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Abstract

Background: A drug-drug interaction (DDI) is defined as a drug effect modified by another drug, which is very
common in treating complex diseases such as cancer. Many studies have evidenced that some DDlIs could be an
increase or a decrease of the drug effect. However, the adverse DDIs maybe result in severe morbidity and even
morality of patients, which also cause some drugs to withdraw from the market. As the multi-drug treatment becomes
more and more common, identifying the potential DDIs has become the key issue in drug development and disease
treatment. However, traditional biological experimental methods, including in vitro and vivo, are very time-consuming
and expensive to validate new DDIs. With the development of high-throughput sequencing technology, many
pharmaceutical studies and various bioinformatics data provide unprecedented opportunities to study DDlIs.

Result: In this study, we propose a method to predict new DDIs, namely DDIGIP, which is based on Gaussian
Interaction Profile (GIP) kernel on the drug-drug interaction profiles and the Regularized Least Squares (RLS) classifier.
In addition, we also use the k-nearest neighbors (KNN) to calculate the initial relational score in the presence of new
drugs via the chemical, biological, phenotypic data of drugs. We compare the prediction performance of DDIGIP with
other competing methods via the 5-fold cross validation, 10-cross validation and de novo drug validation.

Conlusion: In 5-fold cross validation and 10-cross validation, DDRGIP method achieves the area under the ROC
curve (AUC) of 0.9600 and 0.9636 which are better than state-of-the-art method (L1 Classifier ensemble method) of
0.9570 and 0.9599. Furthermore, for new drugs, the AUC value of DDIGIP in de novo drug validation reaches 0.9262
which also outperforms the other state-of-the-art method (Weighted average ensemble method) of 0.9073. Case
studies and these results demonstrate that DDRGIP is an effective method to predict DDIs while being beneficial to
drug development and disease treatment.
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Background

Drug-drug interactions (DDI) is defined as that a drug
affects the efficacy of another drug when multi-drugs are
adopted in the treatment of a disease [1]. DDIs can lead
to change systemic exposure and result in variations in
drug responses, which can improve the drugs efficiency
and the life quality of illnesses [2]. However, DDIs also can
cause serious adverse effects, drug withdrawal from the
market and even the patient morality [3, 4]. Meanwhile,
with the medical technology development and personal-
ized medical requirements, more and more patients were
simultaneously treated by multi-drugs and between 2009
and 2012, 38.1% of U.S. adults aging 18-44 years used three
or more prescription drugs during a 30 day time period
[5-7]. Therefore, identifying the potential DDIs has
become a major issue in drug development and practice
process.

With the high-throughput sequencing technology
development, many databases related to drugs have been
constructed. DrugBank database can provide drug targets,
drug enzymes, drug transporters and DDIs, which are
widely used in studying drug-target associations and drug
repositioning [8-10]. PubChem Compound database
contains the chemical substructures and their biologi-
cal test results [11]. In addition, SIDER and OFFSIDES
databases include drug side effects and "off-label" side
effects, respectively [12, 13]. KEGG database contains
drug pathways and chemical substructures [14]. TWO-
SIDES database contains the DDIs based on the adverse
event reports in the AERS (adverse effect reactions)
[13, 15].

The above mentioned databases related to drugs were
extracted from the published literature and reports with
experimental validation, and could provide the basis to
the development of computational methods to predict
new DDIs. Recently, many computational methods have
been proposed to predict potential DDIs based on the
assumption that similar drugs tend to interact with similar
other drugs. These approaches usually used the biolog-
ical network data, chemical substructure data and phe-
notypic data. Based on MACCS substructures of drugs,
Vilar et al. developed a similarity-based model to pre-
dict new DDIs [16]. Liu et al. proposed a model to
predict potential DDIs via random forest-based classifica-
tion model, which also adopted a feature selection tech-
nique over the chemical substructures, protein-protein
interactions between targets of drugs and target enrich-
ment of KEGG pathways [17]. Cheng et al. proposed a
method to infer novel DDIs via machine learning classi-
fiers, whose major feature is integrating drug chemical,
phenotypic and genomic properties [18]. IPFs (interac-
tion profile fingerprints) method was proposed to predict
hidden DDIs [19]. Logistic regression model was used
to predict new DDIs by Takeda et al., which analyzed
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the effects of 2D structural similarities of drugs on DDI
prediction with other pharmacokinetics (PK) and phar-
macodynamics (PD) knowledge [20]. Via constructing the
drug similarity based on their 2D and 3D molecular sub-
structures, targets, side effects and known DDIs, Vilar et
al. further proposed a method to predict new DDIs on
a large scale data, where the key feature is capturing the
characteristics of drugs by 3D substructures when 2D sub-
structures are missing [21]. Herrero-Zazo et al. provided
a computational method to predict DDIs by different
types of DDIs and their mechanisms [22]. By integrat-
ing similarities from drug molecular and pharmacological
phenotypes, Li et al. used a Bayesian network to provide
large-scale exploration and analysis of drug combinations
[23]. Through calculating the functional similarity from
drug carriers, drug transporters, drug enzymes and drug
targets, Ferdousi et al. developed an approach to dis-
cover new DDIs [24]. Based on the Probabilistic Soft
Logic method, a computational framework was developed
to discover new DDIs by integrating the multiple drug
similarities and known DDIs [25]. The label propagation
approach was also developed to discover new DDIs, which
used drug chemical structures, side effects and off side
effects [26]. In order to predict drug adverse drug reac-
tions (ADRs), a systems pharmacology model called MEF
(multiple evidence fusion) has been developed by inte-
grating known DDIs and other similarities of drugs [27].
Based on the assumption that synergistic effects of drugs
are usually similar, Network-based Laplacian regularized
Least Square Synergistic (NLLSS) method was developed
to predict novel DDIs [28]. Via calculating the similari-
ties of chemical, biological, phenotypic and known DDIs
of drugs, Zhang et al. proposed three ensemble methods
to predict novel DDIs, which included a weight average
ensemble method and two classifier ensemble methods
(L1 and L.2) [29].

In addition, many other approaches used quantita-
tive structure-activity relationship (QSAR) model, clin-
ical data and data mining to study DDIs. Matthews
et al. developed 14 QSAR models to predict the car-
diac adverse effects for generic pharmaceutical substances
[30]. Zakharov et al. developed QSAR models to predict
the likelihood of DDIs for any pair of drugs by radial basis
functions with self-consistent regression (RBF-SCR) and
random forest (RF) [31]. Cami et al. proposed a Predictive
Pharmacointeraction Networks (PPINs) to predict novel
DDIs by exploiting the known DDIs and other intrinsic
and taxonomic properties of drugs and AEs [32]. Huang
et al. developed a method to predict DDIs using protein-
protein interaction network and clinical side effects [33].
Based on information of drug metabolism, text-mining
and reasoning methods were developed to infer new DDIs
[34]. Iyer et al. used the textual portion Electronic health
records (EHRs) to directly discover new DDIs [35]. Banda
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et al. also adopted a data mining method to predict
new DDIs from the EHRs [36]. Based on the k-nearest
neighbor algorithm, Chen et al. proposed a model to
predict DDIs which integrated nine predictors by major-
ity voting [37]. Furthermore, the drug response predic-
tion and drug-target interaction prediction are also the
important research topics about drugs. By integrating
genomic/pharmaceutical data, protein-protein interac-
tion network, and prior knowledge of drug-target interac-
tions with the techniques of network propagation, Wang
et al. have developed a dNetFS method to prioritize
genetic and gene expression features of cancer cell lines
that predict drug response [38]. Based on the massively
collected drug-kinase interactions and drug sensitivity
datasets, Liu et al. employed a sparse linear model to
infer essential kinases governing the cellular responses to
drug treatments in cancer cells [39].Based on the sequence
information of both targets and drugs, DeepDTA is used
to predict drug-target interaction binding affinities, which
is a deep-learning based model (convolutional neural net-
works) [40].

Although the above DDI prediction methods have
achieved some good prediction results of novel DDIs and
provided useful information for drug development and
practice process. However, these methods did not pay
enough attention to new drugs which do not have any
DDIs with other drugs or cannot predict novel DDIs for
new drugs because known DDIs are missing.

In this study, we develop a computational method
(called DDIGIP) to predict novel DDIs based on drug
Gaussian interaction profile (GIP) kernel similarity and
regularized least squares (RLS) classifier. We calculate
the GIP similarity of drugs by known DDIs, and then
adopt the RLS method to compute the related scores of
any drug pairs. In addition, when predicting DDIs for
new drugs, we use the KNN method to compute the ini-
tial relational scores by similarity calculated from some
important chemical, biological and phenotypic informa-
tion of drugs. The drug chemical structures, drug-target
interactions, drug enzymes, drug transports, drug path-
ways, drug indications, drug side effects and drug off
side effects are all used to calculate similarity of drugs.
5-fold cross validation (5CV), 10-fold cross validation
(10CV) and de novo drug validation are used to systemi-
cally assess prediction performance of DDIGIP, compared
with other methods. In 5-fold cross validation, the area
under the ROC curve (AUC) value of DDIGIP is 0.9600
which is slightly better than the state-of-the-art method
L1 classifier ensemble (L1E) method results of 0.9570. In
addition, the experimental results of 10-fold cross valida-
tion also demonstrate that DDIGIP outperforms the L1E
method. In de novo drug validation, DDIGIP achieves the
AUC of 0.9262, which is also better than the weighted
average ensemble (WAE) method result of 0.9073. Case
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studies further validate the prediction ability of DDIGIP
method.

Materials
In this study, the benchmark dataset of DDIs composes
of 548 drugs and 48,584 DDIs. This dataset is obtained
from the TWOSIDES database. In addition, because we
need to calculate the relational scores of new drugs, we
also download other chemical, biological and phenotypic
data from other databases to compute the similarity of
drugs. The chemical data are PubChem substructures
which are downloaded from the PubChem Compound
database. Biological data include drug targets, drug trans-
ports, drug enzymes and drug pathways, the first three
types are obtained from the DrugBank database and the
last one is from the KEGG database. Furthermore, the
phenotypic data composes of drug indications, drug side
effects and drug off side effects. The SIDER database
provided the drug indications and drug side effects, and
OFEFSIDES provided the drug off side effects.

Previous studies also provided the download links for
these datasets [29]. Table 1 shows the relevant information
which includes data type, data source and dimensionality.

Methods

GIP kernel similarity of drugs

The GIP kernel similarity has widely been used in other
prediction issues of similar areas and achieved effective
prediction performances [41-46]. RLS-Kron is provided
to predict drug-target interactions based on RLS classifier
of Kronecker product kernel and GIP kernel similarities
of drugs and targets [41]. SDTRLS is provided to predict
drug-target interactions based on integration similarity of
drug GIP kernel similarity and chemical substructure sim-
ilarity by the SNF method[42, 47]. LDAP is used to predict
IncRNA-disease associations by using a bagging SVM

Table 1 The description of benchmark dataset

Data Data Database dimensionality
type
chemical Chemical PubChem 881
substructures
Biological Drug-targets DrugBank 780
Drug transporters DrugBank 18
Drug enzymes DrugBank 129
Drug pathways KEGG 253
Phenotypic  Drug indications SIDER 4897
Drug side effects SIDER 4897
Drug off OFFSIDES 9496
side effects
Interaction  Drug-drug TWOSIDES  Drugs:548,DDls:48,584

interactions
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classifier based on IncRNA and disease similarities which
include GIP kernel similarity [43]. DNRLMF-MDA is an
miRNA-disease associations prediction method based on
dynamic neighborhood regularized logistic matrix factor-
ization, which also uses the GIP kernel similarity.

We compute the GIP similarity of drugs via known DDIs
in this study. We denote D = {di,dy, ......dn} as the set
of N drugs. The known DDIs can be represented by an
adjacency matrix ¥ € N * N. The value of y;; is 1 if d;
and d; have a known interaction, and 0 otherwise. The GIP
kernel similarity between drugs d; and d; can be calculated
as follows:

Gsim (i, dj) = exp (—vallydi — ydj||?) ey
1 N

Ya ="Vl <N > ||ydi||2) @)
i=1

where y, is the regularization parameter of kernel band-
width and y, is set to be 1 according to previous studies
[42, 44], yd; = {yi1,yi2s - ¥in} is the interaction profile
of drug d;.

RLS classifier and prediction dDIs

The (kernel) RLS classifier is based on the assumption
that similar principal (adjuvant) drugs are tended to inter-
act with the same adjuvant (principal) drug and has been
widely used in other areas [42, 48, 49]. After calculating
the GIP kernel similarity Gg;,,,, we adopt the RLS classifier
to compute the interaction probability scores of drug pairs
as follows:

i/p = Gsim(Gsim + 01)_1Y 3)
V,+¥T

Yp =5~ (4)
where o is the regularization parameter and set to be 1
according to previous study [41]. Furthermore, the Gg,
and I are the GIP similarity matrix and the identity matrix,
respectively. The Y, is the final prediction result matrix,
which is symmetric. The interacted probabilities of drug
pairs are ranked in descending order. A candidate drug

pair with the rank 1 is of the most possible drug pair.

KNN for new drugs

New drugs have no any known interaction with other
drugs, which makes prediction DDIs for these drugs is
impossible by existing methods. Therefore, we adopt the
KNN method to calculate their initial relational scores
based on the integrated feature similarity of chemical
structure, biological and phenotypic information.

In order to calculate the integrated feature similarity
Ssim € N x N, we adopt the Pearson correlation coefficient
to compute similarity based on the binary vectors of drug
chemical substructures, drug targets, drug transporters,
drug enzymes, drug pathways, drug indications, drug side
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effects and drug off side effects. We can see from Table
1 that the total dimensionality of a binary vector of any
drug is 21,351, whose value is 1 when the related feature
is present and otherwise is 0. Specifically, the similarity of
drug pair d; and d; is calculated as follows:

Cov (Vdi,l/dj) B E ((Vdi - Evdl.) (vd/, - Evdj>)
D(va)D(vg) D (v4,)D(va)

where v, and v are the feature vectors of drugs d; and dj,
respectively. Cov is the covariance. E and D are the math-
ematical expectation and standard deviation, respectively.

After obtaining the integrated feature similarity Sgjp,
we calculate the initial scores of new drugs by the KNN
method. Specifically, the interaction scores Yxnn (d;, d;)
between new drug d; and another drug d; can be calcu-
lated as follows:

b _
sim T

(5)

(o))
2 Ssim
Yin (dir dj) = %D}’dl € Ker (6)
Ssim
where Sg;,ln) is the (i,/)-th element of the integrated simi-

larity matrix and yj; is the (/, j)-th element of known DDIs
matrix Y € NxN. K represents the set of top K nearnest
neighbors according to the Sy, matrix. In this study, we
set the value of K by de novo drug validation.

Algorithm 1 is the description of our DDIGIP method.
As the 0 vectors in the DDIs adjacency matrix Y corre-
spond to unknown cases, we firstly compute the initial
relational interaction scores for new drugs via the KNN
method which uses the feature similarity Sy, of drugs by
integrating chemical, biological and phenotypic data. The

Algorithm 1 DDIGIP
Input: Drug set DS, DDIs adjacency matrix Y, and
parameter K
Output: predicted association matrix Y),
DDIGIP(DS, Y, K)
1: Search for drug set Dpey, (0 vector) that each drug has
no known DDIs;
2: if Dy is not null
Calculate feature similarity Sy, of drugs by Pearson
correlation coefficient;
for i in Dppy
Calculate the Yxan (i, ) by the KNN method;
Set initial scores of drug d; by Yran (i, :);
end
end
: Calculate GIP similarity G4 of drugs;
10: Based on G, and Y, obtain the prediction result Y, by
the RLS method;
11: Return Y),;

i

RN A A
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feature similarity Sy, is calculated by Pearson correla-
tion coefficient. After computing the GIP similarity G; of
drugs, we take the RLS classifier to calculate the interac-
tion scores of drug pairs. The final prediction result matrix
is Y. Figure 1 demonstrates the work flow of DDIGIP.

RESULTS aND dISCUSSIONS
Benchmark evaluation and evaluation indices
5CV and 10CV are widely used to evaluate the per-
formance for predicting drug-drug interactions [28, 29],
drug-target interactions [42, 50], drug-disease inter-
actions [51-53], IncRNA-disease associations [43, 54],
miRNA-disease associations [44, 55] and so on. In this
study, we evaluate the predictive performance of DDIGIP
using 5CV and 10CV. In 5CV, all known DDIs are divided
into 5 folds, and each fold, in turn, was left out as the
test set while the rest 4 folds as the training set. In 10CV,
we also divide known DDIs into 10 folds, and each fold is
treated as test set in turn, while the remaining 9-folds are
as the training set. We adopt 10 repeats in 5CV and 10CV.
Furthermore, the actual generalization ability of predict-
ing potential DDIs for new drugs is also an important
aspect to assess the prediction performance. We thus con-
duct de novo drug validation to evaluate the predictive
performance of DDIGIP. In de novo drug validation, we
take known DDIs of each drug, in turn, and the rest DDIs
of other drugs as the training set.

From a prediction method, each drug pair obtains a
prediction score. Then each known interaction between
two drugs in the test is ranked relative to the candidate
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interactions (all unknown interactions). On a specified
rank threshold, TPR (true positive rate) is the fraction of
known interactions that are correctly predicted, and FPR
(false positive rate) is the fraction of unknown interactions
that are predicted to be true interactions. The receiver
operating characteristic curve (ROC) can be drawn based
on various TPR and FPR values with various rank thresh-
olds. Then we also use the area under the receiver operat-
ing curve (AUC) to measure the prediction performance
of DDIGIP and other methods. The higher its AUC value
is, the better prediction performance a method achieves.

Comparison with previous methods

In this study, we compare our method with other four
methods: weighted average ensemble (WAE) method, L1
classifier ensemble (L1E) method, L2 classifier ensemble
(L2E) method [29] and label propagation (LP) method
[26], with the same validation method in the benchmark
dataset.

5cv

Table 2 shows that the prediction performances of five
methods in 5CV. Based on the AUC values of these meth-
ods, DDIGIP is slightly better than other methods. It
shows that the GIP similarity is reasonable to use known
DDIs because DDIGIP only uses known DDIs in 5CV.
In addition, three integrating methods (WAE, L1E, L2E)
were also achieved the good results because they inte-
grated the neighbor recommender method, random walk
method and matrix perturbation method.

Drug
substructures

Drug targets

Drug
transporters

Drug feature

Drug Enzymes | i Baacd
similarity

Drug featurcs

Drug Pathways

Drug
Indications

Drug
Side effects

Find new drugs

Drug Off side

cffects

Drug-drug
interaction data

Fig. 1 The work flow of DDIGIP

RLS for DDI

prediction

Initial scores for new

drugs by KNN modcl

Drug GIP
similarity




Yan et al. BMC Bioinformatics 2019, 20(Suppl 15):538

Table 2 The prediction performances in 5CV,10CV and denovo
validation, the best results are in the bold face

The prediction
performances(AUC)

Method Feature 5CV 10Cv Denovo
WAE Chemical data, 0.9502 0.9530 0.9073
biological data,
phenotypic data
L1E Chemical data, 0.9570 0.9599 [
biological data,
phenotypic data
L2E Chemical data, 0.9561 0.959%4 ]
biological data,
phenotypic data
Drug-sub 0.9356 0.9359 0.8993
LP Drug-Label 0.9364 0.9368 0.8994
Drug-Off Label 0.9374 0.9378 0.8997
DDIGIP Chemical data, 0.9600 0.9636 0.9262

biological data,
phenotypic data

The @ represents that we did not compute the prediction performance because the
prediction limit for new drugs.

10Cv

Table 2 also shows the prediction performances of five
methods in 10CV. DDIGIP also achieved the best predic-
tion result and its AUC value is 0.9636 which is larger
than other methods WAE: 0.9530, L1E:0.9599, L2E:0.9594
and LP (max): 0.9378, respectively. By comparing the
prediction performances of DDIGIP in 5CV and 10CV,
DDIGIP is more effective to predict DDIs in 10CV than in
5CV. It proves that DDIGIP has better prediction ability
when there are many known DDIs.

Denovo drug validation

In de novo drug validation, we compare DDIGIP with
LP and WAE. We do not perform the de novo drug
validation on other existing methods because of their pre-
diction limit for new drugs. Similar to previous studies, we
also obtain the weights of integrated methods (neighbor
recommender method and random walk method) with
drug chemical data, biological data and phenotypic data.
Table 2 shows that DDIGIP also obtains the best predic-
tion performance in terms of AUC (0.9262), compared
with other methods (WAE: 0.9073, LP (max):0.8997). It
also further indicates that the GIP similarity is effective to
use known DDlIs.

Computation time comparison

The computation time is also an important aspect to
assess the performance of computational methods. In this
study, we also compare the average computation time
of five methods in 5CV. Figure 2 shows that the run-
time of DDIGIP is less than those of other methods. In
addition, since WAE, L1E and L2E are the integration
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method, their computation times are longer than those
of LP and DDIGIP. We can see from Fig. 2 that DDIGIP
runs the fastest and its computation time is 6.61 seconds
in 5CV.

Parameter analysis for K

In order to verify the robustness of DDIGIP, we ana-
lyze the parameters K that is the number of the near-
est neighbors in de novo drug validation. The optimal
parameter value of K is selected by the grid search.
Figure 3 shows the AUC values of DDIGIP under vari-
ation of K ranging from 1 to 15 in de novo validation.
We can see from Fig. 3 that the prediction performance
has the ascending trend when K ranges from 1 to 7,
while has the descending trend when K ranges from 11
to 15. In addition, DDIGIP has a relatively stable predic-
tion performance and achieves the best prediction result
(AUC:0.9262) when K is 9. It indicates that a reasonable
value of K can improve the prediction performance of
DDIGIP.

Case studies

To illustrate the prediction performance of DDIGIP
method, we conduct two types of case studies. The one
includes the top 20 predicted DDIs under all known DDIs,
in which the benchmark dataset is obtained from the
TWOSIDES database while the confirmed database is
DrugBanK database. Another includes top 20 the new
DDIs in de novo validation of drug Ranolazine (DB00243)
whose confirmed database composes of TWOSIDES
database and DrugBanK database.

We can see from Table 3 that 9 out of top 20 DDIs
predicted by DDIGIP are validated in DrugBank. The ver-
ification success rate is 45%. Zafirlukast (DB00549) is an
oral leukotriene receptor antagonist (LTRA) drug usu-
ally used in the maintenance treatment of asthma, its
metabolism can be decreased by Rabeprazole (DB01129)
[56, 57]. Atazanavir (DB01072) is an antiretroviral drug
of the protease inhibitor (PI) class, which is used to treat
infection of human immunodeficiency virus (HIV) and
its metabolism can be decreased when combining with
Amlodipine (DB00381) [8, 58]. In addition, Pantoprazole
(DB00213) also decreases the metabolism of Methadone
(DB00333)[59]. The risk or severity of adverse effects
can be increased when Atenolol (DB00335) is combined
with Nadolol (DB01203), Clotrimazole (DB00257) is com-
bined with Pregabalin (DB00230) or Enalapril (DB00584)
is combined with Perindopril (DB00790) [9, 10, 60, 61].
The hypotensive activities of Nadolol (DB01203) can be
increased by Propranolol (DB00571) [62]. The absorp-
tion of Cefpodoxime (DB01416) can be decreased when
combining with Ranitidine (DB00863) [63]. Acebutolol
(DB01193) also increases the serum concentration of
Metoprolol (DB00264) [64].
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Ranolazine is an antianginal medication used in the
treatment of chronic angina [10]. Table 4 shows that
top 20 predicted DDIs of Ranolazine are validated in
TWOSIDES database or DrugBanK database. In addi-
tion, 12 out of top 20 DDIs are simultaneously confirmed
by TWOSIDES database and DrugBanK database, while
the rest are confirmed by one of them. For example,

the metabolism of Levothyroxine (DB00451) and Zolpi-
dem (DB00425) can be decreased when combining with
Ranolazine [15, 56]. Clopidogrel is an antiplatelet agent
structurally and pharmacologically similar to ticlopi-
dine, which is used to inhibit blood clots in a vari-
ety of conditions such as peripheral vascular disease,
coronary artery disease, and cerebrovascular disease [8].

Denovo validation

1.0 A1
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K

Fig. 3 The AUC of DDIGIP under different settings of K in de novo drug validation, the sign * represents the default value
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Table 3 Top 20 new DDIs predicted by DDIGIP method

Rank Drug ID1 Drug ID2 Evidence
1 DB00448 DB01059 Unknown
2 DB00549 DB01129 DrugBank
3 DB00991 DB00231 Unknown
4 DB00470 DB00331 Unknown
5 DB00630 DB00346 Unknown
6 DB00863 DB01416 DrugBank
7 DB01203 DB00335 DrugBank
8 DB00813 DB00535 Unknown
9 DB00257 DB00230 DrugBank
10 DB00806 DB01036 Unknown
1 DB00927 DB01193 Unknown
12 DB00333 DB00213 DrugBank
13 DB00987 DB00758 Unknown
14 DB01595 DBO1137 Unknown
15 DB06151 DB01068 Unknown
16 DB00328 DB00218 Unknown
17 DB00264 DB01193 DrugBank
18 DB01072 DB00381 DrugBank
19 DB01203 DB00571 DrugBank
20 DB00584 DB00790 DrugBank

Table 4 The validation result of top 20 new DDIs of drug
Ranolazine (DB00243) predicted by DDIGIP method in de novo
validation

Rank Drug ID1 Drug ID2 Evidence

1 DB00243 DB00451 TWOSIDES,DrugBanK
2 DB00338 TWOSIDES,DrugBanK
3 DB00641 TWOSIDES,DrugBanK
4 DB00945 TWOSIDES,DrugBanK
5 DB00758 TWOSIDES,DrugBanK
6 DB00316 DrugBanK

7 DB00264 TWOSIDES

8 DB00695 TWOSIDES

9 DB00722 TWOSIDES

10 DB00390 TWOSIDES,DrugBanK
11 DB00448 TWOSIDES,DrugBanK
12 DB00999 TWOSIDES

13 DB00863 TWOSIDES,DrugBanK
14 DB00630 TWOSIDES

15 DB00635 DrugBanK

16 DB00213 TWOSIDES,DrugBanK
17 DB00678 TWOSIDES,DrugBanK
18 DB00425 TWOSIDES,DrugBanK
19 DB00177 TWOSIDES

20 DB00331 TWOSIDES,DrugBanK
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The serum concentration of Clopidogrel (DB00758) can
be increased when combining with Ranolazine [15]. Sim-
ilarly, the serum concentration of Simvastatin (DB00641),
Acetylsalicylic (DB00945) or Metformin (DB00331) also
can be increased when combining with Ranolazine
[56, 65]. In addition, when Ranolazine is combined with
Omeprazole (DB00338) or Acetaminophen (DB00316), its
serum concentration also can be increased [15, 66].

Conclusion

In this study, we have proposed a computational method,
called DDIGIP, for DDIs prediction. The GIP similarity of
drugs is calculated by the known DDIs, which makes full
use of known DDIs. To our knowledge, in the previous
studies the RLS-Kron method is used to predict interac-
tion of bipartite networks, such as drug-target interaction
networks, drug-disease interaction network and so on.
Experiments are conducted using two different types of
cross validations: 5-fold cross validation and 10-fold cross
validation. The prediction ability of DDIGIP has been
illustrated by comparing it with four other competing
state-of-the-art methods.

Furthermore, based on Pearson correlation coefficient,
we obtain a comprehensive feature similarity of drugs by
integrating the chemical, biological and phenotypic data
into a high dimension binary vector. In order to more
effectively predict DDIs for new drugs, we also conduct
de novo drug validation. We add a preprocessing step,
KNN, to compute the initial relational scores according
to the feature similarity of drugs. Because the vector 0
in the matrix corresponding to unknown cases or miss-
ing values rather than confirmed non-interactions, the
preprocessing can improve the prediction performance.

Despite the advantages of DDIGIP as discussed above,
it still has some limitations. The more effective method
should be developed to integrate known DDIs with other
chemical, biological and phenotypic data. In addition,
other new prediction methods such as matrix completion
[67], deep learning [68] and interpretable boosting model
[69] could be considered. Finally, in this study, the bench-
mark dataset of DDIs only includes the positive samples
and is an imbalanced dataset, we will also consider some
other methods (SVM [70],LibD3C [71],extreme learning
machine [72] and collaborative metric learning [73]) to
predict DDIs when we obtain reliable negative samples in
the future. We expect to develop a more effective method
to predict DDIs by overcoming these limitations in the
future.
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