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Involvement of LIM kinase 1 in actin polarization in human CD4 T cells
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Chemokine binding to cognate recep-
tors induces actin dynamics that

are a major driving force for T cell
migration and chemotactic motility.
HIV-1 binding to the chemokine core-
ceptor CXCR4 initiates chemotactic sig-
naling, mimicking chemokine-induced
actin dynamics to facilitate infection
processes such as entry, early DNA
synthesis, and nuclear migration.
Recently, we identified that HIV-trig-
gered early actin polymerization is
mediated through the Rac1-PAK1/2-
LIMK1-cofilin pathway. Inhibition of
LIMK1 (LIM domain kinase 1), a kinase
phosphorylating cofilin, through shRNA
knockdown decreases actin polymeriza-
tion and T cell chemotaxis toward
SDF-1. The LIMK1 knockdown T cells
also supported lower viral entry, DNA
synthesis and nuclear migration, suggest-
ing a critical role of LIMK1-mediated
actin dynamics in the initiation of HIV-1
infection. Surprisingly, LIMK1 knock-
down in CEM-SS T cells did not lead to
an overall change in the ratio of phospho-
cofilin to total cofilin although there was
a measurable decrease in the amount of
actin filaments in cells. The decrease in
filamentous actin in LIMK1 knockdown
cells was found to mainly occur in
polarized cap region rich in F-actin.
These results suggest that LIMK1 may
be involved in spontaneous actin polari-
zation in transformed T cells. The
inhibition of T cell chemotaxis by
LIMK1 knockdown likely result from
inhibition of localized LIMK1 activation
and cofilin phosphorylation that are
required for polarized actin polymeriza-
tion for directional cell migration. The
inhibition of HIV-1 infection by LIMK1

knockdown may also result from the
decrease of actin-rich membrane protru-
sions that may be preferred viral entry
sites in T cells.

HIV-1 entry into CD4 T cells is mediated
through viral envelope binding to CD4
and the chemokine coreceptor CXCR4.1,2

This interaction is required for viral fusion
with the plasma membrane. HIV-1 bind-
ing to these receptors also initiates signal
transduction in T cells.3 In particular,
HIV-1-mediated signal transduction from
the chemokine coreceptor CXCR4 has
been shown to trigger actin dynamics
critical for viral entry, post entry DNA
synthesis and nuclear migration.4-6 It is
suggested that in the absence of chemo-
tactic stimulation or T cell activation, the
cortical actin in blood resting CD4 T cells
is relatively static. This lack of actin
activity hinders viral intracellular migra-
tion across the actin cortex following
fusion. To overcome this limitation,
HIV-1 uses CXCR4 signaling to trigger
the activation of cofilin, promoting actin
treadmilling and viral nuclear migration.4

The importance of actin dynamics in
HIV-1 infection has also been highlighted
by several recent studies. Induction of the
actin activity by treatment of blood CD4
T cells with chemokines such as CCL2
augments gp120-induced F-actin poly-
merization, which enhances viral DNA
synthesis.7 Pretreatment of blood CD4
T cells with CCL19, CXCL9, CXCL10
and CCL20 triggers cofilin activation and
changes in actin filaments, which promote
viral nuclear localization and DNA inte-
gration.8-10 In addition, spinoculation, or
infecting CD4 T cells under the condition
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of centrifugal stress, triggers both cofilin
activation and actin dynamics, leading to
CXCR4 upregulation and a great enhance-
ment of HIV-1 DNA synthesis and
nuclear migration.11

Mechanistically, HIV-1-mediated actin
dynamics have been implicated in several
early processes in the initiation of HIV
infection. Actin binding proteins such as
filamin-A and moesin were identified as
possible cofactors involved in HIV-1
entry. Filamin-A may anchor CD4 and
CXCR4 to F-actin following receptor
clustering.12 The Ezrin-Radaxin-Moesin
(ERM) family protein moesin is also
suggested to promote CD4/CXCR4 recep-
tor clustering following its activation by
gp120.13,14 In addition, HIV gp120-
mediated cell-cell fusion has been
suggested to extensively rely on signal
transduction leading to actin dynamics.
siRNAs or inhibitors against molecules
such as Pyk2, Rac1, GTPase Ras, phos-
pholipase C, protein kinase C, Tiam-1,
Abl, IRSp53, Wave2 inhibited gp120-
medaited cell-cell fusion.15 Following viral
entry, the establishment of an active viral
reverse transcription complex may also
involve cytoskeletal actin.16 Multiple pro-
teins in the viral preintegration complex
are identified to interact with actin. These
proteins include the gag nucleocapsid
protein (NC),17-20 the large subunit of
the viral reverse transcriptase, the viral
integrase and Nef.21-24 In addition, HIV-1
intracellular migration and nuclear localiza-
tion is suggested to be dependent on actin
treadmilling mediated by cofilin activity.4

Recently, we also found that HIV-1
binding to resting CD4 T cells triggers a
rapid and transient actin polymerization
through Rac1-PAK1/2-LIMK1 activa-
tion.6 Functionally, HIV-mediated actin
polymerization may be required to tran-
siently block CXCR4 internalization for
the stabilization of the fusion complex. In
addition, LIMK1-mediated actin polymer-
ization is involved in HIV-1 reverse
transcription and nuclear migration, as
knockdown of LIMK1 inhibited both viral
DNA synthesis and nuclear migration.
Furthermore, transient treatment of rest-
ing CD4 T cells with a pharmacological

agent, okadaic acid, activates LIMK1 and
promotes HIV-1 latent infection of resting
CD4 T cells.6

Given that LIMK is the kinase responsi-
ble for the serine 3 phosphorylation of
cofilin, which inhibits cofilin activity and
its binding to actin filaments,25,26 we
expected that knockdown of LIMK1
would lead to an increase in cofilin activity
and a decrease in the cortical actin density,
as opposed to what we have seen in cofilin
knockdown T cells.4 Indeed, LIMK1
knockdown led to a slight decrease of the
F-actin intensity in CEM-SS T cells, as
judged by flow cytometry6 (Fig. 1B).
However, when the status of phospho-
cofilin was examined, we did not see a
measurable change in the ratio of phos-
pho-cofilin to total cofilin (Fig. 1A).
Further examination of the cortical actin
staining by confocal microscopy revealed
that there was a marked decrease of the
F-actin-rich protrusions in the LIMK1
knockdown cells, whereas these spon-
taneous polarized actin-rich caps were
often observed in the control knockdown
cells (shNTC) (Fig. 1C). This observation
prompted us to hypothesize that in cycling
CEM-SS T cells where cofilin activity
is constantly required for cytoskeletal
remodeling, the maintenance of basal
levels of cofilin phosphorylation in the

absence of chemotactic stimulation may
involve only small amounts of LIMK1.
LIMK1 may also be locally enriched in
regions where polarized actin caps are
localized. Thus, decreasing LIMK1 activity
by shRNA knockdown may locally
increase cofilin activity, destabilizing these
actin-rich caps. Upon chemotactic stimu-
lation, rapid actin polymerization mainly
occurs around polarized lamellipodium at
the leading edges of migrating cells; rapid
LIMK1 activation would be required for
transient phosphorylation of cofiin in
these locations.27 Thus, a decrease of
LIMK1 activity may impair the polariza-
tion of actin-rich caps and the ability of
T cell for directional migration.6,28 For
HIV-1 infection, it has been suggested
that actin-rich membrane protrusions such
as microvilli may be prefer sites for viral
binding and entry in T cells.29 It is
attempting to speculate that knockdown
of LIMK1 may also result in the decrease
of these actin-rich protrusions, leading a
less efficient entry and less viral contact
with the cytoskeletal actin. This specu-
lation certainly deserves further detailed
studies in the future.
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Figure 1. Involvement of LIMK1 in actin polarization in human CD4 T cells. (A) shRNA-mediated
LIMK1 knockdown in CEM-SS T cells. Cells carrying stable LIMK1 knockdown or shNTC (a control
shRNA against no human genes) were selected in puromycin and analyzed by western blot using
antibodies against human phospho-cofilin, cofilin, LIMK1/2 or GAPDH (Bulk, bulk cell populations;
clone 007, a derived LIMK1 knockdown cell clone). (B and C) LIMK1 knockdown decreases F-actin
in clone 007. The decreases of F-actin in the knockdown cells were measured by FITC-phalloidin
staining and flow cytometry (B) or by confocal microscopy imaging (C).
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