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The year 2002 marked the tercentenary of Antonie van Leeuwenhoek’s discovery of
desiccation tolerance in animals. This remarkable phenomenon to sustain ‘life’ in the
absence of water can be revived upon return of hydrating conditions. Today, coping with
climate change-related factors, especially temperature-humidity imbalance, is a global
challenge. Under such adverse circumstances, desiccation tolerance remains a prime
mechanism of several plants and a few animals to escape the hostile consequences of
fluctuating hydroperiodicity patterns in their habitats. Among small animals, insects have
demonstrated impressive resilience to dehydration and thrive under physiological water
deficits without compromising on revival and survival upon rehydration. The focus of this
review is to compile research insights on insect desiccation tolerance, gathered over the
past several decades from numerous laboratories worldwide working on different insect
groups. We provide a comparative overview of species-specific behavioral changes,
adjustments in physiological biochemistry and cellular and molecular mechanisms as
few of the noteworthy desiccation-responsive survival kits in insects. Finally, we highlight
the role of insects as potential mechanistic models in tracking global warming which
will form the basis for translational research to mitigate periods of climatic uncertainty
predicted for the future.

Keywords: insect ecology, humidity, temperature, climate change, stress, desiccation tolerance, anhydrobiosis,
adaptation

INTRODUCTION

Long-term drought conditions leading to physiological water deficits are a threat to the survival
and distribution of all organisms. To this notion, what comes as a delightful surprise is the
demonstration of water loss mediated resurrection of apparently ‘dead’ organisms (Keilin, 1959).
Such organisms have a remarkable ability of desiccation tolerance whereby they sustain cellular
integrity in the desiccated form by activating unique physiological mechanisms (Clegg, 2001).
Interestingly, this phase is reversible upon rehydration causing the revival and resumption of active
metabolism. At present, global concerns include the challenges associated in coping with climatic
stressors, especially the fallout due to humidity-temperature imbalance (Bellard et al., 2012; Boggs,
2016). Under the global sustainable development agendas1, research priorities on “life on land”
(item#15) and “climate action” (item#13) have warranted attention. Among small animals, insects
have proved to be reliable biological systems to anticipate cause-and-effect relations of climate
change stressors (Addo-Bediako et al., 2001; Hoffmann and Todgham, 2010).

1https://www.un.org/sustainabledevelopment/sustainable-development-goals/
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This mini-review highlights the notable adaptive mechanisms
employed by insects to evade dehydration bouts in their
habitats. There have been a few reviews on similar topics
(Watanabe, 2006; Cornette and Kikawada, 2011; Chown et al.,
2011; Sogame and Kikawada, 2017); however, no recent
competent review has emphasized on the profound diversity
of hygropreference and associated strategies in insects. Most
importantly, we discuss the desiccation tolerance profiles in
insects irrespective of whether they possess a lower tolerance
potential or are anhydrobiotic with a tolerance for severe water
loss. These aspects have not been fully appreciated in the
past, therefore, we aim to compile the diverse range of insect
desiccation stress responses from a general perspective. Lastly,
the present evaluation is by no means an exhaustive list of
all desiccation tolerant insects; nonetheless, many case studies
have been gathered within the ambit of insect water stress
management.

DRY BUT NOT DEAD

The documented history of desiccation tolerance dates back
to 370 BC when Theophrastus described conditions necessary
to store ‘dry seeds alive’ (Leprince and Buitink, 2015). Later,
Antonie van Leeuwenhoek described his amazement over the
dry dust containing ‘tiny dry animalcules’ that came to life
within a few hours after being rehydrated with water (Keilin,
1959). Little did Leeuwenhoek know that his meticulous
observations would form the basis of the latent phases of life.
To describe this phenomenon, Giard (1894) coined the term
‘anhydrobiosis,’ an extreme form of desiccation tolerance which
in Greek implies ‘life without water.’ ‘Desiccation avoidance’ and
‘desiccation tolerance’ are distinguishable phenomena (Pallarés
et al., 2016). The former refers to the maintenance of water
uptake and/or minimization of body water loss (e.g., Folsomia
candida, Collembola: Isotomidae) while the latter includes
organisms that can afford loss of water and sustain a dry form
without compromising on revival upon rehydration (e.g., all
anhydrobiotes). The threshold for tolerance of water loss is
highly species-specific and striking differences in desiccation
tolerance strategies and traits in congeneric insect species have
been linked with their geographic locations and the frequency
and duration of drought exposure (Marron et al., 2003; Strachan
et al., 2015). However, this is not true in all insects such as
few heliconiine butterflies (Lepidoptera: Nymphalidae) (Mazer
and Appe, 2001). Contrary to the rationale that desert insects
can withstand higher water loss than mesic species, the aquatic
beetle, Peltodytes muticus (Coleoptera: Haliplidae) is known for
its highest tolerance in comparison to the desert spider beetle,
Mezium affine (Coleoptera: Ptinidae) (Pallarés et al., 2016).
Closely related Drosophila species (Diptera: Drosophilidae) have
evolved different water balance mechanisms as demonstrated in
D. nepalensis vs. D. takahashii and D. immigrans vs. D. nasuta
(Parkash et al., 2012a,b).

Each organism may have its specific threshold longevity in the
dry state; however, desiccation tolerance by no means confers
‘immortality’ or infinite survival but is rather influenced by the

mode of desiccation, storage temperature, humidity and oxygen
content (Tunnacliffe and Lapinski, 2003; Suemoto et al., 2004;
Thorat and Nath, 2016). Depending on these factors, organisms
display varying longevities in the desiccated form that may
range from 1 day to several years (Figure 1). Notwithstanding
these variations and by virtue of qualitative considerations, all
such organisms have been considered as desiccation tolerant
(Watanabe, 2006). To the best of our knowledge, a numerical
method devised for grouping prokaryotes based on their degree
of desiccation tolerance, was the first attempt made by Hernández
et al. (2009). A recent study in animals proposed the ‘desiccation
tolerance index’ (DTi) as a quantitative measure of endurance to
desiccation stress (Thorat and Nath, 2016). This mathematical
tool is based on the desiccation tolerance in nine oriental
Chironomus species (Diptera: Chironomidae) which indicate
varying degrees of the tolerance threshold based on their
ecological habitats (Figure 2).

ANHYDROBIOSIS: AN EXTREME CASE
OF DESICCATION TOLERANCE

Anhydrobiosis is characterized by extreme body water loss,
generally over 95% (Benoit, 2010; Sogame and Kikawada,
2017). Thus, anhydrobiosis refers to complete desiccation, unlike
desiccation tolerance, which refers to partial dehydration. In this
context, we would like to introduce the term, ‘euryhygrobiote’
for such organisms that show a wide range of dehydration
tolerance with a high anhydrobiotic potential. Conversely,
we coin the term ‘stenohygrobiote’ for organisms that have
a narrow dehydration tolerance range and can bear water
loss only up to a certain limit. The extremophilic midges
(Diptera: Chironomidae), Polypedilum vanderplanki (Hinton,
1951) and Belgica antarctica (Lopez-Martinez et al., 2009) are
valuable models in understanding the gamut of molecular
and biochemical signatures that render them anhydrobiotic.
Anhydrobiotes can also be referred to as ‘anhydrophiles’ in
comparison to ‘anhydrophobes,’ which lack desiccation tolerance.
P. vanderplanki, the largest known anhydrobiotic eukaryote,
endures water content as low as 3% through a gradual and
optimized desiccation regime to sustain the dry state for 17 years
until rehydration (Cornette and Kikawada, 2011). A new related
species, Polypedilum pembai sp.n. also possesses anhydrobiotic
potential and shares a few overlapping mechanisms with
P. vanderplanki (Cornette et al., 2017). Recent work from our
laboratory has demonstrated that the tropical midge, Chironomus
ramosus and the fruit fly, Drosophila melanogaster possess
a lower ability to tolerate water loss in comparison to the
anhydrobiotic midges (Thorat et al., 2017) and are therefore
stenohygrobiotic. Among invertebrates, other well-studied non-
insect anhydrobiotes include brine shrimps, tardigrades, rotifers
and nematodes (Tunnacliffe and Lapinski, 2003; Rebecchi,
2013). Interestingly, desiccation tolerance also confers cross
tolerance to a variety of other stressors through multiple
physiological defenses including physical and cellular protection
via antioxidants, compatible solutes, proteins and DNA repair
(Gusev et al., 2010b).

Frontiers in Physiology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 1843

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01843 December 19, 2018 Time: 18:27 # 3

Thorat and Nath Desiccation Tolerance Strategies in Insects

FIGURE 1 | Fate of organisms under desiccation exposure. Acute desiccation permits shorter desiccation longevity (partial desiccation tolerance as seen in
stenohygrobiotes) while chronic desiccation facilitates strategic competence to achieve higher desiccation longevity (extreme desiccation tolerance as seen in
anhydrobiotes/euryhygrobiotes).

DESICCATION TOLERANCE
STRATEGIES IN INSECTS

Environmental cues cause dormancy in insects, a phenomenon
triggered by climatic signals including humidity, photoperiod,
temperature, etc. (Diniz et al., 2017). Dormancy is further
classified into diapause and quiescence. While diapause is a
pre-programmed predictive strategy, quiescence is an immediate
response to adverse environmental conditions (Denlinger,
1986; Danks, 2002). Aestivation, a form of consequential
dormancy is the reason behind the aridity survival strategies
of several insect species (Colvin, 1996; Benoit and Denlinger,
2007; North and Godfray, 2018). Anhydrobiosis (ametabolism)
is an adaptation against physiological water stress, whereas
dormancy is characterized by interrupted or reduced metabolic
and hormonal activities (hypometabolism) in response to
environmental cues (Watanabe, 2006).

While external milieu trigger desiccation stress responses,
interoception is central to tolerance, survival and propagation
of species. Below, we discuss a few of the striking and widely
established strategies that constitute part of the desiccation
tolerance approach of insects (Table 1).

Behavior and Ecology
Hygrosensing abilities and behavioral responses suggest
an evolutionary strategy for coping with water loss in
insects (Chown et al., 2011). For instance, cockroaches
show aggregation in order to control the water loss rate per

individual (Dambach and Goehlen, 1999). Similar observations
in Chironomus larvae indicate a ‘clumping’ behavior, forming
a single bunch to reduce evaporative body water loss (Thorat
and Nath, unpublished). Some beetles exhibit bimodal activity
patterns in order to escape the hottest hours of the day whereas
others display fog-basking for moisture absorption from the
surroundings (Bedick et al., 2006; Chown et al., 2011). Other
striking evidences for aridity protection, come from niche
construction behaviors such as the housing nests of chironomid
midges, termite nests, domiciles of some thrips and insect
galls (Kikawada et al., 2005; Gilberta, 2014; Zukowski and Su,
2017; Thorat and Nath, 2018). The cuticle is the first portal of
water loss in insects and the differential desiccation tolerance
patterns in C. ramosus vs. D. melanogaster and P. vanderplanki
vs. Paraborniella tonnoiri (Diptera: Chironomidae) have been
attributed to striking differences in their cuticular thickness
(Nakahara et al., 2008; Thorat et al., 2017). Furthermore, in
some insects, restructuring of the cuticle and morphological
changes in spiracular features are crucial to minimize water
loss. Such restructuring mechanisms are important because
water is mainly lost passively and/or actively throughout
spiracular respiration and cuticular transpiration (Hadley,
1994; Benoit and Denlinger, 2007; Benoit, 2010; Bazinet
et al., 2010; Wadaka et al., 2016; Hidalgo et al., 2018; Ferveur
et al., 2018). Other behavioral traits for desiccation protection
such as the arrangement of egg laying (layering and density)
in the nymphalid butterfly, Chlosyne lacinia (Lepidoptera:
Nymphalidae), increases desiccation survival chances of eggs
(Clark and Faeth, 1998).
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FIGURE 2 | Desiccation tolerance index (DTi) scale categorizing nine oriental
chironomids based on their threshold to tolerate water loss. Anhydrophobes
lack desiccation tolerance while anhydrophiles are highly desiccation tolerant.

Development and Hormonal Regulation
Our current understanding on the desiccation-mediated
developmental consequences in insects is rather fragmented. In
the case of the oriental fruit fly, Bactrocera dorsalis (Diptera:
Tephritidae), desiccation does not exert significant effects on
the average eclosion time (Xie and Zhang, 2007). In C. ramosus
and D. melanogaster, modulations in 20-hydroxyecdysone
affect recovery patterns and are linked with the desiccation-
mediated delay in metamorphosis (Thorat and Nath, 2015;
Thorat et al., 2016b). Interestingly, in D. melanogaster, despite
the developmental heterochrony, the overall duration of
postembryonic development of the life cycle remains almost
unaltered. This is reminiscent of Waddington’s ‘canalization’
as an adaptive buffer to adjust their life histories around
optimal seasonal conditions (Thorat et al., 2016b). Life
cycle and aging in desiccation tolerant animals has been
categorized into three hypothetical models, the first, known
as the ‘Sleeping Beauty’ model, implies that organisms totally
disregard the entire time spent in the dry state, the second
model considers that organisms register partial discount of
the time spent in the dry state and the third model, whereby
organisms record the exact time spent in the dry state,
exhibiting non-extended longevity. D. melanogaster follows the
Sleeping Beauty model similar to the non-insect anhydrobiotic
tardigrade, Milnesium tardigradum (Schill, 2010; Thorat et al.,
2016b). Variations in insect hormonal titres are key players

in synchronizing developmental changes in order to handle
ecological ramifications of stressful environments such as
hypoxia, high temperatures, starvation and sleep deprivation;
however, investigations in the context of desiccation stress are
warranted.

Physiological Biochemistry
A longstanding biochemical adjustment of survival under dry
conditions, is the ability of desiccation-responsive synthesis and
accumulation of biomolecules including trehalose, mannitol,
glycerol, Heat-Shock (HS) and Late Embryonic Abundant (LEA)
proteins, proline, glycine-betaine, gamma aminobutyric acid,
alanine, and glucosamine (Crowe and Madin, 1974; Tunnacliffe
and Lapinski, 2003; Yoder et al., 2006; Kikawada et al., 2008;
Philip et al., 2008; Benoit et al., 2009; Mitsumasu et al., 2010;
Thorat et al., 2012; Hidalgo et al., 2014; Shukla et al., 2015,
2016, 2018; Yoshida et al., 2016; Thorat et al., 2017; Mazin et al.,
2018). These compatible solutes not only offer protection to the
drying tissues but also trigger various signaling responses during
recovery. Although trehalose was considered indispensable for
desiccation tolerance, recent compelling evidences have affirmed
that trehalose accumulation may be completely absent in some
organisms in which the desiccation protective role is taken
up by other biomolecules (Tunnacliffe et al., 2005; Thorat
et al., 2017). Differential physiological mechanisms involving
carbohydrates, lipids and proteins are known to contribute
to the invasive potential of three related Ceratitis fly species
(Diptera: Tephritidae) under episodic dehydration (Weldon
et al., 2016). Osmoregulatory mechanisms in lepidopteran
species have demonstrated the homeostatic control to readjust
hemolymph osmolality triggered by body water loss (Willmer,
1980). Interestingly, eggs of Acanthoscelides obtectus (Coleoptera:
Bruchidae) show water loss coping mechanisms that enhance
egg tolerance and survival (Biemont et al., 1981). In the case
of the flea beetle, Longitarsus bethae (Chrysomelidae: Alticinae),
while low relative humidity has no influence on oviposition,
aridity beyond a critical point is lethal for the eggs (Simelane,
2007). In contrast, egg desiccation did not affect embryo survival
in xeric and mesic populations of the tobacco hawk moth,
Manduca sexta (Lepidoptera: Sphingidae) (Potter and Woods,
2012).

Antioxidant Defense
Ionic imbalance and changes in osmolarity as a result of cellular
water loss leads to the generation of reactive oxygen species
(ROS) that are known to damage cellular macromolecules
(Alpert, 2005; Benoit and Lopez-Martinez, 2012). Rebecchi
(2013) has provided an excellent overview of the whole
repertoire of antioxidant defenses under desiccation-responsive
oxidative stress management in animals. P. vanderplanki shows
the presence of both mitochondrial and cytosolic/extracellular
superoxide dismutases (SODs) and abundant glutathione
peroxidase and mitochondrial thioredoxin (Cornette et al., 2016;
Nesmelov et al., 2016). Furthermore, genes that encode core
components of enzymatic antioxidants in P. nubifer are similar
to those in insects. However, in P. vanderplanki several groups
of antioxidant genes have expanded (Gusev et al., 2014). In
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TABLE 1 | List of representative desiccation tolerant insects from different orders.

Order Species Life stage Natural habitat Reference

Collembola Folsomia candida Egg, larva, adult Moist soil and sediments, leaf litter and
decaying material

Sjursen et al., 2001; Holmstrup
et al., 2002

Cryptopygus antarcticus, Friesea
grisea

Larva, adult Moist Antarctic habitats Alvarez et al., 1999; Hayward
et al., 2004b; Elnitsky et al.,
2008

Protaphorura tricampata Adult Meadows, mostly seashores Holmstrup and Bayley, 2013

Ephemeroptera Cloeodes hydation Larva Pools, ephemeral, rain-filled rock pools and
springs

Nolte et al., 1996

Odonata Libellula depressa Larva Still-water lakes and ponds (newly created
ponds and well- vegetated ponds)

Rebora et al., 2007

Orthoptera Acheta domesticus Adult Woodlands, caves, pastures, damp and soggy
areas

McCluney and Date, 2008

Dianemobius nigrofasciatus Egg Caves, fields, meadows, forests, grasslands,
marshes and swamps.

Goto et al., 2008

Oedaleus senegalensis Egg, adult Dry areas, annual grass communities, sandy
soils

Colvin, 1996; Idrissa et al.,
2008

Dictyoptera Periplaneta americana, Blattella
germanica

Nymph, adult Humid spaces, cracks and crevices of porches,
residential areas, temperate and tropical
biomes, grasslands, rainforests and urban
environments

Treherne and Willmer, 1975;
Dambach and Goehlen, 1999

Phasmida Carausius morosus Egg, larva Tropical forests, bushes and trees, garden
plants, natural vegetation

Tichy, 1979

Plecoptera Protonemura intricate, Egg, larva Freshwater, terrestrial and shredders of
decayed tree leaves

Harper and Hynes, 1970;
Marten and Zwick, 1989;
Lancaster et al., 2010

Isoptera Macrotermes carbonarius, M. gilvus Adult Terrestrial, subterranean Hu et al., 2012

Coptotermes formosanus,
Neotermes jouteli, Cryptotermes
cavifrons, C. brevis

Adult Terrestrial, subterranean, dampwood Zukowski and Su, 2017

Dermaptera Labidura riparia Nymph, larva, adult Terrestrial, dark and moist environments,
cultured and uncultured farmlands, woodlands,
margins of ponds and lakes

Kharboutli and Mack, 1993

Hemiptera Cryptotympana facialis,
Graptopsaltria nigrofuscata

Nymph Terrestrial, urban environments Moriyama and Numata, 2010,
2011

Cimex lectularius Adult Obligate blood feeders on humans Benoit et al., 2007a

Trichoptera Lectrides varians Larva, pupa Benthic, temperate lakes, streams, and ponds.
Adults are terrestrial

Wickson et al., 2012

Lepidoptera Chlosyne lacinia Egg, Larva Desert hills and woodlands Clark and Faeth, 1998

Pieris brassicae, Aglais io,
Heliconius charithonia

Larva, Adult Farms, tree trunks, walls and fences, in the
vicinity of cruciferous plants

Willmer, 1980; Mazer and
Appe, 2001

Manduca sexta Egg, larva Facultative specialists on tobacco host plants Rowley and Hanson, 2007;
Davies et al., 2013

Hymenoptera Ceratosolen galili, Ceratosolen
arabicus

Adult Terrestrial on host fig trees Warren et al., 2010

Apis mellifera Adult Temperate, tropical deserts, dunes, savannas,
grasslands, swamps, urban and agricultural
areas.

Atmowidjojo et al., 1997

Diptera Aedes albopictus, Culex pipiens,
Anopheles gambiae

Egg, Larva, Adult Egg, larva and pupa are aquatic (freshwater),
adults are terrestrial

Sota and Mogi, 1992; Alto and
Juliano, 2001; Hidalgo et al.,
2014; Wadaka et al., 2016;
Diniz et al., 2017

P. vanderplankii, P. pembai,
B. antarctica, C. ramosus,
C. kiiensis, C. crassiforceps,
C. nippodorsalis, C. biwaprimus,
C. flaviplumus, C. salinarius,
C. circumdatus, C. yoshimatsui

Larva Diverse aquatic habitats- African rock pools,
rock pools of Malawi, Terrestrial Antarctic
environments, tropical freshwater lakes and
rivers, eutrophic lakes, rivers, ponds, artificial
reservoirs and paddy fields

Suemoto et al., 2004; Benoit
and Denlinger, 2007; Nakahara
et al., 2008; Thorat and Nath,
2016; Thorat et al., 2017

(Continued)
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TABLE 1 | Continued

Order Species Life stage Natural habitat Reference

Ceratitis capitate, C. cosyra, C.
rosa, Bactrocera dorsalis

Larva, adult Fruit crop pest Xie and Zhang, 2007; Weldon
et al., 2016

Drosophila immigrans, D.
pseudoobscura, D. hydei, D.
mojavensis, D. birchii, D.
nigrospiracula, D. nepalensis, D.
takahashii, D. immigrans, D. nasuta,
D. melanogaster, D. simulans

Larva, adult Deserts, tropical rainforest, cities, swamps,
alpine zones, on decaying plant and fungal
material

Hoffmann and Parsons, 1989;
Davidson, 1990; Gibbs and
Matzkin, 2001; Marron et al.,
2003; Hoffmann et al., 2003;
Bazinet et al., 2010; Thorat
et al., 2012; Parkash et al.,
2012a,b; Davies et al., 2013;
Thorat et al., 2016b; Ferveur
et al., 2018

Sarcophaga bullata Larva Rural and urban environments, commonly
found in houses and indoor dwellings

Yoder et al., 2006

Coleoptera Acanthoscelides obtectus Egg Granivore, infesting seeds or beans and living
inside them

Biemont et al., 1981

Longitarsus bethae Egg Soil-dwelling, root-feeding on the host plant,
Lantana camara

Simelane, 2007

Peltodytes muticus, Mezium affine,
Enochrus halophilus, E. politus, E.
bicolor, E. jesusarribasi

Adult Aquatic, temporary-lentic or intermittent-lotic
water bodies, deserts

Arlian and Staiger, 1979;
Pallarés et al., 2016

Siphonaptera Spilopsyllus cuniculi Egg, larva, pupa, adult External parasite of rabbits Cooke and Skewes, 1988

Ctenocephalides felis Egg, larva, pupa, adult External parasite of cats Silverman and Rust, 1983

contrast, SOD serves as the major antioxidant in B. antarctica
(Benoit and Lopez-Martinez, 2012). Recently, the role of
unconventional antioxidant molecules such as trehalose,
proline, polyamines and polyoils has gained attention (Goyal
et al., 2004; Schill et al., 2009; Benoit and Lopez-Martinez,
2012). Trehalose, in particular, has been confirmed for its
ROS-scavenging ability in SOD-deficient yeast cells and
plants (Kranner and Birtič, 2005; França et al., 2007). Using
the advantage of molecular genetic tools in Drosophila and
a simple, non-invasive method of whole larval real-time
imaging, Thorat et al. (2016a) have demonstrated for the first
time that during desiccation, trehalose in collaboration with
SOD is involved in the maintenance of redox homeostasis in
insects.

Molecular and Evolutionary Biology
Cellular decline in water levels serves as a cue to elicit defensive-
responses of molecular indicators. Among the molecular
responses mediated via proteins, Hsps, namely, smHsp, Hsp70
and Hsp90 have been linked with desiccation survival in insects
(Tammariello et al., 1999; Sjursen et al., 2001; Hayward et al.,
2004a; Benoit et al., 2009; Benoit, 2010). LEA proteins are
another group of upregulated molecules that act as molecular
shields to protect other proteins and bio-membranes against
aggregation and denaturation resulting from drying (Goyal
et al., 2005; Sogame and Kikawada, 2017). Interestingly,
however, B. antarctica lacks genes encoding LEA proteins and
Hsps are apparently not involved in conferring desiccation
tolerance (Philip et al., 2008). Instead, metabolite synthesis and
membrane phospholipids, distinct contractile and cytoskeletal
protein patterns and aquaporins are among the key players
essential for successful anhydrobiosis in the Antarctic midge

(Benoit et al., 2007b; Michaud et al., 2008; Li et al., 2009;
Teets et al., 2012; Kelley et al., 2014). In addition, desiccation
response was shown to upregulate ‘Frost,’ ‘Desi’ and ‘smp-
30’ genes whereas ‘Desat2’ was downregulated during post-
desiccation recovery (Sinclair et al., 2007; Kawano et al.,
2010). Metabolic fingerprint comparisons in mosquitoes have
highlighted specific metabolic alterations, enabling them to
survive seasonal aridity (Hidalgo et al., 2015). Diapause in Aedes
albopictus (Diptera: Culicidae) promotes desiccation survival by
overexpression of a transcript involved in lipid storage with
a concomitant increase in hydrocarbon levels (Diniz et al.,
2017). Seminal contributions from Davies et al. (2014) have
deepened our understanding on the neuroendocrine regulation
of salt and water balance in insects (Luan et al., 2015).
Recently, the importance of capa neuropeptides as anti-diuretic
hormones have been identified in D. melanogaster and is
postulated to be a part of desiccation tolerance mechanisms
in other insects as well (Davies et al., 2013; Terhzaz et al.,
2015).

CONCLUSION

Adaptive mechanisms vary among organisms based on their
ecological and evolutionary background. Thus, stress tolerance
physiology is bound to vary even among closely related
species and therefore cannot be generalized. In addition,
variations in desiccation tolerance physiology is often a result
of the desiccation protocols (acute/chronic) employed. It might
therefore be possible to judge the desiccation tolerance or
anhydrobiotic potential of organisms in the true sense, only
when they are studied under a common denominator of
reproducible protocols. Nature has a vast array of tactics
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to safeguard its biodiversity and therefore, exploration of other
aridity-induced mechanisms in known and unknown desiccation
tolerant organisms will give way to our holistic understanding
of the diversity in tolerance patterns from an evolutionary,
ecological, physiological, cellular and molecular perspective.
As reviewed here, although several molecular and biochemical
underpinnings of desiccation tolerance in insects are thoroughly
studied and well-established, an understanding of some other
basic mechanisms remain elusive. For instance, there is a
lack of information on the status of the immune responses
elicited during desiccation survival. Another neglected area is
the understanding of the neuronal basis governing recovery from
desiccation that leads to the reactivation of coordinated sensory
circuits. As an example, Pflüger and colleagues have determined
the role of insect neurotransmitters in modulating multiple
physiological and behavioral processes and have emphasized the
involvement of biogenic amines under heat, mechanical stress,
starvation and chemicals in insects (Verlinden et al., 2010).
Similar studies on physiological water deficits in insects can hold
great promise for translational research.

The role of insects as reliable mechanistic models presents
endless research possibilities for the prediction of the
consequences of climate change. The extreme desiccation
tolerance of P. vanderplanki has been exploited as a prototype
insect system for investigating the influence of spaceflight
environments on life processes (Gusev et al., 2010a).
Furthermore, the knowledge of insect desiccation biology
offers ample ideas for exciting biomedical and pharmaceutical
applications, e.g., anhydrobiotic engineering that targets at
improving desiccation tolerance of desiccation-sensitive species,
including humans (de Castro et al., 2000; Watanabe et al.,
2016). These and many other applications that might have
been previously viewed as science fiction, are now possible
because of our knowledge of insect responses to water scarcity.

Thus, research in desiccation stress response biology has come
a long way from curiosity-driven explorations to present day
technology-driven applications. Therefore, we hope that this
review will trigger impetus for the development of methods and
technology to mitigate the consequences of climate change in
human and non-human biota.
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