment 0.0457 (35) – – – –

keo (/min) Distribution from effect compartment 0.0377 (41) – – 0.161 (40) –

k1e–Pgp (/

min)

Distribution to transit with Pgp blocker 0.0647 (36) – – – –

keo–Pgp (/

min)

Distribution from effect with Pgp blocker 0.0155 (77) – – – –

E0 (lV) Baseline EEG amplitude 47.6 (6) 48.9 (6) 48.9 (6) 49.1 (6) 49.1 (6)

Emax (lV) Maximal increase in EEG amplitude 27.5 (20) 32.7 (17) 23.4 (18) 24.9 (19) 25.4a (36)

Emax–Pgp

(lV)

Maximal increase in EEG amplitude with

Pgp blocker

– 41.6 (14) 43.2 (15) 43.3 (42)

EC50

(nM)

concentration giving half-maximal

increase in EEG amplitude

1100 (87) – 173 (22) 182 (26) 182 (25)

NH Hill factor 2.05 (49) 2.3 (41) 2.02 (43) 2.07 (43)

slope (lV/

min)

Increase in baseline EEG amplitude over

time

- 0.0235

(34)

- 0.0400 (17) - 0.0359

(17)

- 0.0373 (19) - 0.0377 (19)

koff (/min) Dissociation rate constant – 0.0932 (37) – – –

KD Equilibrium constant – 283 (40) – – –

KD–Pgp Equilibrium constant with Pgp blocker – 55.9 (15) – – –

kdeg (/

min)

Degradation rate constant 0.124 (34)

x2 E0

(lV)

Variance of IIV on E0 0.0668 0.0668 (26) 0.072 (25) 0.0696 (26) 0.0961 (26)

r2 prop Variance of proportional error 0.0550 (10) 0.0598 (10) 0.0598 (10) 0.0593 (10) 0.059 (10)

aThis value was estimated as the maximal ksyn minus baseline ksyn (calculated from E0 and kdeg) and calculated by dividing the estimated value by

the kdeg
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parameter range for which TmaxTO shifts with a change in

dose might be different compared to the model used in the

simulations. In analogy to Fig. 7, for the combined EC–TB

model one would expect that to obtain a significant

DTmaxTO and to identify the TB model in addition to the

EC model, the ke0 should be in the same order of

Fig. 5 Overview of the shift in TmaxTO that was observed in the

simulations with the TBPL model (see upper-right corner), as a result

of the change in the affinity-normalized dose (leading to an initial

concentration of 5 and 0.5 times the KD). Each pixel represents a

single simulation in which the koff and kon value correspond to the

position on the y-axis and the x-axis, respectively, and the color

represents the observed shift in TmaxTO in that simulation. The

elimination rate constant kel was 0.03/hr and the target concentration

was 0.1 nM for all simulations in this figure

Fig. 6 Overview of the ratio of TmaxTO values that was observed in

the simulations with the TBPL model (see inset) as a result of the

change in the affinity-normalized dose (leading to an initial concen-

tration of 5 and 0.5 times the KD). Each pixel represents a single

simulation in which the koff and kon value correspond to the position

on the y-axis and the x-axis, respectively, and the color represents the

observed shift in TmaxTO in that simulation. The elimination rate

constant kel was 0.03/hr and the target concentration was 0.1 nM for

all simulations in this figure
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magnitude as the koff if the maximal drug concentration is

around or below the KD. This is indeed the case for the two

successful examples of an EC–TBPL fit: for buprenorphine,

the ke0 was 0.0242/min and the koff was 0.0731/min [13]

and for AR-HO47108, the ke0 was 0.0351 for the drug and

0.00749 for its metabolite and the koff was 0.00303 and

0.00827/min, respectively [29]. On the other hand, the

combined EC–TB model EC–TBPL1 that was identified in

this study for morphine also showed a similar value for ke0

and koff (0.0327 and 0.275, respectively), but this model

was not better than the EC model ECPL1. In comparison

with our one compartment pharmacokinetics model with

intravenous dosing, especially the absorption or the dis-

tribution phase into the target site could pose additional

limiting factors that prevent a shift in TmaxTO with

increasing doses.

One of the most important advantages of the EC model

is that it only requires one parameter, ke0. However, the EC

model most often needs to be combined with an Emax

model, which also requires two or three parameters, Emax,

EC50 and possibly the hill factor. The binding model has

three parameters, kon, koff and Rtot, and needs at least 1

additional parameter, Emax, to convert occupancy predic-

tions to effect predictions. One or two additional parame-

ters might be required to describe a nonlinear target

occupancy-effect relationship, which is required in case of

a high efficacy and receptor reserve [24]. The discrimina-

tion between the two nonlinearities in such cases might be

hard or impossible to obtain. However, kon and koff can be

Fig. 7 Overview of the DTmaxTO that was observed in the simula-

tions as a result of the change in the affinity-normalized dose for

different combinations of parameter values as indicated above the

panels. Each pixel represents a single simulation in which the koff and

kon value correspond to the position on the y-axis and the x-axis,

respectively, and the color represents the observed shift in TmaxTO in

that simulation. All panels vary only one other parameter compared to

the upper left panel
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obtained from in vitro experiments and Rtot from ex vivo

experiments. Especially the identification of Rtot from

ex vivo data can help to reduce the difficulties with

parameter identifiability as often associated with the TB

model [45]. It should be noted that the measurement of

in vitro target binding only helps to explain/describe the

delay between pharmacokinetics and pharmacodynamics if

the target binding kinetics are the rate-limiting step in this

delay in vivo. As biologics often display lower dissociation

rate-constants and their target binding is more often

affecting the pharmacokinetics compared to small mole-

cules, as exemplified by the multitude of TMDD model

applications in this area, one could expect that the TB

model is mostly relevant for biologics. However, small

molecules can also have low dissociation rate-constants, as

exemplified by the irreversible binders aspirin and

omeprazole and the target association-dissociation of the

semi-synthetic opioid buprenorphine. Moreover, the

increasing interest in the pharmaceutical industry to design

small molecules with low dissociation rate-constants can

lead to an increase in the number of such molecules in drug

discovery and development and the associated modeling

efforts.

In summary, the limited difference between TB and EC

models should be taken into account in the evaluation of

historical and the design of new modelling studies. By

informing the TB models with in vitro data, TB models can

help to translate between in vitro and in vivo studies if the

target binding is a rate-limiting step. The combination of

parameter values for which the TmaxTO in the target

binding model is dependent on the dose is limited to koff
values around the elimination rate constant and to target

concentrations lower than the initial drug concentration.

Although the combination of multi-compartment pharma-

cokinetics models, TB models and target turnover models

might affect the parameter range were the TmaxTO is

dependent on the dose, this study is a first indication that

such limitations should be taken into account for under-

standing TB models.

Conclusion

In this study, it was shown that successful fitting of a TB or

EC model is not enough support to assume the relevance of

target binding or target site distribution. Moreover, for a

one-compartment pharmacokinetic model with target

binding, the DTmaxTO for changing doses can only be

identified if the koff has a value around the pharmacokinetic

elimination rate constant and the target concentration is

lower than the initial drug concentration. The TmaxTO is

determined by the rate of target binding relative to the

decline rate of unbound drug and unbound target

concentrations. These findings indicate that the relatively

sparse occurrence of target binding models in literature

does not discredit the relevance of target binding kinetics.

This study also shows that a TB and EC model might be

similar for the tested dose range and pharmacokinetic

conditions, while extrapolation to different conditions

might result in different effect versus time profiles for the

TB and EC model. In conclusion, the identification of the

appropriate model is important and target binding models

should be tested more often to increase the translation

between in vitro and in vivo studies and to increase the

predictive power of developed PKPD models.
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