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Introduction
Exacerbations of chronic obstructive pulmonary 
disease (COPD) are associated with adverse 
health outcomes, including greater risk for future 
exacerbations, lung function decline, worsening 
quality of life, and increased risk of mortality.1–3 In 
addition, exacerbations account for the majority 
of healthcare costs associated with COPD, to 

which those leading to hospitalization contribute 
significantly.4 Accordingly, the prevention of exac-
erbations is a key goal of COPD management.5

Several disease characteristics are known to increase 
the risk of COPD exacerbations, including previous 
exacerbation history, greater airflow obstruction or 
symptom severity, and comorbidities, including 

Predictive modeling of COPD exacerbation 
rates using baseline risk factors
Dave Singh , John R. Hurst, Fernando J. Martinez, Klaus F. Rabe , Mona Bafadhel, 
Martin Jenkins, Domingo Salazar, Paul Dorinsky and Patrick Darken

Abstract
Background: Demographic and disease characteristics have been associated with the risk 
of chronic obstructive pulmonary disease (COPD) exacerbations. Using previously collected 
multinational clinical trial data, we developed models that use baseline risk factors to 
predict an individual’s rate of moderate/severe exacerbations in the next year on various 
pharmacological treatments for COPD.
Methods: Exacerbation data from 20,054 patients in the ETHOS, KRONOS, TELOS, SOPHOS, 
and PINNACLE-1, PINNACLE-2, and PINNACLE-4 studies were pooled. Machine learning was 
used to identify predictors of moderate/severe exacerbation rates. Important factors were 
selected for generalized linear modeling, further informed by backward variable selection. An 
independent test set was held back for validation.
Results: Prior exacerbations, eosinophil count, forced expiratory volume in 1 s percent 
predicted, prior maintenance treatments, reliever medication use, sex, COPD Assessment 
Test score, smoking status, and region were significant predictors of exacerbation risk, with 
response to inhaled corticosteroids (ICSs) increasing with higher eosinophil counts, more 
prior exacerbations, or additional prior treatments. Model fit was similar in the training and 
test set. Prediction metrics were ~10% better in the full model than in a simplified model 
based only on eosinophil count, prior exacerbations, and ICS use.
Conclusion: These models predicting rates of moderate/severe exacerbations can be applied 
to a broad range of patients with COPD in terms of airway obstruction, eosinophil counts, 
exacerbation history, symptoms, and treatment history. Understanding the relative and 
absolute risks related to these factors may be useful for clinicians in evaluating the benefit: 
risk ratio of various treatment decisions for individual patients.
Clinical trials registered with www.clinicaltrials.gov (NCT02465567, NCT02497001, 
NCT02766608, NCT02727660, NCT01854645, NCT01854658, NCT02343458, NCT03262012, 
NCT02536508, and NCT01970878)

Keywords:  chronic obstructive pulmonary disease, exacerbations, ICS/LAMA/LABA, machine 
learning, prediction model, triple therapy

Received: 19 November 2021; revised manuscript accepted: 30 May 2022.

Correspondence to:	  
Dave Singh  
Medicines Evaluation Unit, 
University of Manchester, 
Manchester University 
NHS Foundation Hospitals 
Trust, Manchester M23 
9QZ, UK. 
dsingh@meu.org.uk

John R. Hurst  
UCL Respiratory, 
University College London, 
London, UK

Fernando J. Martinez  
Joan and Sanford I. Weill 
Department of Medicine, 
Weill Cornell Medicine, 
New York, NY, USA

Klaus F. Rabe  
LungenClinic 
Grosshansdorf and 
Christian-Albrechts 
University Kiel, Airway 
Research Center North, 
Member of the German 
Center for Lung Research 
(DZL), Grosshansdorf, 
Germany

Mona Bafadhel  
Respiratory Medicine 
Unit, Nuffield Department 
of Clinical Medicine, 
University of Oxford, 
Oxford, UK

Martin Jenkins 
Domingo Salazar  
AstraZeneca, Cambridge, 
UK

Paul Dorinsky  
Formerly of AstraZeneca, 
Durham, NC, USA

Patrick Darken  
AstraZeneca, 
Gaithersburg, MD, USA

*Mona Bafadhel now 
affiliated to Department of 
Immunobiology, School of 
Immunology and Microbial 
Sciences, Faculty of Life 
Sciences and Medicine, 
King’s College London, UK

1107314 TAR0010.1177/17534666221107314Therapeutic Advances in Respiratory DiseaseD Singh, JR Hurst
research-article20222022

Original Research

https://journals.sagepub.com/home/tar
https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
www.clinicaltrials.gov
mailto:dsingh@meu.org.uk


Volume 16

2	 journals.sagepub.com/home/tar

Therapeutic Advances in 
Respiratory Disease

diabetes, cancer, heart failure, and gastroesophageal 
reflux.6–8 Also, blood eosinophil count is a predictor 
of exacerbation risk and a modifier of treatment 
response to inhaled corticosteroids (ICSs), with 
greater reductions in exacerbation rates as eosino-
phil counts increase.9–13 Therefore, it is important 
to tailor interventions according to the individual 
patient factors that contribute to exacerbation risk.

Current treatment algorithms from the Global 
Initiative for Chronic Obstructive Lung Disease 
(GOLD) report recommend using exacerbation 
history and symptom burden to determine the 
most appropriate inhaled treatment. Blood eosino-
phil counts are also considered useful for deter-
mining when to use an ICS-containing treatment 
regimen.5 More recently, several predictive models 
have been developed that incorporate additional 
clinical and biological characteristics, which may 
predict future exacerbation risk.14–17 Covariates 
included in these models cover a range of demo-
graphic characteristics, previous medication his-
tory, and disease severity characteristics such as 
forced expiratory volume in 1 s percent (FEV1%) 
predicted and exacerbation history; however, the 
risk of experiencing a COPD exacerbation is also 

influenced by the effects of pharmacological treat-
ment, which may vary as a function of patient 
characteristics. Therefore, we used previously col-
lected multinational clinical trial data from more 
than 20,000 patients to develop a model that 
would predict the effects of pharmacological treat-
ment on exacerbation risk and apply to individuals 
within broad populations of patients with COPD.

Methods

Source data
The model was developed using data from the 
Phase III clinical development programs of 
budesonide/glycopyrrolate/formoterol fumarate 
metered dose inhaler (BGF MDI), budesonide/
formoterol fumarate (BFF) MDI, and glycopyr-
rolate/formoterol fumarate (GFF) MDI. Patients 
were randomized to treatment with various com-
binations of the ICS budesonide (320 or 160 µg), 
the long-acting muscarinic antagonist (LAMA) 
glycopyrrolate (18 µg), and the long-acting β2-
agonist (LABA) formoterol fumarate (FF; 9.6 µg), 
or placebo, with the specific treatment arms vary-
ing by study (Table 1).

Table 1.  Clinical trial source data by included treatments.

Study N Study duration Key inclusion criteria Treatments included

ETHOS13 8509 52 wks •  FEV1 25−<65%
•  ⩾2 inhaled maintenance therapies
•  CAT ⩾10
•  ⩾1 exacerbation in prior year

BGF 320/18/9.6 µg
BGF 160/18/9.6 µg
BFF 320/9.6 µg
GFF 18/9.6 µg

KRONOS12 
+ Extension 
Studies18,19

1896 24 wks + 28-wk 
extensions

•  FEV1 25−<80%
•  ⩾2 inhaled maintenance therapies
•  CAT ⩾10
•  No exacerbation requirement

BGF 320/18/9.6 µg
BFF 320/9.6 µg (MDI)
BFF 320/9 µg (DPI)
GFF 18/9.6 µg

TELOS20 2361 24 wks •  FEV1 <80%
•  ⩾1 inhaled maintenance therapy
•  CAT ⩾10
•  No exacerbation requirement

BFF 320/9.6 µg (MDI)
BFF 320/9 µg (DPI)
BFF 160/9.6 µg
BD 320 µg
FF 9.6 µg

SOPHOS21 1843 12–52 wks 
(variable)

•  FEV1 25−<80%
•  ⩾1 inhaled maintenance therapy
•  CAT ⩾10
•  ⩾1 exacerbation in prior year

BFF 320/9.6 µg
BFF 160/9.6 µg
FF 9.6 µg

PINNACLE-122 
+ PINNACLE-3 
Extension Study23

2096 24 wks + 28-wk 
extension

•  FEV1 <80%
• � No requirements for inhaled maintenance 

therapy, symptoms, or exacerbations

GFF 18/9.6 µg
GP 18 µg
FF 9.6 µg
Placeboa

(Continued)
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The database included pooled exacerbation data 
from a total of 20,054 patients from ETHOS 
(NCT02465567),13 KRONOS (NCT02497001),12 
TELOS (NCT02766608),20 SOPHOS 
(NCT02727660),21 PINNACLE-1 (NCT01854645),22 
PINNACLE-2 (NCT01854658),22 and 
PINNACLE-4 (NCT02343458)24 (Table 1). 
Data from extension studies (up to 1 year in duration) 
of KRONOS (NCT03262012, NCT02536508)18,19 
and PINNACLE-1 and PINNACLE-2 
(PINNACLE-3; NCT01970878)23 were also 
included. All treatments were delivered via a single 
Aerosphere inhaler (AstraZeneca), except for the 
BFF dry powder inhaler (Symbicort Turbuhaler; 
AstraZeneca) used in KRONOS and TELOS.

All studies enrolled patients 40–80 years of age 
with moderate-to-very severe COPD [FEV1/
forced vital capacity (FVC) ratio < 0.7 and FEV1 
of  < 80% predicted (<65% in ETHOS)] and a 
smoking history of ⩾10 pack-years. In addition, 
SOPHOS and ETHOS required a history of ⩾1 
exacerbation in the previous year. The PINNACLE 
studies did not have any entry criteria regarding 
prior treatment or symptoms; all other studies 
required that patients were symptomatic [COPD 
Assessment Test (CAT) score ⩾10] despite 
receiving ⩾1 (TELOS, SOPHOS) or ⩾2 
(KRONOS, ETHOS) COPD maintenance medi-
cations at study entry.

Model development
The endpoint of interest was the annualized rate of 
moderate/severe exacerbations (defining moderate 
exacerbations as those that require treatment with 

systemic corticosteroids or antibiotics, or both, 
and severe exacerbations as those that require hos-
pitalization or those that resulted in death). 
Exacerbation data only included events that 
occurred during randomized treatment. Modeling 
was conducted using the statistical software R, and 
both machine learning techniques and traditional 
statistical modeling approaches were utilized.

A preliminary model was developed using nega-
tive binomial generalized linear modeling (GLM) 
with data from all studies except ETHOS. A sta-
tistical analysis plan was finalized, including steps 
that would be completed following the unblinding 
of ETHOS data. Predictors were investigated 
based on prior literature reporting clinical, physi-
ological, and demographic risk factors for exacer-
bations.8,9 The set of proposed predictors included 
blood eosinophil count (log-transformed), ICS 
use, sex, FEV1 (post-bronchodilator percent pre-
dicted), exacerbation history (number in last 
year), smoking status (current/former), CAT 
score, prior maintenance therapies, and average 
daily reliever medication use (in puffs/day). 
Interaction terms with budesonide were proposed 
for ICS use, eosinophil count, smoking status, and 
eosinophil count by smoking status.

Following the completion of the ETHOS study, a 
wide range of prospectively named potential pre-
dictors available in all studies were considered for 
the final model development. These additional 
potential predictors included age, body mass 
index, height, race, duration of COPD, GOLD 
classifications A–D, prior ICS use, prior LAMA 
use, prior LABA use, number of pack-years 

Study N Study duration Key inclusion criteria Treatments included

PINNACLE-222 
+ PINNACLE-3 
Extension Study23

1609 24 wks + 28-wk 
extension

•  FEV1 <80%
• � No requirements for inhaled maintenance 

therapy, symptoms, or exacerbations

GFF 18/9.6 µg
GP 18 µg
FF 9.6 µg
Placeboa

PINNACLE-424 1740 24 wks •  FEV1 <80%
• � No requirements for inhaled maintenance 

therapy, symptoms, or exacerbations

GFF 18/9.6 µg
GP 18 µg
FF 9.6 µg
Placebo

BD, budesonide; BFF, budesonide/formoterol fumarate; BGF, budesonide/glycopyrrolate/formoterol fumarate; CAT, COPD Assessment Test;  
COPD, chronic obstructive pulmonary disease; DPI, dry powder inhaler; FEV1, forced expiratory volume in 1 s; FF, formoterol fumarate;  
GFF, glycopyrrolate/formoterol fumarate; GP, glycopyrrolate; MDI, metered dose inhaler; wk(s), week(s).
N represents the modified intent-to-treat populations in ETHOS, KRONOS, TELOS, and SOPHOS, and the intent-to-treat populations in  
PINNACLE-1, PINNACLE-2, PINNACLE-3, and PINNACLE-4.
aPatients in the placebo arm were not eligible to continue into the extension study.

Table 1.  (Continued)
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smoked, number of severe exacerbations in the 
last year, blood neutrophil count, medical history 
of gastroesophageal reflux disease, cardiometa-
bolic medical history (including diabetes, hyper-
tension, and high cholesterol), region, study, 
percent reversibility to salbutamol, and other lung 
function parameters such as FVC, forced expira-
tory flow at 25–75% of FVC (FEF25–75), and peak 
expiratory flow (PEF). No patients had missing 
exacerbation outcomes, and no covariate had 
greater than 1.25% missing data. As such, only 
complete cases were used in model development.

The pooled dataset was randomly split into a 
training set and a test set (stratified by study and 
treatment), containing 85% and 15% of the pop-
ulation, respectively, to develop the final model 
(following unblinding of the ETHOS data). 
Among each pair of covariates with a correlation 
⩾0.75, one predictor was chosen based on clini-
cal relevance and precedent, leaving a set of pre-
dictors taken forward to machine learning. 
Machine learning methods – including gradient 
boosting25 (with virtual twins),26,27 GLMtree,28–30 
GUIDE,31,32 and Elastic Nets33 – were used on 
the training set to assess variable importance, 
confirm proposed predictors, and identify addi-
tional predictors, including interactions with 
treatment terms, which would add predictive 
value. Additional predictors of interest were then 
incorporated into the final negative binomial 
GLM. Time at risk was used as an offset variable. 
This selection was further informed by backward 
variable selection to ensure the model was parsi-
monious, retaining covariates or interactions with 
p < 0.1, or up to p = 0.2 if there was considerable 
prior literature supporting their inclusion. 
Treatment covariates were included to ensure 
unconstrained prediction was possible for each 
combination therapy.

In addition to the full model, a simplified model 
was also tested, including only three predictors 
known to be available in most patient care set-
tings (exacerbation history, eosinophil count, and 
prior ICS treatment). Results for the full and sim-
plified models were compared to determine the 
value of the additional predictors.

Model fit was assessed on the training and test sets 
using rootograms to compare the predicted distri-
bution of the number of exacerbations with the 
observed distribution at the population level. 

Model fit was also assessed on the test set using the 
median absolute difference between observed and 
predicted exacerbation rates, and for the prediction 
of patients with 0 versus ⩾1 exacerbation in the fol-
lowing year, in terms of area under the receiver 
operating characteristic (ROC) curve, positive pre-
dictive value, and negative predictive value.

From the final models, rate ratios (RR) and 95% 
confidence intervals (CIs) were used to present 
each predictor’s role. Predicted exacerbation 
rates for a selection of example patients were 
derived, setting other covariates to typical values 
close to the median or mode for the dataset.

Results

Population characteristics
Overall, 19,194 patients had complete data avail-
able and were included in the model develop-
ment. The population included patients from 
North America, South America, Europe, Asia, 
South Africa, and Australasia.

The demographic and disease characteristics of 
the training set (n = 16,314) and test set (n = 2880) 
are shown in Table 2. Demographics were com-
parable between the two datasets. A majority of 
patients in both datasets (92%) had moderate or 
severe COPD, and 65% had experienced ⩾1 
moderate or severe exacerbation in the past year. 
The mean CAT score was approximately 19 in 
both datasets (range: 0–40).

Model development
Signal searching was carried out to determine 
optimal predictors. Results of important prognos-
tic predictors from gradient boosting are shown in 
Figure S1 in the Online Supplement (other 
machine learning results not shown). The 
expected model covariates (based on prior litera-
ture) of exacerbation history, COPD severity (by 
FEV1% predicted), eosinophil count, symptoms 
(by CAT score), prior therapies, and sex were all 
confirmed as important.

Region was added to the final full model, and 
prior maintenance therapies were incorporated 
using separate factors for prior ICS use, prior 
LAMA use, and prior LABA use to provide a 
complete characterization of prior treatment 
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Table 2.  Population characteristics of the training and test sets.

Training set
(n = 16,314)

Test set
(n = 2880)

Age, years

  Mean (SD) 64.3 (7.8) 64.6 (7.9)

  Range 40–81 40–80

Male sex 10,022 (61.4%) 1734 (60.2%)

Race

  White 13,270 (81.3%) 2332 (81.0%)

  Asian 1865 (11.4%) 335 (11.6%)

  Black 692 (4.2%) 131 (4.5%)

  Other 487 (3.0%) 82 (2.8%)

Region

  United States and Canada 8066 (49.4%) 1429 (49.6%)

  Western Europe 2318 (14.2%) 428 (14.9%)

  Eastern Europe 2038 (12.5%) 371 (12.9%)

  Latin America 1551 (9.5%) 235 (8.2%)

  China 1205 (7.4%) 202 (7.0%)

  Asia (non-China) 584 (3.6%) 119 (4.1%)

  Australasia and South Africa 552 (3.4%) 96 (3.3%)

Smoking status

  Current smoker 7245 (44.4%) 1319 (45.8%)

  Former smoker 9069 (55.6%) 1561 (54.2%)

Mean COPD duration, years (SD) 7.8 (6.2) 7.7 (6.1)

Disease severity

  Mild 28 (0.2%) 3 (0.1%)

  Moderate 7066 (43.3%) 1250 (43.4%)

  Severe 7986 (49.0%) 1397 (48.5%)

  Very severe 1232 (7.6%) 230 (8.0%)

FEV1% predicted

  Mean (SD) 48.3 (13.1) 48.1 (13.2)

  Range 19–95 16–88

Mean reliever medication use, puffs/day (SD) 3.1 (3.3) 3.2 (3.3)

Exacerbation history in the past year

  ⩾1 moderate/severe 10,646 (65.3%) 1868 (64.9%)

  ⩾1 severe 2258 (13.8%) 393 (13.6%)

(Continued)
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Training set
(n = 16,314)

Test set
(n = 2880)

Blood eosinophil count

  Geometric mean, cells/mm3 162 160

  <100 cells/mm3 2824 (17.3%) 52 (18.8%)

  100–<300 cells/mm3 10,776 (66.1%) 1847 (64.1%)

  ⩾300 cells/mm3 2714 (16.6%) 491 (17.0%)

CAT score

  Mean (SD) 19.1 (6.8) 19.2 (6.7)

  Range 0–40 0–40

Treatment received

  BGF 320/18/9.6 µg 2278 (14.0%) 402 (13.9%)

  BGF 160/18/9.6 µg 1782 (10.9%) 314 (10.9%)

  BFF 320/9.6 µga 3545 (21.7%) 625 (21.7%)

  BFF 160/9.6 µg 1050 (6.4%) 186 (6.5%)

  GFF 18/9.6 µg 3585 (22.0%) 633 (22.0%)

  BD 320 µg 168 (1.0%) 30 (1.0%)

  GP 18 µg 1148 (7.0%) 202 (7.0%)

  FF 9.6 µg 2190 (13.4%) 387 (13.4%)

  Placebo 568 (3.5%) 101 (3.5%)

Prior maintenance treatment

  ICS/LAMA/LABA 4795 (29.3%) 807 (28.0%)

  ICS/LABA 5318 (32.6%) 958 (33.3%)

  LAMA/LABA 2287 (14.0%) 428 (14.9%)

  ICS/LAMA 245 (1.5%) 36 (1.3%)

  ICS only 364 (2.2%) 54 (1.9%)

  LAMA only 935 (5.7%) 152 (5.3%)

  LABA only 332 (2.0%) 69 (2.4%)

  None 2038 (12.5%) 376 (13.1%)

BD, budesonide; BFF, budesonide/formoterol fumarate; BGF, budesonide/glycopyrrolate/formoterol fumarate; CAT, COPD 
Assessment Test; COPD, chronic obstructive pulmonary disease; DPI, dry powder inhaler; FEV1, forced expiratory volume 
in 1 s; FF, formoterol fumarate; GFF, glycopyrrolate/formoterol fumarate; GP, glycopyrrolate; ICS, inhaled corticosteroid; 
LABA, long-acting β2-agonist; LAMA, long-acting muscarinic antagonist; MDI, metered dose inhaler; SD, standard 
deviation.
Data are n (%) unless otherwise specified.
aIncludes BFF MDI (320/9.6 µg) and DPI (320/9 µg).

Table 2.  (Continued)
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history. Smoking status was not found to be of 
high importance but was retained due to knowl-
edge from the literature and its potential to be 
important in interaction terms.9 Several addi-
tional spirometry parameters (e.g. FEF25–75, 
reversibility, and PEF) were found to be impor-
tant, but given their correlation with FEV1% pre-
dicted or limited availability in clinical practice, 
they were not added to the model. The predictor 
variable relating to study (ETHOS, KRONOS, 
etc.) was removed from the model to increase 
generalizability.

Based on results from machine learning, several 
variables were determined to potentially show a 
differential response depending on the use of 
budesonide-containing therapy in the following 
year. As a result, expected interaction terms with 
eosinophil count, prior ICS use, and smoking sta-
tus were retained. Additional interactions with 
exacerbation history, prior LABA use, and reliever 
medication usage were included, as well as an 
interaction between eosinophil count and smok-
ing status. A three-way interaction between bude-
sonide use, eosinophil count, and smoking status 
was not found to be of value, as the relationship 
between eosinophil count and the benefit of 
budesonide did not vary significantly depending 
upon smoking status. The backward selection 
step also removed interactions between budeson-
ide use and FEV1% predicted, and between gly-
copyrrolate use and exacerbation history.

In the final full model, a higher number of exacer-
bations in the prior year, higher eosinophil count, 
each additional prior maintenance treatment 
(ICS, LAMA, or LABA), a higher number of 
puffs/day of reliever medication, lower FEV1% 
predicted, female sex, higher CAT score, region, 
and current smoking were found to be significant 
predictors of exacerbation risk, with prior exacer-
bations, eosinophil count, and prior therapy as 
modifiers of ICS response (Table 3). Full model 
coefficients for the final model are provided in 
Table S1 in the Online Supplement.

Model fit, as assessed using rootograms, demon-
strated that the distribution of the predicted 
number of exacerbations in the following year 
was similar to the actual distribution with a 
median absolute difference between actual and 
predicted exacerbation rates of 0.77 for the full 
model. The area under the ROC curves, at 0.70, 
demonstrated reasonable prediction of patients 

with and without an exacerbation in the follow-
ing year, and performance metrics were similar in 
both the training set and test set (see Figure S2 in 
the Online Supplement). For a negative predic-
tive value of 80%, the training and test sets 
showed positive predictive values of 47% and 
48%, respectively, for the full model (Table 3).

Prediction metrics were ~10% better, in relative 
terms, in the full model than in the simplified 
model, based only on exacerbation history, eosin-
ophil count, and ICS use (Table 3; Table S2 in 
the Online Supplement). The relationship 
between eosinophil count and exacerbation rates 
was similar in the full and simplified models.

Prediction of exacerbation rates
The impact of selected prognostic factors on 
exacerbation rates, regardless of treatment in the 
following year, is illustrated in Figure 1.

The following main effects were associated with 
increased risk of an exacerbation, but were not found 
to modify the relative benefit of any of the treat-
ments: female sex (RR: 1.31, 95% CI: 1.23–1.38); 
prior LAMA use (RR: 1.23, 95% CI: 1.16–1.31); 
FEV1% predicted (RR: 1.36, 95% CI: 1.30–1.43 for 
a 20% reduction in FEV1% predicted); and CAT 
score (RR: 1.14, 95% CI: 1.09–1.19 for a 10-point 
increase in CAT score) (Figure 1(a)).

Current smoking, a higher number of puffs/day of 
reliever medication, prior LABA use, prior ICS 
use, and additional COPD exacerbations in the 
previous year were associated with increased risk 
of a moderate/severe exacerbation, with a differ-
ential response depending on budesonide use 
(Figure 1(b)).

The model was then applied to several example 
patient types to illustrate the predicted exacerba-
tion rate with various treatments, according to 
blood eosinophil count, prior therapy, and exacer-
bation history. Results are shown in Figure 2 for a 
patient with the following characteristics, repre-
senting the approximate median values for the 
dataset: former smoker, from North America, 
FEV1 45% of predicted, CAT score of 20, and 
using three puffs/day of reliever medication. 
Consistent with KRONOS and ETHOS 
results,12,13 these predictions show a greater benefit 
of ICS-containing treatments over LAMA/LABA 
treatment in patients with higher eosinophil counts 
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(regardless of prior treatment and exacerbation 
history), with the magnitude of expected benefit 
increasing as eosinophil counts increased.

Larger benefits were also demonstrated in patients 
with more prior maintenance therapies and a 
greater number of previous exacerbations.

Table 3.  Predictive performance of full and simplified prediction models of the rate of moderate or severe COPD exacerbations.

Full model Simplified model

Model covariates Moderate/severe COPD exacerbation rate
~ offset[Log (Exposure)]
+ Intercept

Moderate/severe COPD exacerbation rate
~ offset[Log (Exposure)]
+ Intercept

Prognostic covariates + No. of exacerbations in prior year***
+ log(Eosinophils)***
+ Prior ICS use***
+ Prior LABA use***
+ Prior LAMA use***
+ Mean daily reliever medication usage***
+ FEV1% predicted***
+ Sex***
+ CAT score***
+ Region***
+ Smoking status**
+ log(Eosinophils):Smoking status**

+ No. of exacerbations in prior year***
+ log(Eosinophils)***
+ Prior ICS use***

Treatment covariates BD*** + GP*** + FF + BD:FF +   
GP:FF# + BD:GP:FF

BD*** + GP# + FF** + BD:FF +   
GP:FF† + BD:GP:FF

Interactions with ICS treatment + BD × No. of exacerbations in prior year*
+ BD ×  log(Eosinophils)***
+ BD × Prior ICS use#

+ BD × Prior LABA use*
+ BD × Mean daily reliever medication 
usage†

+ BD × Smoking status

+ BD × No. of exacerbations in prior 
year***
+ BD ×  log(Eosinophils)***
+ BD × Prior ICS use***

Performance metrics Training set Test set Training set Test set

Median difference between 
predicted and actual rate

0.77 0.77 0.86 0.87

Area under ROC curve for 
prediction of 0 versus ⩾1 
exacerbations

0.70 0.71 0.67 0.65

Positive predictive value 47% 48% 44% 45%

Negative predictive value 80% 80% 80% 80%

ANOVA, analysis of variance; BD, budesonide; CAT, COPD Assessment Test; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory 
volume in 1 s; FF, formoterol fumarate; GP, glycopyrrolate; ICS, inhaled corticosteroid; LABA, long-acting β2-agonist; LAMA, long-acting muscarinic 
antagonist; ROC, receiver operating characteristic.
Negative binomial generalized linear models.
Significance of sequential inclusion in model from ANOVA: ***p < 0.001; **p < 0.01; *p < 0.05; †p < 0.10; #p < 0.20.
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Figure 1.  Predictive factors of annual moderate/severe exacerbation rates: (a) main effects and (b) interaction 
terms with budesonide.
CAT, COPD Assessment Test; CI, confidence interval; COPD, chronic obstructive pulmonary disease; F, female; FEV1, forced 
expiratory volume in 1 s; ICS, inhaled corticosteroid; LABA, long-acting β2-agonist; LAMA, long-acting muscarinic antagonist; 
M, male; N, no; Y, yes.
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Discussion
We developed models predicting moderate/severe 
exacerbation rates that could be applied to patients 
with COPD with a broad range of clinical and 
physiological features, including airway obstruc-
tion, blood eosinophil counts, exacerbation his-
tory, symptoms, and treatment history. These 
models allow for the comparison of various COPD 
treatments and an examination of their relative 
efficacy in different subgroups of patients, high-
lighting those who may derive the greatest benefit 
from triple therapy or ICS-containing therapies. 
Highly significant predictors included exacerba-
tion history, FEV1% predicted, eosinophil count, 
sex, region, CAT score, prior treatment, and 
reliever medication use. These risk factors may be 
used to judge the potential benefits of switching 
between treatments for a broad range of patients 
with COPD, not only those who require step-up 
due to continued symptoms or exacerbations.

Given that patients experience an integer number 
of exacerbations in a year, but predicted rates are 
continuous, the full model showed good agree-
ment between predicted and observed exacerba-
tions rates, with a positive predictive value of 48%, 
for a negative predictive value of 80%. Metrics 
were provided for a high negative predictive value 
such that patients were not falsely predicted to 
have no exacerbations. False-positive predictions 
of exacerbations in the following year would also 
occur, as illustrated by the positive predictive 
value. However, in clinical terms, false positives 
were considered less of a concern than false nega-
tives and are inevitable when predicting a transient 
outcome (even patients with established exacerba-
tion risk may not experience one every year).

Even a single exacerbation can result in negative 
health outcomes for patients.1 Therefore, proac-
tively identifying patients predicted to have a high 
rate of exacerbations and optimizing treatment to 
prevent future exacerbations should be a key aim 
of COPD management. Notably, many of the risk 
factors shown to be important in our model can 
be modified or improved (e.g. FEV1% predicted, 
smoking status, and CAT score), suggesting that 
exacerbation risk can be modulated through 
treatment and lifestyle changes. In addition, while 
current GOLD recommendations do incorporate 
symptom burden, exacerbation history, and 
eosinophil count as key factors in treatment deci-
sions,5 our model quantifies the potential abso-
lute differences in predicted exacerbation rates 

based on these parameters in patients receiving 
various treatments. These absolute differences 
may be more informative than relative risk reduc-
tions for healthcare providers to evaluate the 
benefit:risk ratio of various treatment decisions 
for individual patients. For example, a smaller 
relative treatment benefit may substantially 
impact patients with a high expected rate of exac-
erbations. In contrast, a larger relative benefit 
may have a more limited impact in those with a 
low expected exacerbation rate. The prediction of 
absolute exacerbation rates may also be useful 
when planning clinical trials to assess the likeli-
hood of COPD exacerbations in different patient 
groups. For trials that require the occurrence of 
exacerbations to provide useful data, predicted 
rates could be used to enrich trial populations for 
patients most at risk of exacerbations.

As expected, our model showed that the greatest 
treatment benefits of ICS-containing treatments 
versus a LAMA/LABA would be predicted in 
patients with prior ICS use, prior exacerbation 
history, and a high eosinophil count. However, 
benefits of ICSs were observed even in patients 
without a history of exacerbations in the past year 
(particularly among those with high eosinophil 
counts). The reason for this observation may be 
that, in patients with prior ICS use, a lack of exac-
erbations in the previous year suggests that these 
patients had a positive response to their ICS treat-
ment. While taking into account the limitations of 
documenting only 1 year of exacerbation history, 
these findings suggest that the use of ICSs, even 
in patients without recent exacerbations, may 
help prevent their occurrence in the future. Given 
that a single COPD exacerbation is associated 
with lung function decline and other adverse 
health outcomes,1 predicting the first event, and 
not just future events, is important for those with-
out a history of previous exacerbation.

In general, our models agree with previous reports 
of risk factors for COPD exacerbations that were 
based on randomized controlled trials9–11,34 or 
observational studies.6–8 In line with the findings 
from these studies, prior exacerbation history and 
the severity of airflow obstruction and symptoms 
were among the most significant predictors of 
exacerbation rates in our models. However, in 
contrast to the findings of Bafadhel et  al.,9 the 
impact of smoking status was less substantial in 
our study. We did not find that the relationship 
between exacerbations, eosinophil count, and 
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budesonide use varied significantly according to 
smoking status, although there were interactions 
for budesonide use by smoking status and budeso-
nide use by eosinophil count. The reasons for this 
are unclear but may relate to the populations stud-
ied. In addition, while observational studies have 
found that comorbidities were strong predictors of 
future exacerbations,6–8 the clinical trials used to 
develop our models had exclusion criteria for clin-
ically significant, uncontrolled diseases other than 
COPD, limiting the presence of some common 
comorbidities in our source data.

While several other predictive models for COPD 
exacerbations have been published,14–17,35–37 our 
models have several strengths compared with previ-
ous work. Many of the previously published predic-
tive models for COPD exacerbations used source 
data from a single country or region.16,17,35–37 In 
contrast, our model was derived from a broad 
patient population, including patients from all pop-
ulated continents with a wide range of prior inhaled 
treatments (from short-acting bronchodilators only 
to ICS/LAMA/LABA) and exacerbation histories 
in the prior year (0 to >2). The geographically 
comprehensive range of regions that were included, 
encompassing different standards of care and diver-
sity in patient behavior and characteristics, should 
improve the model’s generalizability.

Furthermore, to the best of our knowledge, our 
models are the first to predict absolute exacerbation 
rates for patients on various pharmacological 
treatments. While most predictive models for 
COPD exacerbations report relative risks accord-
ing to various patient factors, the ACCEPT model 
also predicted absolute rates for different patient 
characteristics.15 However, it is difficult to compare 
performance metrics between these models as they 
are influenced by the follow-up duration of the 
source clinical trials and the prevalence of exacer-
bations in the population. Notably, in contrast to 
the current work, while the ACCEPT source popu-
lation had longer follow-up on average, it did not 
include any patients without prior exacerbations in 
the previous year, exacerbations rates were not pre-
dicted according to possible future pharmacologi-
cal treatments, and the role of eosinophils was not 
considered, which, as we have shown, is essential in 
predicting response to ICS-containing therapy. To 
the best of our knowledge, this is the first descrip-
tion of the application of machine learning to the 
prediction of exacerbation rates in patients with 
COPD. Although previous studies have used 

machine learning techniques to assess COPD-
related problems,38,39 previously published predic-
tive models of exacerbation risk in COPD have not 
utilized machine learning.14–17,35–37

Several limitations of our study population should 
also be noted. None of the clinical trials used to 
develop the models included patients with mild 
airflow obstruction, patients with a concurrent 
asthma diagnosis, or never-smokers. Thus, the 
model cannot be considered reliable for these 
patient groups. Furthermore, although the overall 
patient population was broad, some therapies 
were assessed primarily in patients with low risk 
(e.g. monotherapy) or high risk (e.g. triple ther-
apy) of exacerbations (see Table 1). Therefore, 
the modeling relied on the assumption that the 
relative benefits of different treatments follow 
similar patterns across the span of included 
patients. The source trials also included only one 
drug from each class (ICS, budesonide; LAMA, 
glycopyrrolate; LABA, FF) and have not yet been 
demonstrated to be generalizable across all drugs 
in these classes. While clinical trial data provided 
reliable and unbiased information on treatment 
response and a wide selection of potential predic-
tors, there may be differences in relative treat-
ment benefits in clinical trials versus real-world 
clinical practice. Future studies are needed to 
validate our models during real-world use and 
determine whether predictions are generalizable 
at the drug class level, in order to optimize their 
utility in clinical practice.

Some of the prognostic factors included may not 
be regularly available in clinical practice, particu-
larly in primary care, limiting the practical appli-
cability of the full model. For this reason, a 
simplified model was developed with only three 
predictors (exacerbation history, eosinophil 
count, and prior ICS use). Performance metrics 
were approximately 10% greater in the full model 
than the simplified model (area under the ROC 
curve 0.71 versus 0.65; median absolute differ-
ence 0.77 versus 0.87). The simplified model 
may be particularly useful in primary care situa-
tions or when up-to-date spirometry and CAT 
score assessments are unavailable. However, we 
also aimed for the full model to be parsimonious, 
recognizing the risk of overfitting and the effort 
involved to utilize a large number of risk factors. 
Therefore, not all predictors that were identified 
in machine learning were included in the final 
model. In general, those that were not included 
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tended to consistently appear relatively low in 
priority order compared with the factors that 
were included in the model or, alternatively, were 
highly related to factors that were included.

In conclusion, we developed two models to pre-
dict exacerbation rates for patients with COPD 
receiving treatment with various combinations of 
ICS, LAMA, and LABA. These models illustrate 
the various risk factors that should be considered 
when judging the exacerbation risk of individual 
patients with COPD, and may help inform treat-
ment decision-making, selection of clinical trial 
populations, and assessment of population-level 
health risks.
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